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Abstract: The solid polymer electrolyte is a promising candidate for solid-state lithium battery
because of favorable interfacial contact, good processability and economic availability. However,
its application is limited because of low ionic conductivity and insufficient mechanical strength. In
this study, the delicate molecular structural design was realized via controlled / “living” radical
polymerization in order to decouple the trade-off between ionic conductivity and mechanical strength.
The random and triblock copolymer electrolytes were designed and synthesized to investigate
the influence of molecular structure on ionic conduction, while a chemical cross-linking network
was constructed via a semi-spontaneous post-crosslinking reaction. Compared with a random
counterpart, the triblock copolymer electrolyte presented stronger chain segment motion and a liquid-
like mechanical response due to the independent ion-conducting block, resulting in significantly
improved ionic conductivity (from 6.29 ± 1.11 × 10−5 to 9.57 ± 2.82 × 10−5 S cm−1 at 60 ◦C) and
cell performance. When assembled with LiFePO4 and lithium metal electrodes, the cell with triblock
copolymer electrolyte showed significantly improved rate performance (150 mAh g−1 at 1 C) and
cycling life (200 cycles with 92.8% capacity retention at 1 C). This study demonstrates the advantages
of molecular structure regulation on ionic conduction and mechanical support, which may provide
new insights for the future design of solid polymer electrolytes.

Keywords: solid polymer electrolyte; molecular structure regulation; semi-spontaneous post-crosslinking
reaction

1. Introduction

Solid-state lithium batteries are one of the most promising next-generation energy
storage devices owing to their potential for high energy density and enhanced innate
safety [1,2]. As a critical component of solid-state lithium batteries, solid-state electrolytes
(SSEs) have aroused widespread research interest [3–6]. The solid polymer electrolyte
(SPE) and solid inorganic electrolyte (SIE) are two of the most important series of SSEs.
Although the SIE presents high room-temperature ionic conductivity and superior ther-
mal stability, factors such as brittleness, poor contact with electrodes and an unstable
electrode/electrolyte interface prevent its practical application. Compared with SIE, SPE
demonstrates low interfacial resistance, good process-ability and economic availability, and
thus is promising for realizing large-scale industrial production [7].

The challenges faced by SPE are low ionic conductivity, insufficient mechanical
strength, and a narrow electrochemical stability window (especially resistance to oxi-
dation at the cathode) [8]. Among these, the trade-off between ionic conductivity and
mechanical strength is compelling and overwhelming [9]. Since the transfer of lithium-ions
in SPE depends on the movement of polymer chain segments, the methods reported in the
literature to improve ionic conductivity can be summarized into three categories. The first
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category is to destroy the crystalline region and expand the amorphous region by blending,
copolymerization or adding fillers [10–12]; the second category is to select monomers with
low glass transition temperature [13–15]; and the third category is the introduction of
plasticizers, such as room-temperature ionic liquid, plastic crystals, etc. [16–18]. The above
methods enhance ionic conductivity by improving the mobility of the polymer chain seg-
ment, but sacrifices the mechanical strength of the polymer electrolyte to varying degrees.
The study of Monroe and Newman has shown that increasing the mechanical strength of
SPE is beneficial to inhibit the lithium dendrites on the surface of lithium metal, thus avoid-
ing short-circuiting within the battery [19]. Therefore, achieving high ionic conductivity
and superior mechanical strength simultaneously is still regarded as a vital challenge.

Crosslinking is valid for enhancing the mechanical strength of SPE. Due to the advan-
tages of physical crosslinking, high glass transition temperature, and microphase separation,
polystyrene-b-poly (ethylene oxide) (PS-b-PEO) block copolymers have been extensively
researched [20–22]. However, even with a 3D bi-continuous phase morphology, which is
most conducive to the transfer of lithium ions, the measured ion conductivity is signifi-
cantly lower than the theoretical value [23–25]. Meanwhile, several studies have revealed
that increasing the volume fraction of PEO can significantly improve the ionic conductivity
of PS-b-PEO, because it reduces the proportion of excluded ion-conducting zones at the
PS/PEO interface, which are called “dead zones” [26]. However, the mechanical strength
of amorphous PEO is too weak to block the growth of lithium dendrites [27–29]. Conse-
quently, as the composition ratio of styrene decreases, the mechanical strength of the SPE is
insufficient to avoid internal short circuit.

Compared with a physical crosslinking network, a chemical crosslinking network
formed by chemical bonds provides more solid mechanical support. In current research,
polyethylene glycol diacrylate (PEGDA) have been widely used as the ion-conducting
oligomers to form a chemical cross-linking network [30–33]. The construction methods
mainly included thermal polymerization and photo-polymerization, which follow the free
radical polymerization mechanism. However, the molecular weight of PEGDA is limited
within 200–1000 g mol−1 in order to avoid crystallization. Due to the stoichiometric ratio
between reaction functional groups, the composition of conductive ion units is too low to
reduce the proportion of “dead zone”, which is detrimental to ionic conductivity. Moreover,
the chemical crosslinking structure formed by conventional free radical polymerization
is heterogeneous [34,35]. As a result, the improvement of mechanical strength and ionic
conductivity is inadequate.

Herein, we proposed a chemically post-crosslinking solid block copolymer electrolyte
to address the aforementioned issues. The 3-(trimethoxysilyl) propyl acrylate (TMSiPA) and
poly (ethylene glycol) methyl ether acrylate (PEGMA) were applied as post-crosslinking
monomer and ion-conducting monomer, respectively. Since there are three crosslinking
sites in TMSiPA, which is beneficial and efficient to form a three-dimensional network, the
composition ratio of PEGMA can be significantly increased to reduce the area of “dead
zone”. Moreover, the chemical crosslinking reaction condition is facile without additional
initiator. In this study, SPEs with two different molecular chain structures (triblock and
random) were synthesized via the reversible addition–fragmentation chain transfer (RAFT)
polymerization, and their physical and electrochemical properties were investigated in
detail. The solid-state lithium batteries of LiFePO4//SPE//Li were assembled and the cell
performances were systematically investigated.

2. Materials and Methods
2.1. Materials

Poly (ethylene glycol) methyl ether acrylate (PEGMA, 480 g mol−1, Sigma-Aldrich,
St. Louis, MO, USA), 3-(trimethoxysilyl) propyl acrylate (TMSiPA, >93%, Aladdin, At-
lanta, GA, USA), 4,4′-azobis (4-cyanovaleric acid) (V501, 98%, Aladdin), anhydrous ethanol
(AR, ≥99.7%, Sinopharm Chemical Reagent Co., Ltd., Beijing, China), lithium perchlo-
rate (LiClO4, 99.9%, Aladdin), LiFePO4 (Advanced Lithium Electrochemistry Co., Ltd.,
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Taoyuan City, Taiwan), conductive carbon black (super P, Alfa Aesar, Haverhill, MA, USA)
and polyvinylidene fluoride (HSV900, Arkema, Colombes, France) were used as pur-
chased without further purification. The RAFT agent, 2-{[(dodecyl-sulfanyl) carbonothioyl]
sulfanyl} propanoic acid (DSCTSPA), was synthesized and purified as described in the
literature [36].

2.2. Synthesis of Copolymers via RAFT Solution Copolymerization

The theoretical molecular weight of both poly (TMSiPA-co-PEGMA) (random copoly-
mer) and poly [TMSiPA-b-PEGMA-b-(TMSiPA-co-PEGMA)] (triblock copolymer) is
30,000 g mol−1 with a different molar ratio for TMSiPA. In a typical triblock copolymer
with 10 mol% of TMSiPA, the molecular weight of each block is 1000, 25,000 and 4000
(500-co-3500 in specific), respectively. The synthetic procedure of triblock copolymer is
described in detail as follows. Firstly, 3.5 g of RAFT and 0.280 g of V501 were dissolved in
10 g of anhydrous ethanol, and 10 g of TMSiPA was added. Then, the above mixed solution
was poured into a three-necked flask. After 30 min deoxygenation by a nitrogen purge,
the temperature of the water bath was raised to 70 ◦C to start the reaction for 4.7 h, and
the polyTMSiPA solution was obtained. Then, 1.189 g of polyTMSiPA solution was mixed
with 0.014 g of V501, 12.5 g of PEGMA and 10 g of anhydrous ethanol. The mixed solution
was added into a three-necked flask. After 30 min deoxygenation by a nitrogen purge, the
reaction temperature was raised to 70 ◦C for 6 h to obtain the poly (TMSiPA-b-PEGMA)
solution. The flask was then cooled to room temperature, and injected with a mixed so-
lution containing 0.25 g of TMSiPA, 1.75 g of PEGMA and 0.014 g of V501. The mixture
was deoxygenated and reacted at 70 ◦C for 28 h to obtain the poly [TMSiPA-b-PEGMA-b-
(TMSiPA-co-PEGMA)] solution. As for the random copolymer, the molecular weight of
PEGMA and TMSiPA is 28,500 and 1500, respectively. The synthetic procedure is described
in detail as follows. Firstly, 0.175 g of RAFT and 0.0141 g of V501 were dissolved in 15 g of
anhydrous ethanol, and then 14.25 g of PEGMA and 0.75 g of TMSiPA were added. After
30 min deoxygenation by a nitrogen purge, the temperature of the water bath was raised to
70 ◦C to start the reaction for 6 h, and the poly(TMSiPA-co-PEGMA) solution was obtained.

2.3. Synthesis of Solid Copolymer Electrolyte via Thermocuring

A certain amount of LiClO4 was dissolved in the poly [TMSiPA-b-PEGMA-b-(TMSiPA-
co-PEGMA)] or poly (TMSiPA-co-PEGMA) solution according to the molar ratio of Li/EO
of 1/8. The prepared transparent solution was poured into a Teflon Petri dish in the air,
and the methoxysilyl group (-Si-OCH3) was spontaneously hydrolyzed into the silanol
group (-Si-OH). Then, the Teflon Petri dish was heated at 60 ◦C for 48 h in order to remove
most of the ethanol solvent and the hydrolysis reaction byproduct methanol. Then, it
was transferred into a 60 ◦C vacuum oven to further volatilize the redundant solvent and
water to promote the dehydration condensation reaction between the silanol groups. After
96 h, a cross-linked and cured copolymer electrolyte membrane was obtained, which was
abbreviated as TRI-SPE or RAN-SPE in the following discussion.

2.4. Characterization of Synthesized Copolymer Electrolyte

Conversion rate. The conversion rate can be evaluated by detecting the number of
residual double bonds in the synthesized copolymer via 500 MHz 1H-NMR. In order to
avoid the spontaneous hydrolysis of TMSiPA in the copolymer, the sample was quickly
sealed in a nuclear magnetic tube for detection without treatment. The nuclear magnetic
reagent was deuterated chloroform (CDCl3). The test results and analysis are shown in the
supporting information (Figures S1 and S2).

Gel fraction. A certain amount of polymer was weighed and extracted with anhydrous
ethanol in an oil bath at 90 ◦C for 60 h. The residue was dried completely at 120 ◦C under
vacuum conditions. The gel fraction was calculated according to the mass difference before
and after drying.
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Heat stability. Pyris 1 TGA (Perkin-Elmer) was applied to measure the thermal
decomposition temperature of the polymer electrolyte. The test range was set as 30 to
700 ◦C with a heating rate of 10 ◦C min−1. The heating process was performed in a nitrogen
atmosphere.

Glass transition temperature. TA Q200 differential scanning calorimeter was applied
to measure the glass transition temperature of synthesized copolymer electrolyte. The test
temperature range was −80 ◦C to 100 ◦C with a heating rate of 10 ◦C min−1.

Ionic conductivity. The AC impedance spectroscopy (EIS) technology in Shanghai
Chenhua CHI 660E electrochemical workstation was applied to measure the ionic con-
ductivity of synthesized copolymer electrolyte. The cells consisting of two stainless steel
blocking electrodes and synthesized copolymer electrolyte were assembled in a glovebox
under an argon atmosphere. The test frequency was 10−2 to 105 Hz. In the Nyquist diagram,
the intersection of the straight line and the real part axis in the high frequency region is the
measured bulk resistance (Re). The calculation formula is as follows:

σ =
d

Re × S
, (1)

where d is the film thickness (measured by spiral micrometer and the average value of five
measurements was applied) and S is the area of the stainless-steel sheet.

Lithium-ion migration number. The lithium-ion migration number of polymer elec-
trolyte was determined by the Bruce–Vincent method using constant potential DC polariza-
tion technology and AC impedance spectroscopy technology in the Shanghai Chenhua CHI
660E electrochemical workstation. The test temperature was 60 ◦C. The synthesized copoly-
mer electrolyte was assembled into a lithium symmetrical battery, and a DC polarization
voltage (∆V) of 10 mV was applied to obtain an initial current (I0) and a stable current (I∞).
The bulk impedance (Rbulk) of the electrolyte and the interface impedance (Rlithium) between
the electrolyte and lithium metal were obtained by the AC impedance spectra before and
after polarization. The calculation formula is as follows:

tLi+ =
I∞Rbulk(∞)[∆V − I0Rlithium(0)]
I0Rbulk(0)[∆V − I∞Rlithium(∞)]

. (2)

Electrochemical stability window. The polymer electrolyte was assembled into a
SS//SPE//Li cell (CR2025) for linear sweep voltammetry (LSV). The voltage scanning
range was 0–5 V, and the scanning rate was 0.5 mV s−1. The LSV was started at a voltage
of 0 V instead of at a voltage of open circuit potential. The test temperature was 60 ◦C.

Battery performance. The electrode slurry was prepared according to the mass ratio
of 8:1:1 of LiFePO4, conductive carbon black and PVDF with N,N-dimethyl pyrrolidone as
dispersion medium. The slurry was coated onto an aluminum foil and dried in a vacuum
oven at 120 ◦C for 24 h and then cut into a φ14 mm wafer as cathode. The thickness of
the cathode was 100–120 µm, with a load of LiFePO4 approximately 0.5 g cm−2. Then, a
CR2025 coin-type cell was assembled with lithium metal (φ 16 × 0.6 mm) and synthesized
copolymer electrolyte. The thickness of synthesized copolymer electrolyte is 200–250 µm.
The cell performances were evaluated by a Neware battery test system at 60 ◦C.

Rheological properties. The rheological properties of synthesized copolymer elec-
trolyte were tested using a HAAKE RS6000 rotary rheometer. The test temperature was
set at 60 ◦C to detect the viscoelasticity of the electrolyte at the battery operation status.
The oscillation mode was adopted, and two test methods were used, which were linear
viscoelastic region (LVR) scanning and oscillation frequency scanning. In the LVR test,
the oscillation frequency was 1 Hz, and the strain scanning range was 0.01 to 1000%. The
relationship between strain (δ) and modulus (including storage modulus G′ and loss mod-
ulus G′′) was obtained and the LVR of the electrolyte was judged, as shown in Figure
S3. Combining the test result of LVR and the maximum torque that the instrument can
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withstand, a strain of 3% was chosen to perform the oscillation frequency scanning. The
scanning frequency was 0.01 to 40 Hz.

3. Results and Discussion
3.1. Ionic Conductivity

Triblock and random copolymers with a molecular weight of 30,000 g mol−1 and
different molar ratios of TMSiPA/PEGMA were synthesized via RAFT solution polymer-
ization, and then doped with LiClO4 to fabricate solid-state polymer electrolytes, which
were abbreviate as TRI-SPE and RAN-SPE. The ionic conductivities of synthesized SPEs at
60 ◦C were measured. As shown in Figure 1, the ionic conductivity of TRI-SPE increases
from 2.67 ± 0.31 × 10−5 S cm−1 to 9.57 ± 2.82 × 10−5 S cm−1 while the TMSiPA molar
ratio decreases from 26% to 10%, attributing to the expansion of ion-conducting domains.
When the molar ratio of TMSiPA is set as 10%, TRI-SPE exhibits significantly higher ionic
conductivity than RAN-SPE (6.29 ± 1.11 × 10−5 S cm−1). The molecular structure of
TRI-SPE and RAN-SPE is illustrated in Figure 2a. Compared with the random distribution
of monomers in RAN-SPE, the post-crosslinking monomers are immobilized at both ends
of a polymer chain in TRI-SPE, while the ion-conducting monomers are concentrated in
the middle. Since the ion transport in SPE mainly depends on the segment motion of
polymer chain, which can be reflected as glass transition temperature (Tg), the differential
scanning calorimetry (DSC) analysis was applied to elucidate the influence of molecular
structure on ionic conductivity. The Tg of PEGMA homopolymers is −71 ◦C (Figure S4).
After the introduction of TMSiPA and LiClO4, the Tgs of TRI-SPE and RAN-SPE increased
to −38.5 ◦C and −30.7 ◦C, respectively, as shown in Figure 2b. The obvious improvement
of Tgs indicates that the formation of a chemical cross-linking network inhibits the ability of
segment motion. Meanwhile, the formation of a chemical cross-linking network is verified
by the gel fraction test, which was 40.4% for TRI-SPE and 47.7% for RAN-SPE, respectively.
The lower Tg of TRI-SPE manifested a superior ability of chain segment motion compared
with RAN-SPE, thus enhancing the ionic conductivity.
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Since the ionic conductivity is determined by the concentration of charge carriers and
its migration rate, the ionic conductivity of SPE is highly sensitive to temperature variation.
The ionic conductivities of TRI-SPE and RAN-SPE were measured every 10 ◦C at a range of
30 ◦C to 100 ◦C. As shown in Figure 3, ionic conductivity increases with rising temperature.
There are two reasons for this phenomenon. When the temperature rises, the dissociation
degree of lithium salt is improved, thus increasing the concentration of free lithium ions.
In addition, the mobility of the polymer chain segment is enhanced, which improves the
migration rate of lithium ions. It has been reported that the Arrhenius behavior can be
observed when the solvation of lithium ions and polymer matrix happens at a temperature
much higher than Tg [37]. Hence, the data of ln σ (σ represents ionic conductivity in unit of
S/cm) and 1000/T (T represents test temperature in unit of K) were linearly fitted, as shown
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in Figure S5. The goodness of fit (R2) was greater than 98.5%, indicating the relationship
between ionic conductivity and temperature conforms to the Arrhenius equation, that is:

σ = σ0 exp (−Ea/kBT), (3)

where σ is ionic conductivity, σ0 is the pre-exponential factor, Ea is the activation energy, kB
is the Boltzmann’s constant, and T is the absolute temperature. The activation energies of
TRI-SPE and RAN-SPE can be calculated from the slope of the fitting line, which are 59.83
and 65.85 kJ mol−1, respectively. The higher activation energy indicates a larger barrier
of lithium-ion transport, and therefore, the trend of activation energy is consistent with
ionic conductivity.
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3.2. Thermal Stability and Rheological Property

The thermogravimetry analysis curves of PEGMA homopolymer, TMSiPA homopoly-
mer, and synthesized copolymer electrolyte are summarized in Figure 4. The thermal
decomposition temperature corresponding to 5% and 50% weight loss and the weight
loss fraction at the final thermal decomposition temperature are listed in Table 1. The
initial thermal decomposition temperature and final thermal decomposition temperature
of TMSiPA homopolymer are highest, while those of PEGMA homopolymer are the lowest.
Since the molar ratio of TMSiPA is 10%, the thermal decomposition temperature of TRI-SPE
is closer to PEGMA homopolymer. The two transition temperatures in the weight loss
curve of TMSiPA homopolymer are related to the cleavage and rearrangement of the Si-O-Si
bond to form cyclosiloxane [38]. It can be concluded that the addition of a post-crosslinking
monomer, that is TMSiPA, helps improve the thermal stability of the synthesized copolymer
electrolyte, which is beneficial in improving the safety of solid-state lithium batteries.
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Table 1. Weight loss fraction and corresponding thermal decomposition temperature of copolymers.

5% 50% Final Weight Loss Fraction and Temperature

PEGMA homopolymer 237 ◦C 367 ◦C 97%–434 ◦C
TMSiPA homopolymer 278 ◦C 474 ◦C 60%–588 ◦C

Synthesized copolymer electrolyte 265 ◦C 393 ◦C 95%–492 ◦C

The post-crosslinking mechanism of TMSiPA is illustrated in Scheme 1. The methoxysi-
lyl group (-Si-OCH3) is spontaneously hydrolyzed in air to form silanol group (-Si-OH),
which is subsequently dehydrated to form a -Si-O-Si- crosslinking network. In addition,
each monomer unit has three crosslinking sites, leading to efficient cross-linking network
construction. In addition, the delicate molecular structure design in TRI-SPE, as shown
in Figure 2a, arranges the cross-linking points at the two ends of a polymer chain, while
the soft ion-conducting monomers are in the middle, thus forming an elastic network with
good flexibility. The rheological properties of SPEs were evaluated by rotary rheometer
at 60 ◦C to simulate the working state of solid-state battery. As shown in Figure 5a, the
complex modulus of SPEs improves as the scanning frequency increases, and the com-
plex modulus of RAN-SPE is much higher than that of TRI-SPE within the test frequency.
Since the relaxation time of the chain segment depends on temperature, the variation of
frequency is equivalent to the change of observation time at a constant test temperature.
When the test frequency is increased, that is, the observation time is shorter, the elastic
recovery of the copolymer gradually fails to keep up with the rapid change of the shear
force, thus exhibiting viscosity. Meanwhile, the higher complex modulus of RAN-SPE
manifests stronger rigidity (that is, poorer chain segment mobility) than TRI-SPE, which is
consistent with the trend of glass transition temperature and loss angle tangent (tan δ). As
shown in Figure 5b, the tan δ of SPEs basically remains stable after a brief rise as the test
frequency increases. Within the test frequency, the tan δ of RAN-SPE is lower than 1, which
means the loss modulus is lower than storage modulus. Therefore, its mechanical response
to shear force is closer to solid rather than liquid. On the other hand, the tan δ of TRI-SPE is
stable at approximately 1.2 to 1.3 when the test frequency is greater than 10 Hz, showing a
mechanical response analogous to liquid. However, the elastic cross-linking network is not
damaged because the uncontrolled rise of tan δ is not observed. The liquid-like mechanical
response of TRI-SPE leads to better interfacial contact with the electrode by reducing the
interface resistance, as demonstrated in the following cell performance tests.
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3.3. Electrochemical Performance

The mass energy density of the battery is equal to the discharge capacity multiplied
by the average discharge voltage, so the material with a high discharge voltage platform
can improve the energy density of the battery. The application of high-voltage electrodes
requires matched electrolytes. Hence, the electrochemical stability window of SPE deter-
mines the operating voltage of the battery. The electrochemical stability window is the
voltage range in which the electrolyte can work stably without an electrochemical reaction
and can be measured by linear sweep voltammetry. The test temperature was set at 60 ◦C,
which is the same as the operating temperature of solid-state lithium batteries in this study.
As shown in Figure 6, a small peak appeared at approximately 3.7 V, corresponding to the
oxidation of trace residual solvents. When the potential exceeds 4.3 V, the current density
appears as an inflection point and begins to increase rapidly, indicating the emergence of
oxidative decomposition of the polymer electrolyte. Therefore, the electrochemical stability
window of the synthesized copolymer electrolyte is 0–4.3 V.

The conventional electrolyte is composed of binary lithium salt and an additive
dissolved in carbonate-based solvent. The electrolyte is absorbed in a polyethylene or
polypropylene porous separator to realize the migration of lithium ions between positive
and negative electrodes. Although the electrolyte exhibits high ionic conductivity (approxi-
mately 1–10 mS/cm) in a wide temperature range, the lithium-ion migration number is
generally below 0.5 [39]. This is because the solvation of lithium ions in the electrolyte
leads to a large solvation shell, therefore limiting the migration rate of lithium ions [40].
Unlike the lithium ion, the anion can rapidly diffuse in the opposite direction and grad-
ually accumulate on the electrode surface, forming a concentration gradient inside the
battery. The concentration overpotential generated by the concentration gradient rises as
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the current density increases, which not only limits the charge/discharge rate of the battery,
but also reduces the operating voltage of the battery, leading to damage of battery power
and energy density. Therefore, a high lithium-ion migration number is beneficial to the
improvement of material utilization, power and energy density, which has been manifested
in several studies [39,41,42]. The modified Bruce–Vincent method is used to determine the
lithium-ion migration number of synthesized copolymer electrolytes by combining DC
polarization technology and AC impedance spectroscopy.

Batteries 2023, 9, x FOR PEER REVIEW 9 of 15 
 

requires matched electrolytes. Hence, the electrochemical stability window of SPE deter-

mines the operating voltage of the battery. The electrochemical stability window is the 

voltage range in which the electrolyte can work stably without an electrochemical reaction 

and can be measured by linear sweep voltammetry. The test temperature was set at 60 °C, 

which is the same as the operating temperature of solid-state lithium batteries in this 

study. As shown in Figure 6, a small peak appeared at approximately 3.7 V, corresponding 

to the oxidation of trace residual solvents. When the potential exceeds 4.3 V, the current 

density appears as an inflection point and begins to increase rapidly, indicating the emer-

gence of oxidative decomposition of the polymer electrolyte. Therefore, the electrochemi-

cal stability window of the synthesized copolymer electrolyte is 0–4.3 V. 

 

Figure 6. Electrochemical stability window of synthesized copolymer electrolyte. The test tempera-

ture was 60 °C. 

The conventional electrolyte is composed of binary lithium salt and an additive dis-

solved in carbonate-based solvent. The electrolyte is absorbed in a polyethylene or poly-

propylene porous separator to realize the migration of lithium ions between positive and 

negative electrodes. Although the electrolyte exhibits high ionic conductivity (approxi-

mately 1–10 mS/cm) in a wide temperature range, the lithium-ion migration number is 

generally below 0.5 [39]. This is because the solvation of lithium ions in the electrolyte 

leads to a large solvation shell, therefore limiting the migration rate of lithium ions [40]. 

Unlike the lithium ion, the anion can rapidly diffuse in the opposite direction and gradu-

ally accumulate on the electrode surface, forming a concentration gradient inside the bat-

tery. The concentration overpotential generated by the concentration gradient rises as the 

current density increases, which not only limits the charge/discharge rate of the battery, 

but also reduces the operating voltage of the battery, leading to damage of battery power 

and energy density. Therefore, a high lithium-ion migration number is beneficial to the 

improvement of material utilization, power and energy density, which has been mani-

fested in several studies [39,41,42]. The modified Bruce–Vincent method is used to deter-

mine the lithium-ion migration number of synthesized copolymer electrolytes by combin-

ing DC polarization technology and AC impedance spectroscopy. 

The lithium-ion migration numbers of TRI-SPE and RAN-SPE were calculated to be 

0.42 and 0.50, respectively. The test curves are shown in Figures S6 and S7. Under the 

premise of consistent molecular composition, the influence of molecular structure on the 

ionic conductivity and lithium-ion migration number is opposite. Compared with RAN-

SPE, TRI-SPE has an independent ion-conducting block, and present superior polymer 

chain segment mobility, as demonstrated by glass transition temperature. The more flex-

ible chain segment mobility is conducive to improving the migration rate of the lithium 

ion, but also strengthen the solvation of the lithium ion by stronger complexation, which 

has contradictory effects on the lithium-ion migration number [43]. Therefore, the TRI-

SPE present a slightly lower lithium-ion migration number than RAN-SPE. 

Figure 6. Electrochemical stability window of synthesized copolymer electrolyte. The test tempera-
ture was 60 ◦C.

The lithium-ion migration numbers of TRI-SPE and RAN-SPE were calculated to be
0.42 and 0.50, respectively. The test curves are shown in Figures S6 and S7. Under the
premise of consistent molecular composition, the influence of molecular structure on the
ionic conductivity and lithium-ion migration number is opposite. Compared with RAN-
SPE, TRI-SPE has an independent ion-conducting block, and present superior polymer
chain segment mobility, as demonstrated by glass transition temperature. The more flexible
chain segment mobility is conducive to improving the migration rate of the lithium ion,
but also strengthen the solvation of the lithium ion by stronger complexation, which has
contradictory effects on the lithium-ion migration number [43]. Therefore, the TRI-SPE
present a slightly lower lithium-ion migration number than RAN-SPE.

The synthesized copolymer electrolytes were assembled into LiFePO4//SPE//Li half-
cells for charge and discharge tests. The rate performances of the half-cells are shown in
Figure 7. Obviously, the all-solid-state half-cell fabricated with TRI-SPE presents superior
discharge specific capacities than its counterpart at all test rates. When the discharge rate is
less than 1 C, the discharge specific capacity is basically maintained at around 150 mAh g−1

with almost no attenuation. In addition, the discharge specific capacities at 2–5 C discharge
rates are 130.5, 94.3, 59.6, and 42.7 mAh g−1, respectively. The disparity of discharge specific
capacity between all-solid-state half-cells fabricated with RAN-SPE and TRI-SPE gradually
increases with the increase of discharge rates. When the discharge rate reaches 2 C, the
discharge specific capacity of the TRI-SPE-based cell is approximately threefold higher
than that of the RAN-SPE-based cell, that is, 130.5 and 45.9 mAh g−1, respectively. When
the discharge rate further increases, the discharge specific capacity of the RAN-SPE-based
cell is extremely low, and therefore, no data are shown here. Finally, when the discharge
rate returned to 0.1 C, the discharge specific capacity basically returned to the initial value
with a recovery ratio exceeding 99.5%, indicating that the internal structure of the cell
does not suffer irreversible damage. Under the premise of no irreversible damage, the rate
performance is dependent on the ionic conductivity and lithium-ion migration number
of SPEs. At a higher discharge rate (current density), more electrons pass through the
electrode within the same time interval. In the case of a large excess of electrons, the
concentration of the lithium ion determines the electrochemical reaction rate, which is
reflected as discharge specific capacity. As discussed before, the ionic conductivity of
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TRI-SPE is approximately 1.5 times as high as that of RAN-SPE, while the lithium-ion
migration number of TRI-SPE is slightly lower than that of RAN-SPE. The synergistic
effect of ionic conductivity and lithium-ion migration number makes the half-cell based on
TRI-SPE exhibit better rate performance.
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Figure 7. Rate performance of LiFePO4//SPE//Li half-cells fabricated by synthesized copolymer elec-

trolytes with different molecular structures. The test temperature was 60 °C. 
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electrolytes with different molecular structures. The test temperature was 60 ◦C.

The difference in rate performance can be further elucidated by the AC impedance
spectrum, which is shown in Figure 8. The solid electrolyte interface impedance (RSEI)
in the high frequency region and the charge transfer impedance (Rct) in the intermediate
frequency region are fused to form a capacitive reactance arc. The diameter of the arc
represents the total impedance value of RSEI and Rct. The intersection of the left side of the
capacitive arc and the real component axis represents the bulk impedance (Rbulk) of the
half-cell. It can be seen that the Rbulk and total impedance of TRI-SPE based half-cell are less
than that of RAN-SPE. In order to further understand and analyze the impedance response,
an equivalent circuit which includes several elements corresponding to each step of the
overall battery reaction was built, as shown in Figure S8a. The fitting results are shown in
Figure S8b,c. The impedance of LiFePO4//SPE//Li half-cell is mainly composed of the
following five parts: lithium-ion transfer in synthesized copolymer electrolyte, lithium-ion
diffusion in solid electrolyte interface (SEI), lithium-ion transfer at the electrode/electrolyte
interface, lithium-ion diffusion in porous electrode, and charge transfer at the interface
between electrode and current collector [44,45]. Therefore, in the equivalent circuit, RΩ
represents the ohmic resistance of electrolyte, current collector and electrode particles,
RSEI represents the resistance of the solid electrolyte interface, Rct represents the resistance
of charge transfer and Wo represents Warburg impedance corresponding to diffusion.
Moreover, the measured curve in the Nyquist plot generally deviates from the semicircle,
appearing as an arc above the real axis, which is called the capacitive reactance arc. This
phenomenon is known as the “dispersion effect”, reflecting that the electric double layer at
the electrode interface deviates from the ideal capacitance [45]. As a result, in order to better
fit the irregular semicircle, the constant phase element (CPE) is used instead of the capacitor
in the equivalent circuit. As discussed above, the impedance value reflects the difficulty
of lithium-ion transfer, and then directly affects the rate performance. Additionally, the
impedance difference between TRI-SPE and RAN-SPE-based half-cells can be attributed to
the different interfacial contacts between the electrode and the electrolyte. In the rheological
property test, the mechanical response of TRI-SPE to the external shear force is more similar
to liquid, while that of RAN-SPE is closer to solid. Therefore, the interfacial contact between
the electrode and the electrolyte is more intimate in a TRI-SPE-based half-cell than that of
RAN-SPE, presenting a lower impedance.
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Figure 8. Nyquist plots of LiFePO4//SPE//Li half-cells fabricated by different synthesized copoly-
mer electrolytes after rate performance tests and at discharge state (inset zoom-in the range of
50–550 Ω). The test temperature was 60 ◦C.

The cycle life of synthesized copolymer electrolytes was further tested, and the results
are shown in Figure 9. At a test rate of 0.2 C, the discharge specific capacity of the RAN-
based half-cell decreases from 145.6 to 127.7 mAh g−1 after 180 cycles, with a capacity
retention ratio of 87.7%. As for the TRI counterpart, the discharge specific capacity decreases
from 152.1 to 145.2 mAh g−1, with a capacity retention ratio of 95.5%. The Coulombic
efficiencies for both half-cells are higher than 99.5% among testing. The test rate was further
increased to 1 C to examine the cycle performance of TRI-SPE at a high rate, and the results
are shown in Figure 10a. The discharge specific capacity declined from 150.9 to 140.0 mAh
g−1 after 200 cycles. The average capacity decay ratio is 0.036% per cycle, which equals
to a capacity retention ratio of 92.8%, and the Coulombic efficiency is maintained above
99.5%. The charge and discharge voltage profiles of the first cycle, the 100th cycle and the
last cycle are shown in Figure 10b. During the cycle test, the discharge voltage platform
of the half-cell reduces continuously, and therefore the polarization voltage between the
charge and discharge voltage platforms increases from 0.29 V to 0.46 V. The AC impedance
spectrum were conducted at different cycles during the high-rate cycling test, as shown in
Figure 10c. As the number of cycles increases, the diameter of the semicircle representing
the total impedance of RSEI and Rct increases significantly. RSEI represents the resistance of
lithium-ion transfer through the solid electrolyte interface (SEI) between the electrode and
electrolyte, and Rct represents the charge transfer impedance at the junction of electrons and
lithium ions. The larger impedance increases the difficulty of lithium-ion diffusion from the
electrolyte to the electrode surface, and reduces the rate of electron binding, which impedes
the efficient electrochemical reaction and ultimately reduces the discharge specific capacity.
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Figure 9. Cycle performances and corresponding Coulombic efficiencies of LiFePO4//SPE//Li
half-cells fabricated by synthesized copolymer electrolytes. The test temperature was 60 ◦C.
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half-cell fabricated by TRI-SPE. (b) Charge and discharge voltage profiles at different cycles.
(c) Nyquist plots at different cycles and at discharge state (inset zoom-in the range of 0–700 Ω).

4. Conclusions

In this study, all-solid-state copolymer electrolytes were designed and synthesized
via RAFT solution polymerization to regulate the molecular structure. Compared with
the commercially common random molecular structure, the advantages of the triblock
molecular structure were demonstrated through ionic conductivity, mechanical support,
and LiFePO4 half-cell performance. Due to the independent ion-conducting block, the
segmental motion of triblock copolymer is stronger than its random counterpart, resulting
in rapid ionic conduction and better cell performance. At the same time, the mechanical
properties can be retained by chemical crosslinking reactions. Moreover, the cross-linking
points are concentrated at the two ends of the triblock copolymers, leading to a liquid-like
mechanical response while maintaining the integrity of the crosslinking network, and thus
presenting more intimate contact between the electrode and the electrolyte. The discharge
specific capacity of the LiFePO4 half-cell fabricated by the triblock copolymer electrolyte is
higher than 150 mAh g−1 and shows almost no attenuation until the test rate reaches 2 C.
The long-term cycle test also presents a discharge specific capacity of 140.0 mAh g−1 with
high Coulombic efficiency after 200 cycles at a test rate of 1 C. The superior performance of
the synthesized triblock copolymer electrolyte proves the advantages of molecular structure
regulation on ionic conduction and mechanical support, and may provide new insights for
the future design of solid polymer electrolytes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries9090465/s1, Figure S1: 1H-NMR spectrum and molecular
structural formula (inset) of (a) poly (ethylene glycol) methyl ether acrylate (PEGMA) and (b) 3-
(trimethoxysilyl) propyl acrylate (TMSiPA); Figure S2: 1H-NMR spectra of (a) poly (PEGMA-co-
TMSiPA) random copolymer, (b) poly TMSiPA, (c) poly (TMSiPA-b-PEGMA), and (d) poly [TMSiPA-
b-PEGMA-b-(TMSiPA-co-PEGMA)]; Figure S3: Linear viscoelastic region scanning of synthesized
copolymer electrolyte; Figure S4: The DSC curve of PEGMA homopolymer; Figure S5: The linear
fitting curves of ln σ and 1000/T; Figure S6: (a) Time dependence response of DC polarization
(10 mV) for Li//RAN-SPE//Li symmetric cell at 60 ◦C. (b) Impedance spectra of Li//RAN-SPE//Li
symmetric cell before and after DC polarization; Figure S7: (a) Time dependence response of dc
polarization (10 mV) for Li//TRI-SPE//Li symmetric cell at 60 ◦C. (b) Impedance spectra of Li//TRI-
SPE//Li symmetric cell before and after DC polarization; Figure S8: (a) Equivalent circuit used in
this study and (b, c) data fitting results for Figure 8.
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