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Abstract: Recycled concrete aggregate (RCA) collected from the demolition of old reinforced concrete
structures can be reused to prepare structural and non-structural concrete, thereby protecting the
environment by preserving natural resources. This study explores RCA’s use, collected from the
crushed concrete of different building projects in Riyadh, to manufacture fresh self-compacting
concrete (SCC) and investigate its properties in the fresh and hardened state. Four SCC mixes were
prepared by replacing natural aggregate (NA) with RCA at 0%, 25%, 50%, and 75% replacement
levels. The water-cement (w/c) ratio was maintained constant at 0.38 for all the mixes. Slump Flow,
J-ring, and V-funnel tests were performed on the SCC mixes in the fresh state, and the compressive
strength of hardened concrete was determined after seven, 14, and 28 days. Water absorption and
split tensile tests were also carried out for all the mixes. The findings revealed that it is possible to
reach compressive strengths higher than 40 MPa at 28 days for RCA replacement level of 75% by
using a superplasticizer and low w/c ratio. The decrease in compressive strength concerning the
SCC-NA mix was 25% for 75% replacement level. The highest split tensile strength at 28 days was
around 3.3 MPa for a 50% replacement level. The lowest water absorption was 3.2% for SCC-NA,
which was gradually increased and was highest at 5.6% for 75% replacement level.

Keywords: recycling; self-compacting concrete (SCC); high-performance concrete (HPC); recycled
concrete aggregate (RCA); natural aggregate (NA)

1. Introduction

Recently, the main objectives of most environmental policies regarding waste are
to prevent waste and promote reuse, recycling, and recovery to decrease the negative
environmental impact. However, when undertaking this issue, it is essential to consider
that a key barrier for developing recyclable products is the lack of demand and clients’
readiness to pay more for these kinds of products, both in business to business and
by consumers. Engineers have a significant role in environmentally friendly decision-
making processes, as they should consider the lifelong influence and the impact on the
environment [1]. Despite the mentioned barrier, RCA’s use can significantly decrease
concrete cost and produce an appropriate mix (located in the cost-efficient zone). As the
use of a high volume of RCA decreases the mechanical characteristics of concrete, those
mixes are still considered suitable when superplasticizers are used [2], and this is the case
of the produced concrete with a compressive strength of around 40 MPa, which is the range
for mixes used in this research.

A further dimension of the environmental requirements and customer satisfaction
deals with the green quality function deployment-II (GQFD-II), a recent methodology to
improve and develop products, and was successfully used by many companies. GQFD-II
integrated life cycle assessment (LCA) and life cycle costing (LCC) into QFD matrices and
organized customer, environmental, and cost requirements through the complete product
development process. This method integrates QFD (quality), LCA (environment), and LCC
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(cost) into one effective tool, which could be used to evaluate the diverse product concepts
considering the quality, environment, and cost [3].

The previous recycling concepts, LCA and LCC, are followed in this research to be
applied to the recycled concrete aggregate (RCA) and compare it with natural aggregate
(NA). The deposition of construction and demolition waste (CDW) in landfills and the
conforming costs are increasing. Consequently, concrete recycling and reuse as aggregates is
very advantageous and allows the volume reduction of CDW, thus reducing environmental
impacts formed by the construction sector [4]. Additionally, and based on the International
Organization for Standardization (ISO) definition of LCA phases, a study of life cycle
inventory (LCI) assessment in Serbia concluded specific transport distances and types of
impacts on total environmental impacts. The effects investigated were global warming,
energy use, acidification, photochemical oxidant creation, and eutrophication [5]. The study
compared two scenarios: for the first one (RCA transport distances are smaller than those
of NA), the RCA and NA production environmental impact in terms of studied categories
was approximately the same, and the benefit from recycling in terms of waste and natural
mineral resources depletion minimizing was clearly gained. For the second one (RCA
transport distances are equal to those of NA), RCA’s total impacts were more significant,
increasing, and ranging from 11.3% to 36.6%, depending on the impact category. Due to
the study assumptions, the RCA case’s energy savings were possible only for specific ratios
of NA to RCA transport distances. The results accordingly stressed the necessity of getting
the RCA from very close distances than NA to achieve the targeted environmental gain.
The existing crusher plants are located between 100 to 200 km from Riyadh city, so the
crusher for RCA situated in the city vicinity can make such concretes cost-efficient and
environmentally friendly.

One of the utmost substantial advances in concrete technology is self-compacting
concrete (SCC), classified as high-performance concrete. This type of concrete is produced
by including add-on materials like slag cement, viscosity modifying agents, and fly ash.
The SCC is requested to possess three main elementary characteristics: high resistance to
segregation, restrained flowability, and high deformability [6,7]. The RCA derived from
concrete waste has recently been used to supplement (NA) to manufacture fresh concrete.
The shortage of NA and the rising landfill charges have taken into account RCA usage
in concrete. Given RCA’s underlying consistency, some researchers have shown that it
may be used in the design, primarily for lower-level or non-structural applications, as an
alternative to NA [8]. For the current concrete use, RCA was found to be theoretically
acceptable. For barriers, shoulders, pavements, roads, embankments, bridge frames, and
curbs, properly treated RCA may be included in the new concrete. It may also be found in
bituminous concrete, gutters, surface bases for soil-cement, and structural grade concrete.
However, the RCA obtained from demolished concrete should be seriously evaluated to
pass the suitability requirements set out in the associated specifications for a particular
application [9,10].

Many researchers investigated RCA beams’ flexural and shear properties, RCA
columns’ compressive strength, and beam-column joints’ seismic performance [11–13]. The
effect of concrete permeability on RCA’s durability in the marine environment and such
aggressive environments was investigated. In these conditions, the RCA’s reliability was
adversely impacted by concrete permeability in the event of its decrease. By utilizing a
lower water-cement (w/c) ratio, the effect of RCA’s aggressive atmosphere may be mini-
mized [14]. To guarantee fresh recycled concrete’s workability, it was suggested to retain a
steady amount of efficient water over the initial moisture of precise control aggregates [15].

Using RCA replacement with higher percentages in concrete (reaching 100%) and its
impact on various concrete properties was considered. Concrete mixes reaching 100% RCA
replacement displayed up to 37% reduction in compressive strength than natural aggregate
concrete (NAC) [16]. With quality-assured conditions, concrete with a high replacement
percentage of RCA from real concrete waste and laboratory waste can achieve similar
splitting tensile strength, compressive strength, abrasion resistance, modulus of elasticity,
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and water absorption as NAC [17,18]. Considering the bond between deformed bars and
concrete, it was found that concrete with NA and concrete with different replacement
levels of RCA have similar bond behavior [19]. Concrete exposure to high temperature
(around 600 ◦C) resulted in a gradual increase in specimen cracks and increased weight loss.
However, these problems can be overcome by increasing the fly ash content, which reduces
the loss in compressive strength and enhances RCA’s ductility [20]. A similar reduction in
RAC strength was experienced under intermittent and sustainable loadings [21]. The parent
concrete has a considerable effect on the quality of RCA and its mechanical properties.
RCA obtained from low-strength, and lightweight concrete has significantly lower ultimate
bond strength and compressive strength than the one gained from a high-strength parent
concrete [22].

SCC properties were studied using different replacement levels of 10%, 20%, 30%,
and 40% of RCA. Flexural strength and SCC compressive strength decreased with the rise
in RCA’s substitution ratio [23]. RCA’s mechanical properties can be improved by the
appropriate use of nanomaterials, like Nanosilica and Nano-CaCO3. In some cases, higher
compressive strength was obtained [24]. Combining slag, silica fume, and fly ash can gain
more compressive strength to compensate for its reduction due to RCA in SCC. Using
these materials in SCC with high replacement levels of RCA helps maintain resistance to
segregation of this type of concrete and high filling and passing ability while reaching a
comparable compressive strength that allows SCC’s structural use [25]. Relating to the fine
aggregate in the RCA mixture, it was observed that compressive strength of 20 MPa could
be obtained from SCC when using the manufactured sand and RCA as a 100% replacement
of NA, which is almost 50% of original strength when using NA. The replacement of NA
with manufactured sand and RCA resulted in a reduction in split tensile strength and
SCC’s flexural strength [26]. Fly ash can be used with metakaolin and expanded glass
aggregate for other applications that require good mechanical properties as well as thermal
conductivities [27]. The use of a superplasticizer in SCC helps lower the water-cement
ratio, which results in higher compressive strengths.

Based on this literature review, it is observed that RCA is already a topic of research
interest, and this study aims to develop SCC mixes using RCA obtained from locally de-
molished structures. Managing demolition waste in Riyadh has become a critical problem
in current years and is likely to escalate in the future. RCA’s use at different replacement
levels with a constant fly ash content is considered in this study. Therefore, this study
attempts to utilize local construction demolition waste produced in Riyadh to produce
high-strength concrete that can be used to construct new structures. In this research, SCC
with 100% NA and three replacement levels (25%, 50%, and 75%) of RCA were produced.
The fresh and hardened properties of these mixes were studied. J-ring, v-funnel, and slump
flow tests were performed, and a compressive strength test after seven, 14, and 28 days
were conducted. Additionally, water absorption and split tensile tests were performed on
samples of all the mixes.

2. Methods

This study was conducted in different phases. In phase one, the normal SCC mix
was prepared using Ordinary Portland Cement (OPC), fine aggregate, NA, fly ash, and
superplasticizer. Several trials were conducted to meet the performance requirements of
SCC in the fresh state. Slump flow, V-funnel, and J-ring tests were conducted to analyze
the fresh properties of SCC. In the subsequent phases, the NA was replaced by 25% RCA,
followed by a 50% and 75% replacement.

2.1. Preparation of Raw Materials

NA and RCA of sizes 15, 10, and 5 mm were used. RCA was obtained from the
demolished concrete waste from a construction site in Riyadh. The demolished concrete
was collected from the project and dumped in a different location. It was crushed manually
using a steel hammer to obtain smaller size particles. It took more than a week to crush
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the concrete and extract the RCA’s required amount and size. The RCA obtained was
purely from concrete waste (concrete slab, columns, and beams), and it was ensured that
it was free from other construction waste like blocks, bricks, and tiles. In the last phase,
the crushed old concrete was sieved to segregate the required sizes. A sample is shown in
Figure 1. RCA is inherently weaker than NA due to the presence of the old mortar layer on
its surface. RCA has higher absorption because the mortar layer is porous and soft. The LA
abrasion value of RCA is also higher than NA, while the specific gravity is lower. RCA’s
quality can be improved by minimizing the amount of attached old mortar on the surface
of RCA [28].
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In Riyadh, OPC, fine aggregate, NA, and Type C Indian fly ash were obtained from
local construction material suppliers. Class C fly ash has high cementing abilities, and these
are formed from the burning of sub-bituminous coal. This type of fly ash does not need
an activator (based on ASTM C 618 standards [29]) to form cementitious compounds. The
specific properties of the Type C fly ash can be obtained from Mahakavi and Chithra [24].

Superplasticizer was used to get the desired properties of flowability and cohesion in
the fresh state. It is a third-generation superplasticizer used to produce high-performance
concrete. It allows the use of low water/binder ratios along with a high degree of com-
paction. It is an aqueous solution of modified polycarboxylates and co-polymers and is
light brown. It may be used for all Portland cement forms, such as ground granulated
blast slag, pulverized fly ash and micro-silica, and pozzolanic materials. The suggested
dose is inside the binder’s weight range of 0.8–2.2%. Exact dosages, though, can only be
calculated by conducting trial mixes to fulfill the precise criteria. It needs to be applied to
the gauging water or pumped into the concrete mixer simultaneously. The dry mix cannot
be applied to it. To give the required effects, the concrete should be mixed for at least 60 s
with viscocrete [30]. For the preparation of all the concrete mixes used in this study, potable
tap water was used.

2.2. Concrete Mix Proportions

The concrete proportions were calculated carefully following the European Federation
of National Associations Representing for Concrete (EFNARC) for SCC [31]. Additionally,
a detailed literature review [19,23,24] was also conducted to finalize the mixes’ proportions.
Table 1 shows the SCC mix proportions.
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Table 1. SCC Mix Proportions.

Ingredient
(kg/m3) SCC-NA SCC-RCA25% SCC-RCA50% SCC-RCA75%

Cement 425 425 425 425

Fly Ash 75 75 75 75

Water 191.50 191.50 191.50 191.50

w/c ratio 0.38 0.38 0.38 0.38

15 mm 300 NA 225 NA + 75 RCA 150 NA + 150 RCA 75 NCA + 225 RCA

10 mm 350 NA 262.50 NA + 87.50 RCA 175 NA + 175 RCA 87.50 NCA + 262.50 RCA

5 mm 250 NA 187.50 NA + 62.50 RCA 125 NA + 125 RCA 62.50 NCA + 187.50 RCA

Sand 840 840 840 840

Superplasticizer
(L/m3) 4 L 5 L 1.75 L 2 L

The batching of the concrete mix materials was done carefully using automated
controlled weighing machines in the lab, and the weighted materials were stored in
different separate buckets. Water absorption tests were conducted for NA and RCA. The
water absorption was found to be 5.5%, 1%, and 0.65% for 5, 10, and 15 mm size NA,
respectively, and 3.4%, 3%, and 5.4% for 5, 10, and 15 mm size RCA, respectively. Based on
the water absorption results, additional water was added to the concrete mix design.

For preparing concrete mixes, a tilting drum concrete mixer has been used. The
mixer’s bottom was first lubricated with water to avoid sticking the material in the drum.
Raw materials were then added in small quantities, along with water, while the mixer
was rotated at a tilted position. Superplasticizer was dosed in small amounts to reach the
required consistency. The mixer was stopped intermittently to check the concrete mix,
and if found satisfactory, mixing was stopped to conduct tests on the mixes. During the
initial trials, it was observed that even a slight overdose of the superplasticizer resulted
in bleeding and segregation in the SCC mix. Unstable mixes were discarded, and retrials
were done until all the SCC performance requirements were met as per EFNARC [31].

2.3. Testing of Fresh Properties

The slump flow and T50 measurements were used to estimate all concrete mixtures’
deformability intensity and flowability. The slump flow research was carried out, as per
the American Society for Measuring Materials (ASTM) C 1611 [32]. The passing capability
of concrete through rebar was tested by measuring the slump-flow and T50 values using
the J-Ring test following ASTM C 1621 [32]. The concrete mix’s ability to resist segregation
was determined by visually analyzing the concrete mix during the slump flow test and
assigning a Visual Stability Index (VSI) value to each concrete mixture. Figure 2 displays
the various studies performed on the most current SCC.

In the first stage, the flowability test was performed using the slump cone and steel
base plate with a circle marked at the distance of 500 mm. The flowability time was
recorded, and as per EFNARC standards, the SCC should touch the marked line in (2–5 s),
and the slump flow diameter should range from 650 to 800 mm. During trial experiments,
several attempts were made to satisfy the acceptance criteria of SCC. During the study’s
final experiments, the concrete total spread area and timing were recorded (Table 2). After
the flowability test, a V-funnel test was performed on SCC, and as per EFNARC standards,
the concrete must flow from the funnel in 6 to 12 s. The complete readings of the V-Funnel
test are shown in (Table 2). In the last stage of the fresh test on SCC, the J-ring test was
performed. As per the EFNARC standard, the concrete should pass through the rings at
around 0 to 10 s. The J-ring tests’ complete readings are shown in (Table 2).
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Table 2. Test Results.

Mix Slump Flow
(cm)

T-50
(s)

V-Funnel
(s)

J-ring
(cm)

Visual Stability
Index (VSI)

SCC-NCA 72 2.64 11.80 64 0 (highly stable)

SCC-RCA25% 78 2.74 8.38 72 1 (stable)

SCC-RCA50% 75 3.50 8.69 68 1 (stable)

SCC-RCA75% 66 2 6.58 56 0 (stable)

After these three tests, the SCC was cast in 12-inch standard cylinders, and twelve
cylinders were cast for each trial mix in this study. The cylinders were demolded the next
day, and casting tags were marked on each cylinder. Tag information includes the date
of the casting, mix number, and the days for curing. In the last phase, all cylinders were
placed in a curing pond at room temperature in the lab, as shown in Figure 3.
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Potable water was used for the concrete cylinders curing in the laboratory. The curing
water temperature was room temperature in the laboratory between 25–30 ◦C.

2.4. Testing of Hardened Properties

Nine 150 × 300 mm concrete cylinders were prepared and cured from each concrete
mixture in the curing room at room temperature and at relative humidity greater than 95%
before the day of testing for compressive strength testing of concrete mixtures on days 7,
14, and 28. The cylinders were inspected following ASTM C39 [32]. Two 150 × 300 mm
cylinders prepared from each concrete mixture were used to perform the 28-day split
tensile strength test. The splitting tensile strength of all concrete mixtures was performed
by applying a diametric compressive force to a cylindrical concrete specimen placed with
its horizontal axis between the plates of a measurement system in compliance with ASTM
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C 496-96 [32], (C496-96). One 150 × 300 mm cylinder prepared from each concrete mixture
was used to test water absorption.

3. Results

Table 2 shows the complete results of a various test conducted on fresh concrete,
which includes slump flow, T-50 test, V-funnel, and J-ring, and it also consists of the visual
stability index results:

All the mixes satisfied the criteria to qualify as SCC. In the SCC-NCA case, the
superplasticizer was dosed at 0.8% of cement and fly ash weight, whereas SCC-RCA25%
was dosed at 1.0%. A sudden drop in the superplasticizer dosage (0.35%) was observed
in the case of SCC-RCA50%. The curing pond temperature was room temperature, and
ordinary drinkable water was used for curing, as shown in Figure 3. In the subsequent
phases, the cylinders were tested in a comprehensive mechanical tester to observe concrete’s
crushing strength, as shown in Figure 4.
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The complete results of compressive strength and tensile strength tests and the water
absorption test are shown in Table 3.
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Table 3. Compressive strength and water absorption results.

Compressive Strength (MPa) Split Tensile Strength (28 Days)
(MPa)

Water Absorption (%)
Mix 7 Day 14 Day 28 Day

SCC-NCA 45.20 50.70 55.90 3.10 3.27
SCC-RCA25% 33.90 40.50 44.30 1.90 4.20
SCC-RCA50% 33.90 34.10 42.40 3.30 5.50
SCC-RCA75% 28.30 31.80 41.80 3 5.62

4. Discussions

Workability tests on fresh concrete mixes compressive strength at seven, 14, and
28 days and split tensile strength results are discussed in this section. The slump flow, T-50
time, V-funnel, J-ring, and VSI results are summarized in Table 2, and Figure 6 shows the
slump flow for all the mixes used in this study.
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of superplasticizer. Therefore, it is essential to use the superplasticizer very carefully, and
the dosage should be increased in tiny amounts to avoid high flowability. Figure 7 shows
the T50 time and V-funnel time.

All the mixes satisfied the requirement of T-50 time (2–5 s) and V-funnel passing time
(6–12 s), indicating good flowing and filling ability. Results from the J-ring test indicate
good passing ability. The SCC mix must fulfill the fresh state criteria because it is necessary
to maintain the right flowability, filling capability, and passing ability. If the SCC mix is
too viscous, it can create a problem in pumping, or if it is less viscous, it might lead to
segregation of the coarse aggregate and/or bleeding. This can be controlled by carefully
administering the superplasticizer to the mix. Figure 8 compares the seven-, 14- and
28-days compressive strength for all the mixes designed for this study.
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Figure 8. Compressive strength at different curing cycles.

The highest 28-day compressive strength was reported for the control mix SCC-NCA,
which was 55.9 MPa. SCC-NCA and SCC-RCA25% exhibited normal strength gain, while
SCC-RCA50% and SCC-RCA75% did not show considerable strength gain from seven
to 14 days but had a jump in strength from 14 to 28 days. There was a reduction of
21% in the 28-day compressive strength compared to SCC-NCA at the replacement ratio
of 25%, a 24.1% reduction at the replacement ratio of 50%, and a 25% reduction at the
replacement level of 75%. Similar studies [16,33] have reported a reduction of 37% and 43%
in compressive strength at 28 days for 100% replacement level, which is relatively higher
than the results achieved in this study. Other studies [34,35] have reported a decrease of
25% at a 100% replacement level, which is lower than the present study. Hence, these
research results are pretty satisfactory compared with the previous research studies of
similar nature and scenarios.

SCC-RCA75% achieved almost the same 28-day strength as SCC-RCA50%. It was ob-
served that there was a decrease in the compressive strength with an increase in RCA content.
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The possible error assessment is also done using the complete samples and mixes’
standard deviation test, as shown in Table 4.

Table 4. Compressive strength deviation assessment.

Mix
Compressive Strength

7 Day 14 Day 28 Day

SCC-NCA
34.00 51.60 59.00
44.00 39.00 52.74
46.00 49.80 43.74

Standard Deviation 5.25 5.56 6.26

SCC-RCA25%
34.10 43.50 44.30
24.50 33.90 42.50
33.80 38.20 46.10

Standard Deviation 4.46 3.93 1.47

SCC-RCA50%
38.70 32.00 40.60
34.00 33.60 39.60
34.00 36.10 42.40

Standard Deviation 2.22 1.69 1.16

SCC-RCA75%
26.50 33.60 39.20
27.00 33.80 42.50
31.70 28.00 43.90

Standard Deviation 2.34 2.69 1.97

It is observed that the maximum standard deviation reported was for SCC-NCA be-
cause of higher values of compressive strength (>35 MPa). Overall, the standard deviation
values are in acceptable limits as per other studies [36]. Since the strength of the designed
concrete in this study is greater than 40 MPa, it can satisfactorily be used as structural
concrete [37].

A Split Tensile Strength test was conducted after 28 days of curing. Results from the
split tensile strength are shown in Figure 9.
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The values for split tensile strength were found to be in the range of 1.9–3.3 MPa,
with SCC-RCA25% being the lowest at 1.9 MPa. This decrease in split tensile strength
can be attributed to higher superplasticizer dosage for SCC-RCA25%, which resulted in
a highly flowable mix. SCC-NCA, SCC-RCA50%, and SCC-RCA75% were 3.1, 3.3, and
3 MPa, respectively. The split tensile strength results are slightly on the lower side than
concrete mixes with similar compressive strength.

5. Conclusions

The development of high-strength SCC mixes using RCA is genuinely challenging
but needed. In this study, RCA obtained from the demolishing of old structures in Riyadh
was used with replacement levels of 0%, 25%, 50%, and 75% forming four different SCC
mixes. Fly ash and a superplasticizer were used to get the desired properties of flowability
and cohesion in all mixes’ fresh states. The water/cement ratio was kept constant at 0.38.
The samples of each mix were tested to check the properties of fresh concrete using the
slump flow test, J-ring, and V-funnel. After appropriate curing in a water tank at room
temperature, cylinders of different mixes were tested to get the compressive strength, split
tensile strength, and water absorption after seven, 14, and 28 days. According to the study
results, the following conclusions are obtained:

1. Using RCA results in a reduction of the 7-, 14-, and 28-day compressive strength:
As the replacement ratio is increased, more reduction in compressive strength is
observed. The reduction of 28-day compressive strength was 21%, 24%, and 25%, for
25%, 50%, and 75% replacement levels, respectively. The minimum 28-day strength
obtained was 41.8 MPa, for 75% RCA replacement, which is considered acceptable for
structural applications.

2. Water absorption of the SCC is increased with the increase of the replacement level of
RCA. The absorption ratio was increased by 28%, 68%, and 72%, for 25%, 50%, and
75% replacement levels, respectively.

3. There is no clear trend in the effect of the RCA replacement ratio on the split ten-
sile strength.

RCA can enhance the environment, preserve the natural resources, and produce
concrete with a reasonable compressive strength that can make the concrete eligible for
use in structural applications. However, the cost reduction that resulted in using the RCA
depends on crushing concrete plants within a reasonable distance to the site, which may
encourage and promote more RCA usage that can improve the environment.
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