
Citation: Su, K.; Deng, B.; Tang, S.;

Sun, X.; Fang, P.; Si, X.; Han, X.

Remaining Useful Life Prediction of

Lithium-Ion Batteries Based on a

Cubic Polynomial Degradation

Model and Envelope Extraction.

Batteries 2023, 9, 441. https://

doi.org/10.3390/batteries9090441

Academic Editor: Wilhelm Pfleging

Received: 21 June 2023

Revised: 6 August 2023

Accepted: 25 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Remaining Useful Life Prediction of Lithium-Ion Batteries
Based on a Cubic Polynomial Degradation Model and
Envelope Extraction
Kangze Su 1, Biao Deng 1, Shengjin Tang 1,*, Xiaoyan Sun 2, Pengya Fang 3, Xiaosheng Si 4 and Xuebing Han 5,*

1 Department of Mechanical Engineering, Rocket Force University of Engineering, Xi’an 710025, China;
user_skz@163.com (K.S.); djm202@163.com (B.D.)

2 Department of Communication Engineering, Rocket Force University of Engineering, Xi’an 710025, China;
sunxiaoyantsj@126.com

3 School of Aero Engine, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; pyfang@zua.edu.cn
4 Zhijian Laboratory, Rocket Force University of Engineering, Xi’an 710025, China; sixiaosheng@gmail.com
5 State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
* Correspondence: tangshengjin@126.com (S.T.); hanxuebing@tsinghua.edu.cn (X.H.)

Abstract: Remaining useful life (RUL) prediction has become one of the key technologies for reducing
costs and improving safety of lithium-ion batteries. To our knowledge, it is difficult for existing
nonlinear degradation models of the Wiener process to describe the complex degradation process of
lithium-ion batteries, and there is a problem with low precision in parameter estimation. Therefore,
this paper proposes a method for predicting the RUL of lithium-ion batteries based on a cubic poly-
nomial degradation model and envelope extraction. Firstly, based on the degradation characteristics
of lithium-ion batteries, a cubic polynomial function is used to fit the degradation trajectory and
compared with other nonlinear degradation models for verification. Secondly, a subjective parameter
estimation method based on envelope extraction is proposed that estimates the actual degradation
trajectory by using the average of the upper and lower envelope curves of the degradation data of
lithium-ion batteries and uses the maximum likelihood estimation (MLE) method to estimate the
unknown model parameters in two steps. Finally, for comparison with several typical nonlinear
models, experiments are carried out based on the practical degradation data of lithium-ion batteries.
The effectiveness of the proposed method to improve the accuracy of RUL prediction for lithium-ion
batteries was demonstrated in terms of the mean square error (MSE) of the model and MSE of
RUL prediction.

Keywords: lithium-ion batteries; remaining useful life; cubic polynomial function; envelope
extraction; measurement error; Wiener process

1. Introduction

As an energy storage device, lithium-ion batteries have been widely used in various
fields such as transportation, aerospace, and defense industries due to their advantages of
large energy storage capacity, strong charge retention ability, and no memory effect [1–3].
With the increase of cycles during lithium-ion battery use, electrode impedance increase,
electrolyte loss, and thin film formation on the electrode inside the lithium-ion batter-
ies could occur. It could also result in insufficient power or capacity, short circuits, and
electrolyte leakage, which could further cause loss of function or even catastrophic conse-
quences [4–6]. Therefore, it is crucial to improve system reliability, reduce overall life-cycle
costs, and minimize the probability of accidents. Prognostics and health management
(PHM) is an efficient technology to solve this problem that predicts the future status of
lithium-ion batteries by combining real-time monitoring information with historical degra-
dation information and expert knowledge, and implements timely and effective health
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management [7,8]. In PHM, remaining useful time (RUL) prediction is a core concept that
has become a widely discussed issue in the past decade.

RUL prediction of lithium-ion batteries uses historical degradation data and on-site
degradation data to predict the remaining lifetime of lithium-ion batteries [9,10]. RUL
prediction methods for lithium-ion batteries mainly include physics-of-failure methods
and data-driven methods [11]. Physics-of-failure methods generally require a deep under-
standing of the physical failure mechanisms of lithium-ion batteries, which mainly include
mechanism models, empirical models, and equivalent circuit models [12,13]. However,
due to the complex structure and different material properties inside lithium-ion batter-
ies, it is difficult to accurately describe the internal chemical reactions through constant
mathematical models, and thus physics-of-failure methods have been limited in practical
application [14,15].

Compared with physics-of-failure methods, data-driven methods for RUL prediction
do not require an in-depth understanding of the degradation mechanisms of lithium-
ion batteries [16]. Instead, data-driven methods use artificial intelligence or statistical
mathematical models to model the degradation data of lithium-ion batteries. These methods
are mainly divided into three types: artificial intelligence methods, statistical modeling
methods [17], and combined methods [18]. Artificial intelligence methods use machine
learning to train degradation data and fit it with known degradation data to predict
the RUL [19]. It mainly includes support vector machines (SVM) [20], relevance vector
machines (RVM) [21], gaussian process regression (GPR) [22], artificial neural networks
(ANN) [23], etc. Although artificial intelligence methods have the advantages of high
computing accuracy and adaptability to dynamic conditions, they cannot quantify the
uncertainty of predicted RUL and require substantial amounts of degradation data to
support their performance [24].

Statistical modeling methods can quantify the uncertainty of prediction results by
calculating the probability density function (PDF) of RUL. These methods can be mainly
divided into two types: random coefficient regression (RCR) models and stochastic degra-
dation process. RCR models generally use a nonlinear model to track the degradation
trajectory of equipment, describing the differences and common characteristics of equip-
ment through random coefficients and fixed parameters [25]. As an effective tool for
modeling degradation data, RCR models were first proposed by Lu and Meeker [26] and
have been widely applied in degradation modeling of, for example, bearing vibrations [27]
and semiconductors [28].

He et al. [29] proposed a RCR model based on a double exponential function to fit
the degradation process of lithium-ion batteries, and then used the Bayesian Monte Carlo
method to update the parameters based on new measurement data through the particle
filtering method. Subsequently, research on RUL prediction methods based on RCR models
mainly focused on two aspects. The first aspect was selecting different nonlinear models
and fitting the degradation process in order to improve the fitting accuracy. Currently,
there are various types of nonlinear models for modeling lithium-ion batteries, such as
the double exponential function [30–32], the combination of the exponential function and
the linear function [33,34], the combination of the exponential function and the quadratic
function [35], the combination of the power function and the exponential function [21],
the combination of the logarithmic function and the polynomial [36], and polynomial
functions (quadratic polynomial [37,38], cubic polynomial [39], quintic polynomial [40]).
However, current research focuses mostly on analyzing the effects of different nonlinear
functions from the perspective of model fitting of data, and there are few comparisons
of typical performance degradation characteristics of lithium-ion batteries. Moreover, in
order to represent individual variances between different equipment, most of the above-
mentioned methods assume that multiple parameters in the nonlinear function are random.
Accordingly, multiple parameters in the nonlinear function need to be updated during
RUL prediction, which increases the difficulty of parameter updating. In addition, the
methods based on RCR models generally assume that the nonlinear degradation process
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of lithium-ion batteries is a deterministic process, which makes its uncertainty difficult
to describe.

The most typical method for predicting the RUL of lithium-ion batteries based on
the stochastic degradation process is the Wiener process [41,42]. It consists of two parts:
the drift coefficient and Brownian motion, where the drift coefficient represents the po-
tential average degradation trend, and Brownian motion describes the uncertainty in the
degradation process. The Wiener process can not only describe monotonic degradation
processes but also non-monotonic degradation processes, and has been widely applied
to RUL prediction of lithium-ion batteries [43]. For lithium-ion batteries, the potential
degradation trajectories of lithium-ion batteries are generally represented by a nonlinear
function, and the typical nonlinear functions for the Wiener process include Λ(t; θ) = tb and
Λ(t; θ) = exp(bt)− 1 [44]. However, it is difficult for these nonlinear models with a rel-
atively simple degradation rate to describe the complex degradation characteristics of
lithium-ion batteries. The degradation process of lithium-ion batteries represented by
capacity exhibits the following characteristics [45]: During the early stage of degradation,
the capacity degradation rate of lithium-ion batteries is relatively high, and capacity de-
creases rapidly in this period. With the rate of capacity degradation decreasing during a
relatively short period of time, the capacity degradation process enters a stage of relatively
slow degradation. After this slow-degradation stage, the degradation rate of lithium-ion
batteries continuously increases with increasing cycles until failure. Therefore, describing
this typical non-monotonic degradation process of rapid degradation in the early stage,
slow degradation in the middle stage, and rapid degradation until failure in the last stage
based on the Wiener process is a problem that needs to be solved in RUL prediction of
lithium-ion batteries.

In addition, since measurement error (ME) could also arise during the measurement
process of lithium-ion batteries, it has also been introduced in RUL prediction of lithium-ion
batteries [46]. Tang et al. [47] have predicted the RUL of lithium-ion batteries based on a
linear Wiener process with ME. Feng et al. [43] used a state-space model that considered ME
for RUL prediction of lithium-ion batteries but did not consider the impact of uncertainty
in the drift coefficient. Subsequently, Han et al. [44] predicted the RUL of lithium-ion
batteries based on a nonlinear Wiener process with ME. To reduce the impact of the ME,
Chen and Liu [48] used an Savitzky–Golay (SG) filter to smooth the original degradation
data. However, ME was not considered in the final RUL prediction. In the above works,
offline parameter estimation was generally performed under the framework of maximum
likelihood estimation (MLE). In theory, if the assumed theoretical model matches the actual
degradation data, it could obtain satisfactory results of parameter estimation. However,
there may exist a modeling error between the actual degradation trajectory and the the-
oretical model. In this case, the results of parameter estimation obtained by using MLE
directly may not be the optimal estimation, nor may they produce higher accuracy of RUL
prediction. For the Wiener degradation process with a ME, obtaining parameter estimation
results that are closer to the actual degradation characteristics of lithium-ion batteries has
become a worthwhile research topic.

This paper attempts to investigate the above-mentioned issues based on the nonlinear
Wiener process with ME from two aspects. Firstly, a cubic polynomial model is proposed as
the nonlinear function of the Wiener degradation process, which is inspired by the existing
research achievements of nonlinear RCR models. This is the first contribution of this
paper, since the cubic polynomial model has not been applied in the Wiener degradation
process before. This cubic polynomial model can naturally model the special degradation
characteristic of lithium-ion batteries of the degradation rate of capacity decreasing during
the early stage and then increasing during the last stage of degradation. Secondly, based on
the nonlinear Wiener degradation process with a ME, a subjective parameter estimation
method via envelope extraction is proposed to make the estimation results closer to the
actual degradation characteristics of lithium-ion batteries. This method calculates the
average value of the upper and lower envelope curves of lithium-ion batteries’ degradation
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data and regards it as the estimation of the actual degradation trajectory. Then, the model
parameters are estimated in two steps. This leads to the second contribution that has
not been reported before. This subjective parameter estimation method outperforms the
traditional MLE method by reducing the modeling error and is worth further study and
application. Finally, experimental verification is conducted based on practical degradation
data of lithium-ion batteries.

The remaining chapters of this paper are arranged as follows: Section 2 establishes
a Wiener degradation model based on a cubic polynomial function and compares it with
several typical nonlinear degradation models. Section 3 updates the current degradation
and random parameters by using the Kalman filter and predicts the RUL. Section 4 intro-
duces the subjective parameter estimation method based on envelope extraction. Section 5
verifies the proposed method based on practical degradation data of lithium-ion batteries.
Section 6 summarizes the main conclusions of this paper.

2. Capacity Degradation Modeling of Lithium-Ion Batteries
2.1. Modeling of Lithium-Ion Batteries by Nonlinear Wiener Process with ME

Fully discharged capacity during the charging and discharging process is a suitable
characteristic for describing the state of lithium-ion batteries [9]. Let represent the actual
capacity of lithium-ion battery at time t; then, the nonlinear degradation process based on
the Wiener process can be expressed as [43,44]:

x(t) = x0 + λΛ(t; θ) + σBB(t) (1)

where x0 represents the initial state, which refers to the initial cycle capacity of the lithium-
ion battery. λ is the drift coefficient, which is generally defined as a random parameter to
represent individual variance between different pieces of equipment. Here, it is assumed
that λ follows the normal distribution, i.e., λ ∼ N(µλ, σ2

λ). Since it only assumes the multi-
plication factor λ of the nonlinear function as a random variable, only the drift coefficient λ
needs to be updated in the subsequent parameter updating process. Compared with the
traditional RCR model for lithium-ion batteries, this approach can reduce the difficulty of
parameter updating. B(t) is the standard Brownian motion, which represents the dynamic
random characteristics of the degradation process, and σB is the diffusion coefficient. λ
and B(t) are assumed to be independent of each other. Λ(t; θ) is a nonlinear function that
characterizes the degradation process of lithium batteries, and θ is the nonlinear coefficient.
For instance, θ is b for Λ(t; θ) = tb, and θ is {b, c} for Λ(t; θ) = exp(bt) + ct2.

In addition, the degradation data of lithium-ion batteries are inevitably affected by
noise, and the observed measurement results may also contain a ME [47]. The observed
measurement results can be expressed as:

y(t) = x(t) + ε (2)

where ε represents the ME, and x(t) is the nonlinear degradation process in Equation (1). It
is assumed that ε follows the normal distribution, i.e., ε ∼ N(0, σ2

ε ), and ε is assumed to be
independent of λ and B(t). The diffusion coefficient σB, nonlinear coefficient θ, and error
variance σε

2 represent the common characteristics of a class of equipment. Only λ is used to
represent individual variance between different pieces of equipment. In other words, these
parameters are with the same value for the same type of equipment. The MLE method is
generally used for offline parameter estimation based on the historical degradation data of
similar equipment.

2.2. Nonlinear Degradation Model Based on a Cubic Polynomial Function

Establishing a degradation model that conforms to the typical degradation character-
istics of lithium-ion batteries is an important way to improve the accuracy of RUL. The
degradation rate of lithium-ion batteries shows a characteristic of initially decreasing and
then increasing, indicating an inflection point where the rate transitions from decreasing to
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increasing [45]. This behavior corresponds with the symmetry around the symmetry axis
of a quadratic function. Therefore, as the integral of a quadratic polynomial function, the
degradation model based on a cubic polynomial function can fit the actual degradation
characteristics of lithium-ion batteries better and reflect the degradation features more accu-
rately and achieve fitting results [39]. Based on this, this paper adopts a cubic polynomial
function to describe the potential nonlinear degradation process of lithium-ion batteries, as
shown in the following equation.

Λ(t; θ) = t3 + bt2 + ct (3)

Next, we compare the cubic polynomial function with four other typical nonlinear
functions, which are denoted as Λ(t; θ) = tb, Λ(t; θ) = exp(bt)− 1, Λ(t; θ) = exp(bt) +
c exp(dt) [30–32], and Λ(t; θ) = exp(bt) + ct2 [35]. In order to visually compare the
fitting effect of these nonlinear degradation models, the lithium-ion batteries’ degradation
data CS235 from University of Maryland were selected for experimental verification, and
the results are shown in Figure 1. The specific description of this data can be found in
Section 5.1. More details about this data can be found in [49].
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It can be observed that the variation trends of nonlinear functions Λ(t; θ) = tb and
Λ(t; θ) = exp(bt)− 1 are relatively simple. It only shows a monotonic trend of increasing
or decreasing degradation rate and cannot simultaneously describe the high degradation
rates in the initial and late degradation stages. Compared with simple power functions
and exponential functions, the double-exponential function Λ(t; θ) = exp(bt) + c exp(dt)
can describe the rapid degradation stage in the later period. However, it cannot cap-
ture the rapid decrease stage of capacity in the initial degradation stage. The function
Λ(t; θ) = exp(bt) + ct2 is a combination of functions, but its performance is similar to that
of Λ(t; θ) = tb and Λ(t; θ) = exp(bt)− 1, which cannot adequately describe the typical
degradation characteristics of lithium-ion batteries.

In order to quantify the accuracy of different degradation models, the mean squared
error of the model (MSEM) was introduced to measure the degree of model fitting. That is

MSEM =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

where yi is the measured capacity of lithium-ion batteries, ŷi is the fitting value of the
function model, and n is the number of measured data. The smaller the value of MSEM
is, the lower the deviation and the better the fitting performance of the fitted data from
the measured values. The MSEM of different battery fitting models CS235–CS238 were
calculated as shown in Table 1. It can be observed that the MSEM of Λ(t; θ) = tb,
Λ(t; θ) = exp(bt)− 1 and Λ(t; θ) = exp(bt) + ct2 were significantly smaller than those
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of Λ(t; θ) = t3 + bt2 + ct and Λ(t; θ) = exp(bt) + c exp(dt). In addition, the MSEM of
Λ(t; θ) = t3 + bt2 + ct was smaller than that of Λ(t; θ) = exp(bt) + c exp(dt), because
Λ(t; θ) = exp(bt) + c exp(dt) could not capture the rapid degradation process of the initial
capacity in lithium-ion batteries. Overall, the cubic polynomial function had the small-
est MSEM and the best model fitting performance. Therefore, this paper used the cubic
polynomial function to describe the potential nonlinear degradation process of lithium-
ion batteries.

Table 1. The MSEM of different nonlinear degradation models.

Model t3+bt2+ct tb exp(bt)−1 exp(bt)+cexp(dt)exp(bt)+ct2

CS235 3.49 × 10−4 4.28 × 10−3 2.72 × 10−3 4.53 × 10−4 4.28 × 10−3

CS236 5.02 × 10−4 2.37 × 10−3 1.15 × 10−3 5.34 × 10−4 2.67 × 10−3

CS237 3.18 × 10−4 4.34 × 10−3 2.42 × 10−3 4.31 × 10−4 4.56 × 10−3

CS238 2.50 × 10−4 3.60 × 10−3 2.52 × 10−3 3.87 × 10−4 4.02 × 10−3

3. RUL Prediction

Although historical degradation data of similar lithium-ion batteries can reflect their
common degradation characteristics, there are still individual differences due to the vari-
ance of manufacturing and usage conditions. Therefore, during the RUL prediction process,
it is necessary to update the random parameters in the degradation model with on-site
degradation data to make the prediction adapt to the individual characteristics of the
lithium-ion battery being evaluated. For nonlinear Wiener degradation processes with a
ME, the Kalman filter can be used to update the drift coefficient and current actual degra-
dation state online based on the on-site degradation data and then calculate the RUL based
on the updated random parameters.

3.1. Online Updating of Random Parameters Based on Kalman Filtering

Let Y0:k be the observed capacity of lithium-ion batteries at time tk; then, the state-space
equation at time tk can be expressed as [50–52]:

xk = xk−1 + λk−1(Λ(tk; θ)−Λ(tk−1; θ)) + vk
λk = λk−1
yk = xk + εk

(5)

where λk = λk−1. It indicates that for an individual lithium-ion battery, the drift coefficient
λ remains constant, which means that the potential nonlinear degradation trend for an
individual lithium-ion battery remains unchanged. vk = σB(B(tk)− B(tk−1)). εk represents
the ME at time tk, and it is assumed that {vk}k≥1 and {εk}k≥1 are independently identically
distributed. According to the properties of the Wiener process, it can be derived that
vk = σBB(∆tk) and vk ∼ N(0, σ2

B∆tk), where ∆tk = tk − tk−1. Then, the state-space model
can be transformed into {

zk = Akzk−1 + ηk
yk = Czk + εk

(6)

where zk ∈ R2×1, Ak ∈ R2×2, ηk ∈ R2×1, C ∈ R1×2, Qk ∈ R2×2, and ηk ∼ N(0, Qk). The
specific value can be expressed as:

zk =

[
xk
λk

]
, Ak =

[
1 Λ(tk; θ)−Λ(tk−1; θ)
0 1

]
, ηk =

[
vk
0

]
,

C =

[
1
0

]T

, Qk =

[
σ2

B(tk − tk−1) 0
0 0

]
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Then, the parameters can be recursively estimated based on the above state-space
model by using the Kalman filter. First, the expected value and variance of the latent
variable zk at time tk are defined as follows:

ẑk|k =

[
x̂k|k
λ̂k|k

]
= E(zk|Y0:k ), Pk|k =

[
κ2

x,k κ2
xλ,k

κ2
xλ,k κ2

λ,k

]
= cov(zk|Y0:k )

where
x̂k|k = E(xk|Y0:k ), λ̂k|k = E(λk|Y0:k ),

κ2
x,k = var(xk|Y0:k ), κ2

λ,k = var(λk|Y0:k ), κ2
xλ,k = cov(xkλk|Y0:k ).

The one-step predictive mean and covariance of the latent variable zk can be defined as:

ẑk|k−1 =

[
x̂k|k−1
λ̂k|k−1

]
= E(zk|Y0:k−1 ), Pk|k−1 =

[
κ2

x,k−1 κ2
xλ,k−1

κ2
xλ,k−1 κ2

λ,k−1

]
= cov(zk|Y0:k−1 )

The Kalman filter is mainly divided into two steps, namely prediction and updating.
The specific implementation steps are as follows:

Prediction: {
ẑk|k−1 = Akẑk−1|k−1
Pk|k−1 = AkPk−1|k−1AT

k + Qk
, (7)

Updating: 
ẑk|k = ẑk|k−1 + K(k)(yk − Cẑk|k−1)

Pk|k = Pk|k−1 −K(k)CPk|k−1

K(k) = Pk|k−1CT [CPk|k−1CT + σ2
ε ]
−1

(8)

where the value of the initial state is

ẑ0|0 =

[
0

µλ

]
, P0|0 =

[
0 0
0 σ2

λ

]
.

The posterior distribution zk|Y0:k follows multivariate normal distribution, that is
zk|Y0:k ∼ N(ẑk|k, Pk|k). According to the properties of multivariate distributions, it can be
obtained that

λk|Y1:k ∼ N
(

λ̂k|k, κ2
θ,k

)
, xk|Y1:k ∼ N

(
x̂k|k, κ2

x,k

)
,

where µxk |λ,k = x̂k|k + ρk
κx,k
κλ,k

(λk − λ̂k|k), σ2
xk |λ,k = κ2

x,k(1− ρ2
k), and ρk = κ2

xλ,k/(κλ,kκx,k).

3.2. RUL Prediction

The first hitting time (FHT) to reach the failure threshold is usually used to define the
lifetime of lithium-ion batteries, which is the time when the capacity reaches the predefined
failure threshold for the first time, as shown in the following equation.

T = inf{t : x(t) ≥ w|x0 < w} (9)

where w represents the failure threshold.
Based on the concept of FHT, the RUL at time tk can be transformed into the first

arrival time of degradation process {X(lk), lk ≥ 0} crossing the threshold wk = w− xk,
which is expressed as:

Lk = inf{lk : X(lk + tk) ≥ w|Y0:k } = inf{lk : X(lk) ≥ w− xk|Y0:k } (10)

where lk = t− tk represents the RUL.
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Then, the PDF of the RUL of a lithium-ion battery at time tk can be obtained through
the law of total probability, which can be finally expressed as [50–52]:

f ′Lk |Y0:k
(lk|Y0:k ) ≈

1
F

fLk |Y0:k
(lk|Y0:k ) (11)

where

fLk |Y0:k
(lk|Y0:k ) ≈ 1√

2πlk2
(

Bk
2κ2

θ,k+Ck

)
[

wk − Akλ̂k|k −
(

AkBkκ2
θ,k + σ2

xk |λ,k

) wk−Bk λ̂k|k
Bk

2κ2
θ,k+Ck

]
exp

[
− (wk−Bk λ̂k|k)

2

2
(

Bk
2κ2

θ,k+Ck

)
] (12)

{
Ak = ρk

κx,k
κλ,k

+ β(lk), Bk = ϕ(lk) + ρk
κx,k
κλ,k

, Ck = σ2
xk |λ,k + σ2

Blk
wk = w− x̂k|k + ρk

κx,k
κλ,k

λ̂k|k, F =
∫ ∞

0 fLk |Y0:k
(lk|Y0:k )dlk

(13)

More details regarding how to derive Equation (12) can be found in [50–52].

4. Subjective Parameter Estimation Based on Envelope Extraction

The parameters of a nonlinear Wiener process with a ME are commonly estimated
by the MLE method. However, sometimes, the estimated parameters may not be able to
reproduce the original data well. The reason is that the estimated parameters are based
on the MLE of the selected mathematical model. However, there may exist a modeling
error between the mathematical model and the actual degradation data. Therefore, it is
unnecessarily optimal to use MLE directly for parameter estimation, especially when the
modeling error is significant. It could also sometimes obtain a negative variance of the ME.

To address this issue, this section proposes a subjective parameter estimation method
based on envelope extraction in two steps. That is, Step 1: estimate the parameters of
the Wiener process; Step 2: estimate the parameter of the ME. The specific flowchart of
this method is shown in Figure 2. Firstly, the upper and lower envelope curves of the
lithium-ion batteries’ degradation data are calculated by envelope extraction. Secondly,
the actual degradation trajectory is estimated by the average value of the upper and lower
envelopes derived above. Then, the estimated actual degradation trajectory is used for
parameter estimation of the hidden Wiener process. Secondly, the difference between the
observed degradation data and the actual degradation trajectory is utilized to estimate the
variance of the ME.
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4.1. Estimation of Actual Degradation Trajectory of Lithium-Ion Batteries Based on
Envelope Extraction

The purpose of envelope extraction is to estimate the actual degradation trajectory of
lithium-ion batteries. Currently, signal envelope extraction is a relatively mature technology
and has played an important role in many fields [53–55], which mainly include normalized
Shannon entropy, the Hilbert transform, and the extreme value method.

Compared with traditional periodic signals, the degradation data of lithium-ion bat-
teries shows non-periodic characteristics, a clear profile, and a monotonic decreasing trend.
Therefore, this paper uses the extreme value method, with which it is relatively simple to
calculate the envelope of lithium-ion batteries’ degradation data, and estimates the actual
degradation trajectory of lithium-ion batteries by taking the average of the upper and lower
envelopes. To offer greater clarity on the implementation of the proposed model, we give
the corresponding steps in Table 2.

Table 2. The specific steps of the envelope extraction algorithm.

Algorithm: Envelope Extraction

1. Calculate the Upper Envelope Curve. Collect the historical degradation data and search for
local maximum yi|max. Select the regional maximum pi|max from the specified interval n.
Connect the selected data pi|max with cubic spline interpolation.

2. Calculate the Lower Envelope Curve. Collect the historical degradation data and search for
local minimum yi|min. Select the regional minimum qi|min from the specified interval n.
Connect the selected data qi|min with cubic spline interpolation.

3. Estimate the Actual Degradation Trajectory. Calculate the average of the upper curves and
lower envelope curves.

To capture the overall degradation trend of lithium batteries smoothly and accurately,
the cubic spline interpolation method is used to connect the regional maximum pi|max for
the upper envelope curve and the regional minimum qi|min for the lower envelope curve.
This is because the cubic spline interpolation method has high computational accuracy,
great convergence and accurate curve fitting. Additionally, its first and second derivatives
are continuous, which produces a smooth connection at the interpolating points. For
example, by using partial capacity degradation data of lithium-ion batteries and following
the steps in Table 2, the estimated degradation trajectory under a different interval n is
shown in Figure 3. It can be observed that if the interval n is set too small, it may not
capture the overall degradation trend. If the interval n is too large, many experimental data
could be ignored, and the nonlinear trend of degradation could not be effectively captured.
According to multiple experimental studies and subjective evaluation, we selected a specific
interval n = 6, the experimental effect of which was optimal.

We could also observe that the average curve of the upper and lower envelope curves
could reflect the actual degradation trajectory of lithium-ion battery with reasonable ac-
curacy from the view of the Wiener degradation process. The reason is that in Wiener
degradation with a ME, the Wiener process represents the hidden degradation trajectory
that is smoother than the original degradation data and can capture hidden nonlinear
degradation characteristics. Meanwhile, the ME represents the fluctuation of the observed
degradation data. By dividing the traditional MLE method into two steps, the proposed
subjective method can make the results of parameter estimation closer to the practical
degradation data, which could further reduce the impact of modeling errors on parame-
ter estimation.
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4.2. Offline Parameters Estimation

The estimation of the actual degradation trajectory based on envelope extraction is
mainly used for offline parameter estimation. Offline parameter estimation proposed in
this paper is divided into two steps. The first step is to estimate the parameters of the
hidden Wiener process based on the actual degradation trajectory estimated by envelope
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extraction. Generally, the cycle lengths of the historical degradation data of lithium-ion
batteries are not equal. Therefore, the method of using the same measurement time interval
for parameter estimation is not applicable, and an empirical parameter estimation method
under different measurement times can be used for parameter estimation of the Wiener
process [56]. Then, the parameters can be estimated in the following two steps:

Step 1: Estimate the parameters of the hidden Wiener process. Suppose that there are
n lithium-ion batteries, and the actual capacity of the ith lithium-ion battery at different
times ti,1, ti,2, · · · , ti,mi can be represented as

xi,j = Xi(ti,j) = λiΛ(ti,j; θ) + σBB(ti,j) (14)

where 1 ≤ i ≤ n and 1 ≤ j ≤ mi. Let ∆xi,j = Xi(ti,j)− Xi(ti,j−1), and ∆xi,j can be written as

∆xi,j = Xi(ti,j)− Xi(ti,j−1) = λi∆vi,j + σBB(∆ti,j) (15)

where ∆vi,j = Λ(ti,j; θ) − Λ(ti,j−1; θ). Let ∆xi =
(
∆xi,1, ∆xi,2, · · · , ∆xi,mi

)′,
∆νi =

(
∆νi,1, ∆νi,2, · · · , ∆νi,mi

)′ and X =
(
∆x′1, ∆x′2, · · · , ∆x′n

)′. Then, xi follows the mul-
tivariate normal distribution, i.e., xi ∼ N(µλ∆vi, Σi), where Σi = σ2

λ∆vi∆v′i + σ2
BΩi and

Ωi =


∆ti,1 0 0 0

0 ∆ti,2 0 0

0 0
. . .

...
0 0 · · · ∆ti,mi

 (16)

Hence, the log-likelihood function of the prior parameters Θ =
{

µλ, σ2
λ, σ2

B, θ
}

can be
written as

ln L(Θ|X) = − ln 2π

2

n

∑
i=1

mi −
1
2

n

∑
i=1

ln|Σi| −
1
2

n

∑
i=1

(∆xi − µλ∆vi)
′Σ−1

i (∆xi − µλ∆vi) (17)

where |Σi| and Σ−1
i can be calculated as follows.

|Σi|= (σ2
B)

mi−1
(

σ2
B + σ2

λ∆v′iΩ
−1
i ∆vi

) mi

∏
j=1

∆ti,j (18)

Σ−1
i =

1
σ2

B

(
Ω−1

i −
σ2

λ

σ2
B + σ2

λ∆v′iΩ
−1
i ∆vi

Ω−1
i ∆vi∆v′iΩ

−1
i

)
(19)

By substituting Equations (18) and (19) into (17), we can obtain the profile likelihood
function as follows.

ln L(Θ|X1:N) = − ln 2π
2

n
∑

i=1
mi −

ln(σ2
B)

2

n
∑

i=1
(mi − 1)− 1

2

n
∑

i=1
ln
(

σ2
B + σ2

λ∆v′iΩ
−1
i ∆vi

)
− 1

2

n
∑

i=1

mi
∑

j=1
∆ti,j

− 1
2σ2

B

n
∑

i=1

(
∆x′iΩ

−1
i ∆xi −

(∆x′iΩ
−1
i ∆vi)

2

∆v′iΩ
−1
i ∆vi

)
− 1

2

n
∑

i=1

∆v′iΩ
−1
i ∆vi

σ2
B+σ2

λ∆v′iΩ
−1
i ∆vi

(
µλ −

∆x′iΩ
−1
i ∆vi

∆v′iΩ
−1
i ∆vi

)2 (20)

Due to the unequal lengths of the degradation data, it is difficult to obtain a closed-
form expression for parameter estimation. In order to avoid falling into the local min-
imum during parameter searching, an empirical parameter estimation method can be
used. Tang et al. [56] gave an empirical expression for parameter estimation based on the
estimation results at the same measurement times. That is,

µ̂λ(θ) =
1
n

n

∑
i=1

∆x′iΩ
−1
i ∆vi

∆v′iΩ
−1
i ∆vi

(21)
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σ̂2
λ(θ) =

1
n

n

∑
i=1

(
µ̂λ − λ̂i

)2 − 1
n

n

∑
i=1

(
∆xi − λ̂i∆vi

)′
Ω−1

i
(
∆xi − λ̂i∆vi

)
(mi − 1)∆v′iΩ

−1
i ∆vi

(22)

σ̂2
B(θ) =

1
n

n

∑
i=1

(
∆xi − λ̂i∆vi

)′
Ω−1

i
(
∆xi − λ̂i∆vi

)
(mi − 1)

(23)

where λ̂i =
∆x′iΩ

−1
i ∆vi

∆v′ iΩi
−1∆vi

, ∆νi is the ith term of ∆ν, and Ωi is the ith term of Ω.
By substituting Equations (21)–(23) into Equation (20) and maximizing it, we can

obtain the estimated value of θ, i.e., θ̂ =
{

b̂, ĉ
}

. Then, by substituting the estimated value

of θ̂ =
{

b̂, ĉ
}

into Equations (21)–(23), we can obtain the estimation of parameters µ̂λ

(
θ̂
)
,

σ̂2
λ

(
θ̂
)
, and σ̂2

B
(
θ̂
)
. It is worth noting that µ̂λ

(
θ̂
)

and σ̂2
B(θ) are unbiased estimations, while

σ̂2
λ(θ) is a biased estimation. The unbiased estimation of σ̂2

λ(θ) can be calculated based on
the following equation.

σ̂2
λ(θ) =

1
n− 1

n

∑
i=1

(
µ̂λ − λ̂i

)2 − 1
n

n

∑
i=1

(
∆xi − λ̂i∆vi

)′
Ω−1

i
(
∆xi − λ̂i∆vi

)
(mi − 1)∆v′iΩ

−1
i ∆vi

(24)

Step 2: Estimate the parameter of the ME. The variance of the ME is estimated based
on the actual degradation trajectory of lithium-ion batteries estimated by the average
value of the upper and lower envelope curves. Since the ME is independent with the drift
coefficient and Brownian motion, its variance can be estimated as

σ2
ε =

1
n

n

∑
i=1

mi

∑
j=1

(yi,j − xi,j)
2

mi − 1
(25)

where xi,j is the estimated actual capacity of the ith lithium-ion battery in the jth cycle,
and yi,j is the original observed capacity obtained from the ith lithium-ion battery in the
jth cycle.

5. Experimental Studies

This section validates the effectiveness and practicality of the subjective parameter
estimation method and the cubic polynomial function model based on the practical degra-
dation data of lithium-ion batteries. First, the proposed subjective parameter estimation
method was validated through simulation experiments. Then, the effectiveness of envelope
extraction and the cubic polynomial function model were experimentally verified with
practical degradation data of lithium-ion batteries.

5.1. Offline Parameter Estimation

In this section, the proposed method is validated using the capacity degradation
data from the Center for Advanced Life Cycle Engineering (CALCE) of the University of
Maryland [29,48,49]. All battery tests were conducted under ambient conditions at 25 ◦C.
In the process of charging, the batteries underwent a constant current charge of 0.5 C until
the voltage reached 4.2 V, followed by a constant voltage charge at 4.2 V until the current
decreased to 0.05 A. In the process of discharging, these batteries were discharged to 2.7 V
with a current of 1 C. The experimental data were generated by a group of four lithium-ion
batteries with a nominal capacity of 1.1 Ahr, as shown in Figure 4. The CS237 lithium-ion
battery was selected as the unit to be evaluated, and the remaining experimental data were
used for prior parameter estimation. The subjective parameter estimation method based on
envelope extraction was used to estimate the actual degradation trajectory, as shown in
Figure 5. It can be observed that the actual degradation trajectory obtained in this paper
was similar to that in [48]. These two smoothed graphs could both capture the nonlinear
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degradation characteristic of the capacity. However, this study’s degradation data of the
battery in Figure 5 was smoother and thus better than that in [48].
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In order to compare with traditional MLE methods with a ME [44], the Akaike infor-
mation criterion (AIC) was introduced as a standard for evaluating the fitting effectiveness
of different parameter estimation methods. That is,

AIC = 2(k− ln L(Θ)) (26)

where k is the number of model parameters.
For simplicity, the method proposed in this paper is denoted as M0, and the traditional

MLE method with a ME is denoted as M1. The parameter estimation results obtained by
these two methods are shown in Table 3. It can be observed that M0 had a smaller AIC
than M1 did, indicating a better fit. This was because the estimated degradation trajectory
obtained by envelope extraction was relatively smooth compared to the measurement data,
which led to better fitting performance during the fitting process.

To further compare the effectiveness of parameter estimation by these two methods, a
simulation experiment with simulated degradation data was implemented. The difference
between the original degradation data and the simulated degradation data reflected the
model fitting ability of the different methods. The degradation data was simulated based
on the nonlinear Wiener process with a ME under the estimated parameters obtained in
Table 3. Specifically, the nonlinear function was first calculated by the cubic polynomial
function. Then, Brownian movement and the ME were simulated, respectively. By adding
up these three parts, the degradation data could be simulated. By setting the detection cycle
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to 800 and the detection time interval to 1, 10 sets of degradation data were simulated based
on the estimation results by M0, as shown in Figure 6. Similarly, we obtain the simulated
data by M1, as shown in Figure 7.

Table 3. The estimated parameters of M0 and M1.

Method M0 M1

µ1 2.42 × 10−9 3.21 × 10−9

σ2
λ 2.96 × 10−19 6.07 × 10−19

σ2
B 1.95 × 10−6 5.14 × 10−5

σ2
ε 5.02 × 10−5 −5.16 × 10−6

b −9.57 × 102 −1.01 × 103

c 3.93 × 105 3.91 × 105

LnL 1.45 × 104 6.18e × 103

AIC −2.90 × 104 −1.24 × 104
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Figure 7. Degradation trajectories simulated by M1.

It can be observed that the degradation data estimated by M0 had a smaller diffusion
range and were closer to the measurement data. The simulated data of M1 had a relatively
larger diffusion range. It could be explained by the fact that σ2

B estimated by M1 was larger
than that estimated by M0. That is, the parameter σ2

B was overestimated by M1. It could
further be overwhelmed by the nonlinear characteristics of the degradation data and make
it difficult to capture the potential nonlinear characteristics of the degradation process. It
can also be observed that the degradation trajectory estimated by the subjective parameter
estimation method was smoother than the original measured data. It indicates that this
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method was beneficial for capturing potential nonlinear characteristics of the degradation
trajectory and reducing the impact of modeling error on the estimation results of traditional
MLE. To make a quantitative analysis, MSEM were calculated based on the data simulated
by M0 and M1 using Equation (4). The results were 3.90 × 10−4 for M0 and 3.08 × 10−3

for M1, respectively. It could be obtained that the simulation experiment data of M0 had a
smaller MSEM, indicating that the results simulated with M0 could more accurately reflect
the degradation state.

5.2. RUL Prediction

This subsection mainly validates the effectiveness of the proposed method for RUL
prediction. Generally, lithium-ion batteries are considered to have failed when battery
capacities are lower than 70–80% of the rated capacity. In this paper, it was assumed that
the failure threshold for lithium-ion batteries was 75% (0.825 Ahr) of the rated capacity.
Take battery CS237 as an example. Its capacity corresponding to 75% of the rated capacity
was at the 643th cycle, so its actual lifetime was 643 cycles.

The PDFs of RUL calculated by M0 and M1 at different cycles are shown in Figure 8.
The PDF of RUL at the 570th cycle is shown in Figure 9. It can be observed that although
both methods could cover the actual RUL, the PDF of RUL estimated by M0 was narrower
and more concentrated around the actual RUL than that estimated by M1. This was because
the estimated actual degradation trajectory based on envelope extraction was smoother,
resulting in a smaller estimation of σ2

B. It could obtain a narrow confidence interval with
more accuracy. This indicates that the estimation of the actual degradation trajectory by
M0 fit the nonlinear characteristics of the degradation process better. Additionally, the
estimated uncertainty of the actual degradation trajectory by M0 was smaller. Therefore, it
could be concluded that M0 could obtain a closer RUL and reduce the uncertainty of RUL
prediction, which demonstrated that the accuracy of RUL prediction by M0 was improved.
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In order to compare the prediction performance of these two methods from a quantita-
tive perspective, the mean squared error (MSE) of RUL prediction was used for comparison.
That is,

MSEk =
∫ ∞

0
(lk + tk − T)2 fLk |Y0:k

(lk|Y0:k)dlk (27)

where T represents the actual lifetime of the tested equipment, lk represents the RUL at
time tk, and fLk |Y0:k

(lk|Y0:k ) represents the estimated PDF of RUL at time tk. The MSEs
calculated by these two methods are shown in Figure 10, and it can be observed that the
MSEs of M0 were much smaller than those of M1. This further illustrates that M0 could
effectively improve the accuracy of RUL prediction of lithium-ion batteries.
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The above experimental studies have demonstrated the effectiveness of the subjec-
tive parameter estimation method based on envelope extraction. Next, RUL prediction
performance of a cubic polynomial function and other nonlinear functions were compared.
The cubic polynomial function degradation model Λ(t; θ) = t3 + bt2 + ct was denoted as
M0. The typical four nonlinear models for comparison were Λ(t; θ) = exp(bt) + c exp(dt),
Λ(t; θ) = exp(bt) − 1, Λ(t; θ) = tb, and Λ(t; θ) = exp(bt) + ct2, which were denoted
as M2, M3, M4, and M5, respectively. The parameter estimation results based on these
nonlinear models are shown in Table 4. We could observe that, compared with those of
other nonlinear models, M0 had the smallest AIC, indicating that it had the best fit.

Table 4. Parameter estimation results of different nonlinear models.

Method M0 M2 M3 M4 M5

µ1 2.42 × 10−9 4.04 × 10−2 4.05 × 10−2 2.87 × 10−11 −3.82 × 10−6

σ2
λ 2.96 × 10−19 7.25 × 10−5 7.26 × 10−5 3.79 × 10−23 3.17 × 10−7

σ2
B 1.96 × 10−6 2.04 × 10−6 2.04 × 10−6 2.05 × 10−6 2.16 × 10−6

b −9.87 × 102 3.26 × 10−3 3.26 × 10−6 3.54 × 10−6 −1.72 × 106

c 3.93 × 105 1.34 × 10−4 - - −2.57 × 10−4

d - 1.23 × 10−6 - - -
Ln L 1.45 × 104 1.44 × 104 1.38 × 104 1.44 × 104 1.44 × 104

AIC −2.90 × 104 −2.89 × 104 −2.76 × 104 −2.89 × 104 −2.87 × 104

In order to intuitively compare the RUL prediction of the different models, the PDFs
of RUL M0 at different cycles were calculated and shown in Figure 11. It could be observed
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that all five models could completely cover the actual RUL. However, compared with those
of the other four typical nonlinear models, M0 had the highest PDF of RUL and was closest
to the actual RUL under different cycles.
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For illustrative purposes, we calculated the PDF of RUL at the 555th cycle, the actual
RUL of which was 88 cycles, as shown in Figure 12. It could be observed that compared
with that of the other four models, M0 had a narrower and more concentrated PDF of RUL
near the actual RUL. Combining the fitting performance of M0 as shown in Figure 1, it
could be observed that M3, M4, and M5 had slow degradation rates and could not fit the
rapid degradation characteristics of lithium-ion batteries in the last stage, which resulted in
overestimation of remaining life by M3, M4, and M5 and caused the PDF to deviate from
the actual RUL and shift to the right of the abscissa axis. Although M2 could fit the last
stage of the degradation rate, its degradation model only considered the rapid decrease of
the last stage of the degradation rate without the overall degradation process. As a result,
although the PDF of M2 was concentrated and near the actual state of degradation, its
uncertainty was higher than that of M0. It could result in a relatively lower height of PDF
and larger uncertainty of RUL prediction.
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In order to further quantify the superiority of the proposed method, the MSEs of these
five models for RUL prediction were calculated, as shown in Figure 13. It could be observed
that the MSEs of M0 proposed in this paper were smaller than those of models M2, M3,
M4, and M5. It indicates that the nonlinear degradation model established by the cubic
polynomial function was more in line with the degradation characteristics of lithium-ion
batteries and could improve the accuracy of RUL prediction.
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Additionally, another cross validation was done for RUL prediction. As when battery
CS237 was selected as the unit to be evaluated and the other three batteries were used for
prior parameter estimation, we repeated this experimental study four times by selecting a
different battery for testing. The total MSE by adding up the MSEs of each cycle is displayed
in Table 5. It could be observed that the results were similar to those of battery CS237. This
further showed the robustness of the proposed method.

Table 5. The total MSEs of RUL for different methods.

Selected Battery M0 M1 M2 M3 M4 M5

CS 235 1.62 × 106 9.82 × 106 3.07 × 106 8.12 × 106 3.43 × 107 4.92 × 107

CS 236 6.32 × 106 9.94 × 107 2.08 × 107 2.06 × 107 5.82 × 107 3.24 × 107

CS 237 2.18 × 106 1.19 × 107 4.43 × 106 7.16 × 106 2.22 × 107 4.24 × 107

CS 238 6.51 × 106 1.98 × 107 6.70 × 106 1.21 × 107 2.46 × 107 4.14 × 107

6. Conclusions

Accurately establishing a degradation model and conducting effective parameter
estimation are prerequisites for ensuring the accuracy of RUL prediction of lithium-ion
batteries. Since the existing degradation models based on the Wiener process are relatively
simple and the effectiveness of parameters estimation is insufficient, this paper proposes
a degradation model based on a cubic polynomial function and a subjective parameter
estimation method based on envelope extraction. Firstly, based on the typical characteristics
of the degradation process of lithium-ion batteries and existing degradation models, a
cubic polynomial function model was selected as the nonlinear function for the Wiener
process. Secondly, a subjective parameter estimation method based on envelope extraction
was proposed to obtain smooth degradation trajectories of lithium-ion batteries. Finally,
the effectiveness of the proposed method in improving the accuracy of RUL prediction
was validated through simulation experiments and practical degradation data of lithium-
ion batteries.

The summary of the main contributions of this paper is as follows:

(1) A method based on envelope extraction was proposed to estimate the degradation
trajectory, and algorithms for obtaining the upper/lower envelope curves and an
expression for the estimation of the ME were proposed. The effectiveness and prac-
ticality of this method were validated through comparisons with traditional MLE
methods considering the ME in terms of MSEM.

(2) The degradation trajectory was fitted using a cubic polynomial function model based
on nonlinear Wiener processes. Through comparison and analysis with several typical
nonlinear models, it was demonstrated that the cubic polynomial function model
fit the typical degradation characteristics of lithium-ion batteries better and could
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improve the accuracy of RUL prediction for lithium-ion batteries in terms of MSE of
RUL prediction.

In the future, we will focus on the physical models and ambient conditions such as tem-
perature, charge current, and discharge current for predicting the RUL, as this is a valuable
direction in improving the accuracy of prognostics of lithium-ion batteries. Additionally,
the generality of a cubic polynomial degradation model is worth further researching.
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