

Phytoremediation of soil contaminated with
lithium ion battery active materials – A proof of concept
study
Jonas Henschel ^a , Maximilian Mense ^a , Patrick Harte ^a , Marcel Diehl ^a , Julius Otto Buchmann ^a , Fabian Kux ^a , Lukas Schlatt ^b , Uwe Karst ^b , Andreas Hensel ^c , Martin Winter ^{a,d} and Sascha Nowak ^{a*}
^a University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany
^b University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
^c University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Corrensstraße 48, 48149 Münster, Germany
^d Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstraße 46, 48149 Münster, Germany
Data provided in this supporting information describes detailed instrumental parameters for inductively coupled plasma-optical emission spectroscopy (ICP-OES) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS, see Tables S1 and S2). Applied chemicals and materials are described in section S1.2. Section 2 shows photos, microscopic, LA-ICP-MS and μ XRF images of <i>alyssum murale</i> at different stages of the study (Figures S1-S5).

22 *Corresponding author: e-mail address: sascha.nowak@uni-muenster.de

23 S1 Experimental

24 S1.1 Detailed instrumental parameters

Table S1: ICP-OES measurement conditions for sample introduction and measured elements. The
 emission lines used for the quantification of the respective element are highlighted in italic. Limit of
 detection (LOD) and limit of quantification (LOQ) for ICP-OES are shown.

DE power / W	1400
RF power / W	1400
Total argon flow rate / L min ⁻¹	13.65
Sample carrier gas flow rate / L min ⁻¹	0.85
Auxiliary plasma gas flow rate / L min ⁻¹	0.80
Plasma gas flow rate / L min ⁻¹	12.0
Wavelength Li / nm	670.780
Ni / nm	221.648, <i>231.604,</i> 232.003
Co / nm	<i>228.616,</i> 230.786, 238.892
Mn / nm	<i>257.611,</i> 259.373, 260.569
LOD, LOQ Li / µg L ⁻¹	0.3, 1.0
Ni / µg L ⁻¹	0.2, 0.7
Co / µg L ⁻¹	0.4, 1.3
Mn / μg L ⁻¹	0.1, 0.3

28 LOD, limit of detection; LOQ, limit of quantification

29 Table S2: LA-ICP-MS parameters for elemental imaging of *alyssum murale* leaves.

LA (LSX-213, Teledyne CETAC)		ICP-MS (7700x-Series, Agilent)	
Spot size / µm	25	RF power / W	1550
Source pulse energy / %	100	Sampling depth / mm	6.0
Line spacing / µm	0	Total argon flow rate / L min ⁻¹	15.00
Shot repetition rate / Hz	20	Additional carrier gas flow rate / L min ⁻¹	0.95
Scan rate / µm s ⁻¹	25	Auxiliary plasma gas flow rate / L min ⁻¹	0.90
Gas flow (He) / mL min ⁻¹	900	Integration time per mass / ms	50

30 LA, Laser ablation; ICP-MS, inductively coupled plasma-mass spectrometry; RF, radio frequency

31 S1.2 Chemicals and materials

32 NiSO₄x6 H₂O hexahydrate (98 %, Alfa Aesar, Thermo Fisher Scentific, Waltham, MA, USA), CoSO₄ x7 H₂O (99+ %, Acros Organics, Thermo Fisher Scientific), MnSO₄xH₂O (99+ %, 33 34 Acros Organics, Thermo Fisher Scientific) and distilled water were used for the contamination study with irrigation water. ICP-OES external calibration was performed with 35 36 ICP standards (Ni(NO₃)₂, Co(NO₃)₂, Mn(NO₃)₂ and LiNO₃ in 2.3 % HNO₃, respectively 37 (1000 mg L⁻¹, Merck, Darmstadt, Germany). Dilution of samples and calibration standards were conducted with 2 % HNO₃ (65-69 %, Suprapur®, Merck) and deionized water (18.2 MΩ 38 39 cm⁻¹, TOC 2 mg L⁻¹, Millipore, Merck). LiNi_{0.33}Co_{0.33}Mn_{0.33}O₂ particles (Custom Cells GmbH, 40 Itzehoe, Germany) were used for the direct soil contamination. Glacial acetic acid (VWR 41 International GmbH, Darmstadt, Germany) was used for acidification of aqueous solutions 42 for pH dependent dissolution experiments and helium (6.0, Westfalen AG, Münster, 43 Germany) was applied for LA-ICP-MS measurements.

44 S2 Hyperaccumulation of Ni, Co and Mn in *alyssum murale*

45 46 47

Figure 1. Reduced plant growth of *alyssum murale* with increased Ni concentration (from left to right: level 10, 50 and 250) at end the of the accumulation phase (day 46). Crystallization effects of Ni(NO₃)₂

48 from the irrigation water at the soil surface and the dieback of plants were observed for level 25049 (right).

50 51

52

Figure 2. Microscopic image of the leaf surface showing red dyed trichomes which indicates an exocellular deposition of Co-rich minerals.

Figure S3: µXRF overlay of the Ca signal (white) with the respective transition metals (Ni=yellow, Co=blue and Mn=red). Ca signals depict the trichome structures on the surface of the leaf and the occasional co-localization of Co with trichomes. Samples were measured five times and averaged. A spot size of 29 µm, a spot distance of 20 µm and a dwell time of 10 ms were used.

59 60

Figure S4: Microscopic (left) and μXRF (right) image of two *alyssum murale* leaves after 46 days of
Ni (yellow), Co (blue) and Mn (red) contamination and accumulation. The left leaf was collected
from a plant at the lowest contamination (level 1), the right leaf from contamination level 2. Samples
were measured in three repetitions with a spot size of 29 μm, a spot distance of 20 μm and a dwell
time of 26 ms.

Figure 5. LA-ICP-MS image showing Li and transition metal distribution in an *alyssum murale* leaf with parched areas after contamination with LIB electrode material. Reduced Li signals in parched areas indicate a dissolved state in the cytosol.