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Abstract: Silicon as an electrode material in the lithium-ion battery application scenario has been
hindered by its significant volumetric expansion and intricate synthesis processes. In this research, we
have successfully synthesized Si@C/carbon nanotubes/carbon sheets (Si@C-CNTs/CS) composites
by employing a simple one-pot method along with modified magnesium thermal reaction, which
involves melamine to prevent high temperature. The resulting multifunctional Si@C-CNTs/CS
composites demonstrate enhanced stability during volume change in silicon, resulting in both higher
capacity compared to conventional carbon coating layer and improved conductivity of the materials.
The results indicate that the Si@C-CNTs/CS composites exhibit a high discharge-specific capacity
of up to 2981.64 mAh g−1 at 0.5 A g−1 current density and retain a discharge-specific capacity of
1487.71 mAh g−1 even after 300 cycles. Therefore, the double-layer carbon network structure of
carbon nanotubes/carbon nanosheets can provide an efficient and simple preparation method for
high-performance Si-base anode materials in practical applications.

Keywords: lithium-ion battery; silicon anode; high capacity; double-layer carbon mesh; cycle stability
performance

1. Introduction

The widespread use of traditional fossil fuels has resulted in large amounts of green-
house gases and atmospheric pollution, highlighting the importance of developing green
and renewable energy sources. Governments around the world are increasingly prioritizing
efficient energy research and clean energy utilization to meet both market demand and
environmental protection goals [1]. Lithium-ion batteries with excellent energy density, effi-
ciency, low self-discharge, a long cycling life, environmental compatibility and other merits
have attracted much attention. These batteries have been widely applied in mobile power
applications, smart grids and electric vehicles, which will become a crucial component of
modern energy systems [2,3].

Although graphite has an excellent cycling performance and is widely used as an
anode material, it has limitations in meeting energy density requirements [4–6]. Silicon,
on the other hand, has garnered considerable interest as a prospective anode material,
owing to silicon’s exceptional theoretical specific capacity of 4200 mAh g−1 and lithiation
potential that ensures safety, thereby positioning it as a formidable contender for replacing
graphite [7–10]. However, silicon also has obvious drawbacks such as significant volume
expansion (~300%) during the cycling process, leading to a poor cycling performance
and low electrochemical performance [11]. Moreover, the volume variation effect of a
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silicon anode can lead to cracking and pulverization, further contributing to capacity
degradation during the cycling processes. The methods for preparing Si/C anode include
molten salt approach [12], atomic layer deposition [13] and the vacuum arc method [14].
Generally, metal thermal reduction reactions are frequently employed for the reduction
of naturally abundant silica resources to obtain silicon particles. Common metal thermal
reduction reactions include magnesiothermic reduction and aluminothermic reduction.
Compared with the metal-assisted etching method, the magnesiothermic reduction is a
suitable approach to largely synthesis without extra reaction equipment. Nevertheless, the
electrical and mechanical integrity of the silicon anode is still needed to improve. To date,
there are many researchers that have endeavored to effectively solve these problems. The
micron/nanostructures are inserted into short transfer paths of lithium ions and electrons,
which can improve the electrical conductivity of the silicon anode [15–17]. In addition,
the weak interfacial interaction between the collector and silicon surface may result in
crack and exfoliation; thus, some binders are utilized to confirm the anode material in
order to strengthen the cycling performance [18–21]. In addition, silicon-based anodes
with different morphologies such as nanospheres, nanowire, and a porous structure are
designed to decrease the stress via the Si volume effect.

One promising strategy to overcome the issue of volume expansion of silicon anode is
utilizing the silicon/carbon structure composite material. These structures can effectively
buffer the volume effect of silicon anode with various microstructures, such as synthesizing
nanoparticle/carbon composites with egg yolk shell structures [22], carbon nanotube-Si
composites [23], and amorphous carbon-covered Si composites. However, the traditional
silicon/carbon electrodes are unable to be uniformly distributed in the composite mate-
rial, which restricts their capability to improve electrical conductivity and shorten Li-ion
transport distance.

In recent years, the design and synthesis of silicon anode frameworks composed of
carbon sheets and carbon nanotubes (CNTs) have emerged as a development prospect
strategy of high-performance LIBs [23]. The carbon sheets play the active matrix role to
enhance electrical conductivity [24] and also act as a protective layer that can mitigate the
impact of volume changes that occur during charge and discharge processes. Through the
integration of CNTs among the silicon anode, electrical conductivity is improved owing
to the reduction in the transferring paths for lithium ions and electrons [25,26]. However,
the cyclic stability of such anode requires further improvement. The CNTs integrated
between carbon sheets can not only enable the formation of a stable network to prevent
aggregation, but also serve as “welding points” to facilitate the carrier transport within
the inner anode and enhance lithium-ion transportation and electrolyte infiltration. Thus,
the interconnected silicon/CNTs/carbon sheet composite is a simple and environmentally
friendly approach that has great potential to obtain excellent performance anode materials
for LIBs.

This study proposes a simple and environmentally friendly approach to fabricate Si@C-
CNTs/CS, a high-performance anode material for lithium-ion batteries (LIBs), using the
modified extensible magnesium thermal reduction method [27] coupled with a pyrolysis
of melamine strategy [28]. The double-layer carbon mesh structure containing carbon
nanotubes and carbon sheets not only improves electrical conductivity, but also provides
mechanical flexibility and a rich pore structure, which can help to alleviate the expansion
of volume during the cycling processes. The excellent cycling stability, high reversible
capacity, and high electrochemical stability observed in this study demonstrate the potential
of Si@C-CNTs/CS as a practical and high-performance anode material for LIBs. Therefore,
this study can provide a valuable guideline on the designation of novel Si-base anode for
improving the performance of LIBs.
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2. Experiment
2.1. Materials

Magnesium powders (100–200 M), sodium chloride (99.9%) and ethanol (>99.7%) were
purchased from Sinopharm (Beijing, China). Ammonium hydroxide (37%wt), Melamine
(99%) and resorcinol (99%) were purchased from Aladdin (Shanghai, China). Cobaltous
nitrate hexahydrate (99.99%), liquid paraffin were purchased from Macklin (Shanghai,
China). Tetraethyl orthosilicate (99%) was purchased from Tianjin Zhiyuan (Tianjin, China).

2.2. Synthesis of SiO2@C

The SiO2@RF (Phenolic resin, hereinafter referred to as RF) was synthesized by using
a sol–gel method. In total, 100 mg of resorcinol was first dissolved in 300 mL of a solution
mixture made up of ethanol and deionized water (volume ratio 9:1, noted as E/W = 9),
followed by the addition of 9 mL of ammonium hydroxide. Subsequently, 8.1 mL of
tetraethyl orthosilicate was instilled and magnetically stirred for 5 min. The 140 µL of
methanal was instilled and stirring was continued for 24 h. Additionally, the reaction was
subsequently collected via centrifugation. The product was soaked in deionized water and
then washed with ethanol several times; the centrifugation operation was repeated, and
then dried at 60 ◦C for 12 h. The SiO2@RF was calcined for 180 min (raising to 900 ◦C at
2 ◦C/min) in an argon atmosphere to obtain the target product.

2.3. Synthesis of Si@C

To efficiently obtain Si@C, a modified magnesium heat reaction was sufficiently mixed
with the Mg and sodium chloride powder. Sodium chloride is in full contact with magne-
sium powder, which facilitates the absorption of redundant localized heat generated in MR.
First of all, 400 mg of Mg and 2 g of sodium chloride were milled at 200 rpm for two hours,
and subsequently ground well with 400 mg of SiO2@C with mortar and pestle, and then
raising at 650 ◦C for 1 h in an argon atmosphere with the magnesium thermal reduction.
Finally, the excess magnesium powder is removed via acid washing to get the Si@C.

2.4. Synthesis of Si@C-CNTs/CS

The Si@C (400 mg) and melamine (2.4 g) were ground uniformly in paraffin oil.
Subsequently, the 160 mg of cobaltous nitrate hexahydrate was dissolved in 10 mL ethanol,
which was stirred continually and dropped to Si@RF and melamine ground in liquid
paraffin. After grounding sufficiently, it was calcined under an argon atmosphere at 950 ◦C
for 2 h at a raising rate of 2 ◦C/min, which aimed to produce Si@C-CNTs/CS.

2.5. Material Characterizations

The SEM (Hitach SU8220) was used to reveal the microscopic surface appearance
of the samples, while the TEM (FEI Tecnai G2F 20) was used to investigate the internal
structure and crystallographic properties. The XRD (D/MAX-Ultima VI) was used for
determining the crystal structure and phase purity of composites. Then, the XPS (PHI-
5000versaprobeIII) was utilized to study the composition and properties of surfaces and
the electronic structure at the surface of the samples. Confocal micro-Raman spectroscopy
(Horiba Jobin Yvon LABRAM HR 800UV) was used to investigate the molecular vibrational
modes and structural properties of the samples. Finally, the BET test (Micrometrics ASAP
2460) was used to evaluate parameters such as adsorption, reaction and transport properties
of the materials. All measurements were performed under controlled conditions, and the
results were interpreted based on established theories and models in materials science.

2.6. Electrochemical Characterizations

The working electrode involved a careful mixing of the active substance (pure Si, Si@C or
Si@C-CNTs/Cs), sodium alginate binder, and conductive agent (Acetylene black or Super P)
in a certain weight ratio. In this study, the weight ratio of the three components was 7:1.5:1.5.
The resulting mixture was then homogenized by adding a specific amount of deionized water
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and grinding. The mass loading of the active material in the electrode was 0.85 mg cm−2.
Subsequently, the evenly mixed slurry was applied to the copper foil and dried in a vacuum-
drying oven at 55 ◦C for 10 h. The utilized button cell model was R2032. The button cell was
assembled within a glove box (O2 content is less than 0.1 × 10−6 pm, H2O content is less
than 0.1 × 10−6 pm), utilizing a lithium metal sheet as the reference electrode, polypropylene
film as the diaphragm, and silicon carbon button electrolyte (1 M LiPF6, KLD-SiO1) as the
electrolyte, and assembled in a certain order. Constant current charge/discharge tests were
conducted at room temperature on a charge/discharge test cabinet (NEWAER-CT-4008). AC
impedance tests were performed on the CHI7603 workstation.

3. Results and Discussion

The Si@C-CNTs/CS material obtained in this study is composed of Si nanoparticles,
carbon nanotubes (CNTs), and nitrogen-doped carbon sheets. As shown in Figure 1, the
synthesis process involves the use of RF-coated SiO2 spheres as a precursor material, which
utilized the RF as a carbon source and carbonized at high temperature to produce Si@C
spheres. Then, Si@C melamine is ground into a uniform mixture and dissolved in paraffin
oil. Then, cobalt nitrate ethanol solution hexahydrate is added drop by drop. Then, high
temperature pyrolysis is performed to generate Si@C-CNTs/CS. For the reduction of SiO2
spheres, a modified magnesiothermic reduction reaction was used. At high temperatures,
sodium chloride transforms from a solid to a molten state, providing a “liquid” environment
for magnesium. In its molten state, sodium chloride ionizes out chloride and sodium ions
and absorbs heat. At the same time, magnesium has some solubility in molten sodium
chloride and can ionize into magnesium ions and electrons. Due to the strong reducing
ability of magnesium ions, it rapidly reacts with SiO2 at a high temperature. In this process,
in addition to the reduction of SiO2, there are some side reactions leading to the production
of Mg2Si and MgO. The chemical reaction is as follows [29,30]:

2Mg + SiO2 = 2MgO + Si (1)

SiO2 + 2Mg = Si + 2MgO (2)

Si + 2Mg = Mg2Si (3)

4Mg + SiO2 = Mg2Si + 2MgO (4)

SiO2 + Mg2Si = 2Si + 2MgO (5)

Although the by-products Mg2Si and MgO produced in the reduction reaction can
be removed via hydrochloric acid immersion and other methods, the obtained Si will
agglomerate together in this process, resulting in a certain impact on its electrochemical
properties. The “liquid” environment provided by sodium chloride during the reduction
process is good for preventing the agglomeration of silicon [28]. During the pyrolysis
process, melamine is thermally condensed to generate a graphitic carbon nitride (g-C3N4)
layer. Co ions are confined in the layered g-C3N4 and generate aromatic intermediates. As
the pyrolysis temperature is increased, the cobalt atoms are further confined in the g-C3N4
layer, which catalyzes the formation of CNTs from the pyrolysis products NH3 and C2N2.
Meanwhile, the g-C3N4 layer is entirely pyrolyzed to produce nitrogen. These carbon
atoms form small and filmy nitrogen-dcurreoped carbon sheets [31,32]. The resulting Si@C-
CNTs/CS material consists of a network of silicon particles encapsulated in amorphous
carbon and interconnected by CNTs and carbon sheets.

As depicted in Figure 2a,b, the SEM images reveal the microcosmic structural morphol-
ogy of the Si@C-CNTs/CS material, consisting of carbon-coated silicon particles with bilayer
carbon networks of carbon nanotubes/carbon sheets. Figure 2c illustrates the presence of
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Si nanoparticles that are implanted within filmy layers of carbon sheets. Additionally, in
Figure 2d, it depicts carbon-encapsulated Si nanoparticles within bilayer networks of carbon
nanosheets and carbon nanotubes, which exhibit particle sizes between 80 and 100 nm. No-
tably, the external of the Si nanoparticles is decorated with carbon nanotubes having a pipe
diameter about 20 nm, which form a “highway” conductive path via inter-tube interactions.
This unique architecture of carbon encapsulation offers superior protection to Si nanopar-
ticles, thereby mitigating their structural degradation upon cycling. Figure 2e illustrates
the effective encapsulation of Si by amorphous carbon layers. As depicted in Figure 2h, it
reveals the crystal plane spacing of 0.2012 nm, indicating the presence of the (220) crystal
plane of silicon (PDF#27-1402). Meanwhile, the Si particles are tightly wrapped through
a graphitized carbon layer with a 0.3377 nm space. The diffraction pattern rings match
with the (111), (220) and (311) crystallographic surfaces of silicon. During the preparation
of Si@C-CNTs/CS material, when melamine is pyrolyzed to form carbon nanoparticles, Si
particles could be firmly adsorbed on the carbon layer due to the stable covalent interaction
between Si and carbon layer. Additionally, a few Co atoms can catalyze the formation of
carbon nanotubes from the NH3 and C2N2 pyrolysis products, forming a dense double-layer
carbon network. In Figure 2i–l, it shows the energy dispersive spectrum (EDS) images with
the Si, C, N and O elemental distribution, revealing the uniform distribution of Si in the
carbon matrix consisting of N-doped carbon nanotubes and carbon sheets.
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To deeply analyze the chemical structure and crystalline phase structure, Figure 3a
demonstrates the XRD spectra of silicon, Si@C, and the Si@C-CNTs/CS composite. These
samples exhibit prominent peaks at 2θ angles of 28.4◦ (111), 47.3◦ (220), 56.1◦ (311), 69.1◦

(400), and 76.4◦ (331), consistent with the faces of silicon (PDF#27-1402). Raman spectra
were obtained based on measurements of the scattered light of the pair laser based on bare
silicon, SI@C, and Si@C-CNTs/CS samples, as shown in Figure 3b. As the result of the
vibrational movements of silicon Raman phonons [33], the Raman spectra displays the
peaks around 470 cm−1, 520 cm−1, and 960 cm−1, respectively. In the meantime, the degree
of graphitization in a material is often deduced from the peak intensity ratio between the
D and G bands (ID/IG). The D band reflects the amorphous and defect structure, while
the G band represents the graphite structure in the material. Therefore, a material with a
higher degree of graphitization will have a smaller intensity ratio between the D and G
bands, and its electrical conductivity will be greater [34]. The ID/IG ratio of Si@C-CNTs/CS
sample is found to be only 0.88, while that of the Si@C sample is significantly higher at
1.21, indicating that the former exhibits a higher extent of graphitization and excellent
electrical conductivity. The nitrogen adsorption/desorption isotherms were investigated
for the three samples, as illustrated in Figure 3, with respective specific surface areas of
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53.9 m2 g−1, 91.4 m2 g−1, and 206.3 m2 g−1. Due to the presence of carbon sheets, the
Si@C-CNTs/CS materials exhibit the maximum specific surface area, which is beneficial for
improving lithium-ion efficiency and effectively mitigating the volume expansion effect
of Si. In Figure 3d, it displays the conspicuous peaks of C, N, O, and Si 2 p with binding
energies of 285.1, 398.4, 533.1, 154.9, and 103.8 eV, which reveals that an O signal is observed
in the XPS wide spectrum.

The chemical composition and related valence states of Si@C-CNTs/CS were deter-
mined via X-ray photoelectron spectroscopy. Figure 4a presents the spectrum of the C 1
s, which exhibits three distinctive bands at 284.7 eV, 285.9 eV, and 291.1 eV. The primary
peak detected at 284.7 eV reveals the Sp2 hybridization of C-C/C=C bond, which confirms
the arrangement of C atoms into the embedded honeycomb lattice. Meanwhile, two minor
peaks are observed at 285.9 eV and 291.1 eV, respectively, which can be associated with the
O-C=O and C-N/C=N functional groups [35]. This demonstrates that the carbon indeed
contains oxygen groups. In Figure 4b, the fine spectrum of N 1 s is shown, which clearly
displays the presence of three distinct peaks at 404.9 eV, 401.3 eV, and 398.3 eV, representing
graphitic paper nitrogen, pyrrole nitrogen, and pyridine nitrogen, respectively [36,37].
Among these, the pyrrole nitrogen and pyridine nitrogen contained 87.4%. The existence of
these functional groups significantly enhances the electrochemical activity of the carbon
matrix, leading to improvements in the Si@C-CNTs/CS composite lithium storage perfor-
mance. In Figure 4c, the fine spectrum of O 1 s with two distinct peaks at 533.7 eV and
536.4 eV, separately, is shown. The former peak is the Si-O bond formed due to the capture
of O2 from the surrounding air by the silicon particles, which leads to a mild oxidation
reaction. The latter is represented by the O-C-O bonds that still exist during the annealing
process. Figure 4d displays the Si 2 p spectrum demonstrating peaks at 99.7 eV and 101.3 eV,
corresponding to monatomic Si. Furthermore, the Si-N and Si-O bonds are identifiable by
the peaks at 103.5 eV and 105.1 eV, respectively [36,38,39]. It reveals that the interface is
strongly bonded among the Si particles and the carbon matrix, which makes the composite
material have good electrical conductivity when a lithium-ion battery electrode is used.

In Figure 5a, the charge/discharge voltage distributions of the initial cycle of pure Si,
Si@C and Si@C-CNTs/CS electrodes in the voltage range 0.01–1.5 V, 0.1 A g−1 are shown, with
discharge capacities of 3486.8, 2581.9 and 3141.5 mAh g−1, respectively, which correspond
to the initial CE with 72.9%, 79.3% and 77.1%, respectively. The initial CE of the Si@C
electrode is shown to be superior to that of the pure Si and Si@C-CNTs/CS electrodes. In
Figure 5b, the cycling performances of three electrodes at a 0.5 A g−1 specific current is shown.
Remarkably, after 100 cycles, the Si@C-CNTs/CS composite electrode displays outstanding
cycling stability by retaining a capacity of 1763.21 mAh g−1, while the pure Si and Si@C
electrodes exhibit mere capacities of 3.41 mAh g−1 and 1089.12 mAh g−1, respectively. This
indicates that the Si@C-CNTs/CS composite has an outstanding cycling stability.

In Figure 5c, the multiplicative rating performances of different electrodes are illustrated,
where measurements were conducted at 0.5, 1, 2, 4, 6, and 8 A g−1. Then, after 5 cycles at
different magnification, it was restored to 0.5 A g−1. Notably, the Si@C-CNTs/CS electrode
could be retained at the 8 A g−1 specific current of 1089.83 mAh g−1, while the Si@C electrode
exhibited only 164.21 mAh g−1, and the pure Si electrode demonstrated significantly lower
capacity. Additionally, Figure S1 shows that the Si@C-CNTs/CS electrode reveals a superb
long-term cycling performance, with a capacity recovery to 1611.21 mAh g−1 when the
specific current is returned from 10 A g−1 to 0.5 A g−1. Moreover, after 300 cycles, the stable
capacity can be maintained at this specific current of 682.04 mAh g−1. Cyclic voltammetry
was performed at a scanning speed of 0.1 mV s−1 and a voltage range of 0.01 V to 1.5 V
during cycling. The test results are depicted in Figure 5d. In the scanning curve of cathodic, a
distinct reduction peak is observed at 0.17 V, which represents the crystalline silicon alloying
reaction to form the Li-Si alloy. On the contrary, during the anodic scanning curve, there
are two conspicuous oxidation peaks at 0.36 V and 0.49 V, respectively, which are associated
with de-lithiation reaction of LixSi. The positions of the oxidation and reduction peaks are
still unchanged during the subsequent cycling process, while the intensity of the peaks is
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gradually increasing. Thus, the Si@C-CNTs/CS composite has a considerably firm phase
structure, which, in turn, contributes to enhancing the electrochemical performance of the
Si@C-CNTs/CS composite.
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In Figure 6a, the Nyquist plot is split into two regions, with the curve in the high-
frequency region resembling a semicircle, indicating charge transport resistance as charges
migrate across the electrode–electrolyte interface. On the other hand, an approximately
oblique line is shown, corresponding to the impedance generated by Li+ diffusion, in
the low-frequency region. In half-cells, the Rs is generally considered to reflect volume
resistance. The Rs values for the pure Si, Si@C and Si@C-CNTs/CS materials are 15.91 Ω,
11.25 Ω and 9.71 Ω, respectively, while the Rct values are 280 Ω, 215.1 Ω and 93.86 Ω. In
contrast, the Rs value (9.71 Ω) and the Rct value for the Si@C-CNTs/CS electrode (93.86 Ω)
are the lowest, which indicates that the double-layer carbon network structure of the
nanotube/nanosheet network improved the electrical conductivity and reduced the charge
migration resistance. We used the following formula to calculate the diffusion coefficients
of the different sample electrodes:

DLi+ =
R2T2

2A2n2F2C2σ2
(6)

Zre = Rct + Rs + σω
− 1

2 (7)

where R = 8.314 JK−1mol−1 mol−1 represents the gas constant. T is the temperature of
Kelvin, and this test is carried out at room temperature; therefore, T = 298.15 K. A is
the electrode area; F is Faraday constant, that is, F = 96, 500 C mol−1; n is the number
of electrons transferred during the reaction; C is the concentration of lithium ion phase
involved in the reaction; σ represents the Warburg factor. We set the initial number of elec-
trons involved in the oxidation reaction to 1, that is, n = 1. The DLi+(Si), DLi+(Si@C) and
DLi+(Si@C − CNTs/CSi@C) are 1.01 × 10−17, 3.01 × 10−15 and 1.52 × 10−13, respectively,
as calculated. Figure 6b illustrates that the Si@C-CNTs/CS composite exhibits a sustained
capacity of 1487.71 mAh g−1 even after 300 cycles at a specific current of 500 mA g−1.
Furthermore, the cycling-specific capacity remains at 99.9% after achieving stabilization.

As depicted in Figure 7 and Figure S3, the Si@C, pure Si and Si@C-CNTs/CS com-
posites were disassembled from the cell after 100 cycles, and the electrode surface was
observed via scanning electron microscopy. The results demonstrated that the Si@C compos-
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ite showed large numbers of cracks after the cycling process, whereas the Si@C-CNTs/CS
composite exhibited only a few cracks. Meanwhile, the volume expansion rate of the
cross-sectional area before and after the cycling of the Si@C-CNTs/CS was a mere 23.7%,
which clearly indicates a substantial improvement in the volume effect phenomenon of the
Si-base anode.
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As depicted in Figure 8, it can be inferred that the mechanism of formation leads to
an unstable SEI film during the repeated deintercalation of lithium, which reveals that
the electrolyte is repeatedly consumed. Furthermore, the volume expansion effect of the
silicon anode leads to the cracking and pulverization of the active substance, consequently
affecting the electrochemical performance. In addition, the silicon coating carbon film can
lead to partial cracks and gradually expand during the embedding and de-embedding
of lithium process, leading to the electrochemical degradation of the anode material. In
contrast, in the Si@C-CNTs/CS anode, during the deintercalation of lithium ions, Si particles
are enveloped by the amorphous carbon layer to form a stable SEI film and obtain stable
electrochemical properties. At the same time, under the protection of CNTs/CS double-
layer carbon network, the volume effect is greatly alleviated. Additionally, the cross-linked
CNTs network formed a “highway” among the materials, which greatly improves the
conductivity of the electrode. Thus, the Si@C-CNTs/CS anode electrochemical performance
is significantly higher than that of the others.
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4. Conclusions

In conclusion, the Si@C-CNTs/CS composites have been prepared through a simple
one-pot strategy and a modified magnesium thermal reaction, resulting in low energy
consumption and environmental friendliness. The composites have a double-layer carbon
network structure composed of nano carbon tubes and carbon sheets, and demonstrate a
discharge capacity of 2981.64 mAh g−1 at a specific current of 0.5 A g−1, which remains at
1487.71 mAh g−1 after 300 cycles. The specific discharge capacity of Si@C-CNTs/CS is as
high as 1089.83 mAh g−1 even at a discharge rate of 8 A g−1, which is considerably greater
than that of pure Si and Si@C materials. Therefore, this research provides a simple and
convenient approach to achieving a high electrochemical performance for Si anode, therefore
paving the way for advanced electrode materials in various energy storage technologies.
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