
����������
�������

Citation: Kulikova, Y.; Sliusar, N.;

Korotaev, V.; Babich, O.; Larina, V.;

Ivanova, S. Recovery and Use of

Recycled Carbon Fibers from

Composites Based on

Phenol-Formaldehyde Resins.

Recycling 2022, 7, 22. https://

doi.org/10.3390/recycling7020022

Academic Editors: Michele John

and Wan-Ting (Grace) Chen

Received: 1 March 2022

Accepted: 30 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

recycling

Article

Recovery and Use of Recycled Carbon Fibers from Composites
Based on Phenol-Formaldehyde Resins
Yuliya Kulikova 1,* , Natalia Sliusar 2, Vladimir Korotaev 2, Olga Babich 1 , Viktoria Larina 1

and Svetlana Ivanova 3,4

1 Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia;
olich.43@mail.ru (O.B.); surinac@mail.ru (V.L.)

2 Environmental Protection Department, Perm National Research Polytechnic University, 614000 Perm, Russia;
nnslyusar@gmail.com (N.S.); korotaev@pstu.ru (V.K.)

3 Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6,
650043 Kemerovo, Russia; pavvm2000@mail.ru

4 Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6,
650043 Kemerovo, Russia

* Correspondence: kulikova.pnipu@gmail.com; Tel.: +79-127-849-858

Abstract: The technical feasibility of the recycling of specific polymeric composite materials was
evaluated. Two types of carbon composites, both with phenol-formaldehyde resin but with different
reinforcement, were studied. It was discovered that the solvolysis with the oxidizing agents used in
an acidic environment allowed for the achievement of a high-efficiency fiber extraction. The extracted
secondary carbon fibers had a high degree of purity (95–99.5% of resin was removed). Fiber thickness
slightly decreased during the process (on average, by 20%). The use of chopped secondary fibers
(3–9 mm fiber length) for concrete reinforcement produced a positive effect. Hence, the compressive
and bending strength of the concrete blocks were accordingly 1.5% and 16% higher in comparison
with the control sample. The use of secondary carbon fabric for the production of composite materials
a good result: the effective tensile strength of CFRP samples reinforced with recovered fabric is only
lower by 4.5% in comparison with virgin fabric.

Keywords: polymeric composite materials; phenol-formaldehyde resins; solvolysis; pyrolysis;
recycling; carbon fibers; fine-grained concrete

1. Introduction

The number of products that include composite materials is constantly increasing. A
significant growth in the manufacture of products made of reinforced polymers can be
observed in the aerospace, automotive, and construction industries. According to some
estimates, the demand for polymer composite materials will reach 150 thousand tons by
2020, which is 52% more than in 2014 [1,2]. Considering the life cycle of products, the
volume of to-be-disposed reinforced composite materials could reach 1–3% of their annual
production [3–6].

The vast majority of polymer composite materials consist of carbon fiber and ther-
mosetting resins (usually epoxy and formaldehyde-based), which provide chemical, ther-
mal, and mechanical stability to the material. CFRP stability from a chemical point of view
is explained by the irreversible cross-linking process that occurs during curing and which
in turn poses the complexity of their processing [7].

As the use of composite materials is expected to increase [8], it is important to find
a solution to cope with the growing volume of CFRP waste. Currently, most polymer
composite materials based on phenol-formaldehyde resins are sent to landfills [9]. However,
in the future, with tightening landfill regulations and end-of-life directives in European
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countries [8], the lack of CFRP processing technologies can complicate the process of their
production and use.

There is practically no data on the development of CFRP recycling technologies
in Russia [1,10]. However, this issue is being quite actively addressed in the EU and
Japan. In these countries, the most popular CFRP recovery technologies are based on
physical (mechanical and radiation) and thermal destruction (combustion, gasification, and
pyrolysis). The mechanical method includes crushing and grinding, the main product of
which is a mixture of resin and fibers of different grinding sizes [11].

The advantage of the mechanical treatment is the simplicity of the equipment, its
versatility, and the absence of harmful emissions into the air. The technology also has a
number of disadvantages. It involves a high degree of damage and a small amount of
carbon fibers, which limits its application.

The general principle of radiation methods is based on the destruction of polymer
resin by high-energy radiation. The main drawbacks of this method are the excessive
radiation load for the environment and mankind as well as the possibility of recycling only
reinforced polymer thin-layer plates (less than several millimeters) [12].

Among the listed thermal methods, the most promising is supposed to be pyrolysis at
temperatures from 400 to 800 ◦C [10,12]. The group of thermal methods is characterized
by high-energy consumption, a high level of environmental impact, and the production of
low-quality carbon fiber [10,12]. Initially, pyrolysis was considered a viable technology, but
it later appeared to be ineffective due to the incomplete removal of pyrolytic carbon from
the surface of fibers, which leads to the reduction of their strength and the narrowed field
of their secondary use.

Recently, special attention has been paid to the development of CFRP chemical re-
covery methods. Solvolysis is a special case of exchanging decomposition reactions when
an appropriate solvent (supercritical water, alcohols) with alkali metal salts is used as a
medium to depolymerize resin in order to release fibers [10]. This approach, as a rule, re-
quires moderate temperatures (from room temperature to 400 ◦C), which makes it possible
to recycle monomers and high-quality fibers [3,10,13].

The advantages of chemical methods are low energy consumption, high effectiveness
in removing polymer resins (90–98%), and the preservation of reinforced fiber proper-
ties [10]. The level of solvolysis’ environmental impact (global warming potential, ozone
depletion potential, ecotoxicity, etc.) is lower in comparison to other CFRP recycling
technologies [1].

Solvolysis can be implemented by using a wide range of solvents, temperatures, pres-
sures, and catalysts. Its benefit, in comparison with pyrolysis, is that lower temperatures
are usually required to break down polymers. A review of scientific data revealed a wide
range of reagents used for the destruction of the polymer resin; most often, the process of
solvolysis is carried out using water (under subcritical conditions at a pressure of 20–50 bar
and a temperature of 300–650 ◦C) [7,8,14–17], alcohols (ethyl, methyl), phenols, and amines
(tetralin, ethanolamine, octylamine, indoline, dihydroanthracene) [3,18]. The possibility of
using strong acid solutions (nitric and sulfuric) [19] and oxidants [20] is of interest.

Oliveux et al. [21] studied the extraction of carbon fibers from a composite material
based on epoxy resin. In this study, secondary fiber was extracted by solvolysis at a
temperature of 320 ◦C and a pressure of 18 MPa; water and acetone at a 20:80 volume
ratio were used as solvents. Recycled fiber was used to produce CFRP with different types
of fiber distribution. The mechanical properties of the produced CFRP were found to be
comparable to those of virgin fiber materials.

There is a significant amount of research devoted to the successful experience of using
recycled carbon fiber for the reinforcement of composite materials [14,22–24]. However,
these papers describe the experience of using a secondary fiber extracted from materials
based on epoxy and not phenol-formaldehyde resins.

Oudheusden et al. [7] showed that recycled fibers can be used to reinforce new com-
posite materials and concretes [18]. Fiber-reinforced concrete with dispersed reinforcement
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is characterized by improved mechanical characteristics (40–60% increase in compressive
strength, 100–200% bending, 500% impact strength increase), increased adhesion of con-
crete to reinforcement, improved ductility, reduced early shrinkage, lower mass, and frost
resistance [25].

The aim of this work was to study the processing of polymer composite materials based
on phenol-formaldehyde resins by the solvolysis method and to find ways of using recycled
fibers to reinforce concrete and produce CFRP. The novelty of this work lies in the extraction
and use of carbon fibers from CFRP based on a phenol-formaldehyde resin, whereas most
existing research focuses on recovering fibers from epoxy resins [2,5,7–9,14,21–24].

2. Materials and Methods
2.1. Materials

All studies were carried out on CFRP samples with phenol-formaldehyde resin,
but reinforced with two different types of carbon fabrics: Ural-Tr knitted fabric (Svetl-
ogorskKhimvolokno, Svetlogorsk, Russia) and Porsher 2/2 6K-300 twill fabric (Porsher
Inc., Eclose Badinieres, France). The choice of the material was determined by their accessi-
bility, significant volumes of their production in Russia, and the lack of scientific data on
their recycling.

Ural-TR carbon fabric is produced through the heat treatment of viscose yarn at a
temperature of 1000–2200 ◦C. Porsher fabric is made from polyacrylonitrile fiber using the
process of multi-stage heat treatment at a temperature of 200–3000 ◦C. The main technical
characteristics of carbon fabric are presented in Table 1.

Table 1. The main technical characteristics of the carbon fabrics used.

Parameter Ural Fabric Porsher Fabric

Carbon content 90–99.9% 95–99.9%

Density 1.4 g/cm3 Surface density 300 g/m2

Heat resistance
Inert env. up to 3000 ◦C n/a
In oxidizing env. up to

400–450 ◦C n/a

Chemical resistance Resistance to acids, alkalis,
solvents at any temperature

Resistance to acids, alkalis,
solvents at any temperature

Mechanical properties Thread strength 1.2–1.5 GPa
Modulus of elasticity 60 GPa

Fiber tensile strength 4.3 ± 0.2
GPa Fiber tensile modulus

245 ± 6 GPa

Characteristics of
fabric weaving Knitted weaving

Twill weave type 2/2, fiber
orientation 0◦/90◦, filament
6 K (6000 fibers per filament)

In this work, we studied CFRP made with the use of the phenol-formaldehyde resin
SFZh-323 (Scientific and Production Company Astat, Dzerzhinsk, Russia) in a liquid alcohol
solution before curing. After preparation of the samples, the resin was in thermosetting
form (resol) [26].

2.2. Extraction of Fiber

The solvolysis method was chosen to extract the carbon fiber as it ensures the maxi-
mum preservation of a fiber structure, and it is more energy-efficient in comparison to the
thermal methods. A scientific data review revealed that there are two main approaches to
the implementation of the solvolysis process:

• Solvolysis with organic resin destruction by using strong oxidants in an aggressive
environment or critical/subcritical conditions (pressure of 100 bar, temperature above
300 ◦C) [18];

• Solvolysis using organic solvents, with the dissolution of resin components that
provide fiber extraction [27].
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A glass reactor (shown in Figure 1) with a stirrer and external heating was used for
solvolysis (Büchi AG, Uster, Switzerland). The temperature ranged from room temperature
to 220 ◦C, the duration of the process varied from 1 to 24 h, and the pressure used was from
atmospheric to 4 bar.
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Figure 1. Experiment scheme of carbon fiber extraction in the process of solvolysis.

Samples were cut with a hand saw before loading into the reactor:

• Samples with Ural fabric were cut into 40 × 20 × 20 mm rectangular blocks;
• Samples with Porsher fabric were cut into 3 × 60 × 60 mm square plates.

Stirring in the reactor was disabled during the process. Due to the specific technologi-
cal characteristics of the reactor, it was cooled by air after the process was completed.

The research was carried out in 2 stages. The optimal conditions of solvolysis were
examined at the first stage of the experiments. All the experiments of the first stage were
carried out on a composite material reinforced with Ural fabric.

The influence of carbon fabric weaving on the efficiency of phenol-formaldehyde resin
removal was checked at the second stage. The change in fiber thickness and the purity
of its surface (the degree of removal of the polymer resin) were assessed using electron
microscopy. For this, a scanning electron microscope Hitachi S-3400N (Hitachi, Japan)
was used.

2.3. The Use of Secondary Fiber for Reinforcing Concrete

In order to evaluate possible prospective directions for the use of secondary carbon
fiber, studies were carried out in two directions: reinforcement of concrete and polymer
composite materials [28].

The possibility of using secondary carbon fiber for the reinforcement of concrete was
evaluated through the production and testing of experimental beams. Portland cement
M-400 (LafargeHolcim Russia, Moscow, Russia) and river sand (grain size of 2.5–3 mm)
were used for the production of standard experimental beams. The cement:sand:water
components were mixed manually at a ratio of 1:3:0.4. The samples were hardened in a
steaming chamber for over 24 h. Two key parameters—flexural strength and compression—
were tested. During the production of the beams, the mobility of the concrete mix was
continuously monitored by a cone spread molded from the concrete mix; deviation from
the standard values was not observed (mixture formula correction was not required).

Fibers obtained during solvolysis were manually chopped to a predetermined size.
The size of added fiber varied from 3 to 9 mm, the fiber dose was 0.2% and 0.6% of
the cement mass. The size and amount of fiber were selected based on scientific data
analysis [29].

Determining the strength of the concrete was in accordance with Russian Standard
methodology (GOST 10180-2012) [30]. The main idea behind the method was to measure
the minimum forces that destroy specially made control concrete samples when they are
statically loaded (load increased constantly), and then to calculate the stress under these
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efforts. The “Universal tensile testing machine R-50” (GOST, Neftekamsk, Russia) was used
for testing (measurement range: −0–500 KN).

In order to assess the uniformity of carbon fiber distribution in concrete, scanning
electron microscope Hitachi S-3400N (Hitachi, Japan) was used.

2.4. Production of Composites Reinforced with Secondary Carbon Fiber

Composites were produced from primary and secondary Porsher fabric (twill 2/2
6K-1200–300) with epoxy resin. The samples were molded by vacuum. They underwent
tensile testing according to the ASTM D 3039 method [31] as it is the main parameter for
secondary rolled products that is subjected to changes during molding [32]. The samples
were tested in a Zwick Z100 test machine (Zwick Roell Group, Ulm, Germany) with a
maximum compressive force of 100 kn.

The main idea behind the method was to monotonically load thin flat rectangular
CFRP strips and to record the load. The ultimate strength of the material can be determined
from the maximum load carried before failure. Based on the results of coupon strain
monitoring, the stress–strain response of the material was determined, from which the
ultimate tensile strain, the tensile modulus of elasticity, Poisson’s ratio, and the transition
strain could be derived.

3. Results and Discussion
3.1. Fiber Extraction by Solvolysis

The results of the implementation of the solvolysis method for fiber extraction are
presented in Tables 2 and 3, and Figures 2–4.
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Table 2. Results of fiber extraction by solvolysis (Stage 1: Selection of optimal conditions of solvolysis).

Reagent Experem. Cod Boiling Time, min Temperature, Degrees C Pressure, Bar Results Change in Mass, %

Solvolysis using strong oxidants (all results were obtained in experiments using CFRP with the textile Ural-Tr)
H2SO4 (50%) A1 120 120–130 2 Almost absent −2 ± 0.5
HNO3 (50%) A2 60 90 2 None −0.3 ± 0.1

K2Cr2O7 (pure) A3 120 110 4 Negligible fiber release −6 ± 0.7
CrO3 + H2SO4 (50%) A4 480 120–130 4 Fibers are completely released −21 ± 2.6
CrO3 + HNO3 (50%) A5 480 90–95 4 Fibers are completely released −20 ± 1.3

HNO3 (50%) + H3PO4 (50%) + K2CrO4 A6 480 90–100 4 Fibers are completely released −22 ± 2.4
H2SO4 (30%) + H2O2 (30%) A7 60 110 Atm. Fibers are completely released −23 ± 1.1

Solvolysis using organic solvent (all results were obtained in experiments using CFRP with the textile Ural-Tr)
(C2H4)3N (pure) A8 120 90 Atm. None -
C2H5OH (92%) A9 120 80–85 2 Swelling +2 ± 0.3
C3H7NO (pure) A10 120 213–220 2 None -
C6H5CH3 (pure) A11 120 110–112 Atm. None +0.8 ± 0.1

CH3—C(O)—CH3 (pure) A12 1440 20–24 Atm. None +1.2 ± 0.1

Table 3. Results of fiber extraction by solvolysis (Stage 2: The influence of carbon fabric weaving and the duration of the process on solvolysis effectiveness).

Reagent Experem. Cod Material Boiling Time, min Results Change in Mass, % of
Initial Sample Mass

Degree of Resin
Degradation, % from

Initial Content in CFRP

H2SO4 (30%) + H2O2 (30%) B1 CFRP with Porsher textile 30 The fibers contained polymer resin residues −22.1 ± 0.9 68.0 ± 2.8

H2SO4 (30%) + H2O2 (30%) B2 CFRP with Porsher textile 60 Fibers were released, but there were foci
containing resin residues −29.2 ± 1.6 89.8 ± 4.9

H2SO4 (30%) + H2O2 (30%) B3 CFRP with Porsher textile 90 Fibers were completely released −31.4 ± 1.8 96.6 ± 5.5

H2SO4 (30%) + H2O2 (30%) C1 CFRP with Ural textile 30 Fibers were released, but there were foci
containing resin 21.4 ± 0.8 89.2 ± 3.3

H2SO4 (30%) + H2O2 (30%) C2(=A7) CFRP with Ural textile 60 Fibers were completely released 23.0 ± 1.1 95.8 ± 4.6
H2SO4 (30%) + H2O2 (30%) C3 CFRP with Ural textile 90 Fibers were completely released 23.4 ± 0.7 97.5 ± 2.9
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During the experiments, the samples of composite materials absorbed the solvent and
swelled, which led to the increase of their mass, which is why we can see, in some cases, an
increase in the mass of the sample in comparison with the initial weight.

The best results in carbon fiber release were obtained when using a mixture of hydro-
gen peroxide, sulfuric acid, and water (at a ratio of 1:1:1.3 by volume) (A7). Sample weight
loss was 23% of the initial weight, which is 95.8% of the polymer resin content (24%). This
is most likely due to the formation of the maximum amount of active oxygen in the form of
radicals attacking hydrogen and carbon bonds in a phenol-formaldehyde resin.

Moreover, good results were achieved using a mixture of nitric and orthophosphoric
acids at a ratio of 1:1 by volume and with the addition of potassium chromate at a dose of
10 g per 100 mL of acid mixture (A6). Sample weight loss was 22% of the initial weight,
which is 91.7% of the polymer resin content (24%). Nitric acid is a strong acid and a
powerful oxidizing agent (one that acts as an electron acceptor in oxidation-reduction
reactions). Furthermore, the presence of potassium chromate and chromium oxide initiated
the formation of peroxides, which in turn dissociated to form active oxygen and water.
The destruction mechanism is similar when using sulfuric acid and nitric acid in the
presence of chromium oxide, the use of which also provided good results in the extraction
of carbon fiber: sample weight loss was 20% with the use nitric acid (A5) and 21% with the
use of sulfuric acid (A4). Chromates, bichromates, and oxides of chromium in an acidic
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environment led to the formation of chromic acid. Under the influence of chromic acid, the
phenol-formaldehyde resin was oxidized [33].

The use of organic solvents did not produce a noticeable result in the release of the fiber;
therefore, their application under mild conditions (low heat and pressure) was meaningless.

In view of the environmental hazard potential of reagents containing chromium, a
reaction mixture based on hydrogen peroxide and sulfuric acid (A7) was chosen for further
development. At the second stage of the research, an assessment of the influence of process
duration on the dynamics of fiber extraction was made, as well as an assessment of the
influence of weaving/type of fabric on the efficiency of the solvolysis (Table 3).

A high efficiency of fiber extraction was achieved in all variants of the experiment
at the second stage (Figure 2). At the same time, reducing the process duration to 30 min
led to the significant decrease in the efficiency of the process, especially in the case of
CFRP reinforced with Porsher fabric. Hence, the process duration significantly affects the
efficiency of the process; this fact is associated with the difficulty of diffusion inside the
composite materials (Figure 3). It has been demonstrated that under identical conditions,
the extraction efficiency of the Porsher fabric is lower than that of Ural. This fact highlights
the importance of customizing the process duration based on the product’s configuration
and the thickness of the processed polymeric materials because the speed of diffusion
processes is a limiting factor.

A visual analysis of fibers and fabric purity showed that using a mixture of sulfuric
acid and hydrogen peroxide (C3 and B3, Table 3) provides almost a complete removal of
phenol-formaldehyde resin. Analysis of fiber microstructure using an electronic microscope
revealed a small amount of inclusions on fiber surface (Figure 4a). The inclusions were
sporadic and had low adhesion with the fiber (can easily be removed by washing with
distilled water). It was discovered that the thickness of secondary fibers was significantly
reduced—on average by 20% (from 9.49 µm in the primary fiber to 7.36 µm in the secondary
fiber). Additionally, it was determined that the roughness that emerged on the surface
of fibers (see Figure 4b) could ultimately affect the mechanical properties of products
reinforced with secondary carbon fiber.

3.2. Using Secondary Fibers for Reinforcing Fine-Grained Concrete

The prepared samples of concrete test blocks were sent for bending and compression
tests after curing. These parameters were chosen to evaluate the effectiveness of concrete
reinforcement because they are the ones that undergo changes during reinforcement. A
block was produced according to an identical formula, and a sample without the addition
of carbon fibers was used as a comparison standard.

Visual control of distribution uniformity was carried out using microscopy (Figure 5b).
Test results of the samples reinforced with carbon fiber are presented in Table 4 and
on the Figure 6. It was found that the addition of fibers with a size of 3 mm increases
the mechanical bending strength of concrete blocks by 8.1 and 16.6%, and 0.2 and 0.6%,
respectively, for the dose of fiber. Simultaneously, the compressive strength of the concrete
test blocks containing fibers decreased by 6.6–10.5% with the addition of 9 mm fibers, by
2.0–2.3% with 6 mm fibers, and remained almost unchanged or increased slightly with the
addition of 2 mm fibers.

Table 4. Test results of the samples reinforced with carbon fiber.

Fiber Size Fiber Amount, % Mass Bending Strength, MPa Compressive Strength, MPa

Control (no fiber) - 5.113 ± 0.276 36.206 ± 2.865

3 mm
0.2 5.528 ± 0.211 36.760 ± 2.793
0.6 5.962 ± 0.185 36.382 ± 1.963

6 mm
0.2 5.279 ± 0.395 35.480 ± 1.145
0.6 5.430 ± 0.224 35.380 ± 0.475

9 mm
0.2 5.302 ± 0.138 32.400 ± 1.450
0.6 5.279 ± 0.604 33.820 ± 2.442
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Figure 6. Changes in fracture size and bending strength of concrete blocks in comparison with the
control sample (without the addition of fibers); n/r—negative results.

Based on the study of the reinforcement of concrete blocks, it was established that the
compressive strength did not change significantly since four of six samples presented an
average decrease of 6.6–2.0%, while two other samples demonstrated a 1.5–0.5% increase.

At the same time, a considerable increase of 3.2–16.6% in bending strength was noted.
Samples reinforced with 3 mm fibers presented the best mechanical properties. At this
stage, it is too early to make any conclusions about the effect of fiber dose on the mechanical
properties due to significant variability in the results.

An analysis of the test beam microstructure showed the presence of well-distributed
carbon fibers and carbon fiber bundles (Figure 5a). Such uneven distribution of fibers
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reduces reinforcement efficiency and leads to instability in the samples’ mechanical strength.
An even distribution of fibers is difficult to achieve due to the accumulation of static stress
on the surface of fibers and their cohesion when sand and cement are introduced into
the mixture.

Fibers that were 9 mm long were especially difficult to disperse, which indicates the
need to expand research in the direction of fine-grained reinforcement of concrete with
3–6 mm carbon fiber. In general, the research on using secondary fibers for reinforcing
concrete products has been recognized as promising, given that the addition of fiber
increases the bending (3.2–16.6%) and compressive (1.5–0.5%) strength.

3.3. Use of Secondary Fibers for Producing Composite Materials

Studies have been carried out to assess changes in the properties of secondary carbon
fabrics. They included the production of two types of samples: one reinforced with sec-
ondary fabric and the other with the primary fabric Porsher. The mechanical characteristics
of the “recycled” and primary fabrics were compared with the use of a stretching test. The
samples were made of two layers of carbon fabric and epoxy resin by the vacuum infusion
technology. The general appearance of fabrics and panels is presented in Figure 7a–d.
Samples were cut from each panel for testing.
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Mechanical tests determined the effective tensile elastic modulus (Ec), the maximum
test load (Fmax), and the effective tensile strength (σMc) for each sample. Table 5 and
Figure 8 show the effective mechanical characteristics of the samples. It was shown that the
effective tensile elastic modulus decreases by 27%, the maximum test load by 34.8%, and
the effective tensile strength by 4.5%.
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Table 5. Effective mechanical characteristics of carbon fiber samples.

Sample Type Ec, GPa Fmax, kN σMc, MPa

Carbon plastic reinforced with
carbon fabric 27.4 ± 0.3 a 1.15 ± 0.09 a 130.02 ± 8.13 a

Carbon plastic reinforced with
recovered carbon fabric 20.0 ± 0.9 0.75 ± 0.067 a 124.18 ± 12.01

Data presented as a mean ± SD (n = 3). a—Values do not differ significantly (p > 0.05) as assessed by a post hoc
test (Tukey test).
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The tensile strength parameter was used to assess the mechanical properties of the
carbon fiber-reinforced plastics reinforced with secondary carbon fabric, taking into ac-
count the relationship between the geometric dimensions of the samples and the breaking
load [34]. The stresses were then calculated as the ratio of the effective load to the sample
cross-sectional area. The obtained stress values were used in calculating the effective
mechanical characteristics of the aggregate. The deformations were determined by the
traversing movement of the testing machine.

An analysis of the test results proves that the quality of the recovered fabric is quite
high. The effective rigidity and the effective strength of the carbon fiber plastic samples
reinforced with recovered fabric is lower by 27.01% and 4.62%, respectively, as compared to
samples of CFRP reinforced with primary fabric. This reduced rigidity of the carbon fiber
samples reinforced with recovered fabric is caused, first of all, by damage to the weaving of
the fabric during the release of the binding elements and not by the properties of the fiber.
After testing on destroyed samples reinforced with recycled carbon fabric, a significant
resin-fatigued area is observed due to insufficient density of the fiber weaving. Nonetheless,
the results show that the obtained fibers are of high quality as the mechanical properties of
the samples deteriorated within acceptable limits.

4. Conclusions

This study demonstrated the feasibility of using solvolysis (developed for processing
CFRP based on epoxy resins) to extract fibers from composite materials based on phenol-
formaldehyde resin. The high quality and prospects for returning the obtained secondary
fibers to the resource cycle, including those for reinforcing concrete and producing com-
posite materials, were revealed. The research results have high practical importance in
solving the problem of processing CFRP based on phenol-formaldehyde resins, which are
widely produced and used in machinery in Russia. The use of strong acids and oxidizing
agents for the extraction of fibers is associated with significant economic costs and resource
consumption. It is clear that there is currently room for improvement in terms of optimizing
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the technical and technological parameters, which ensures an increase in the resource and
energy efficiency of the process.
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tion, N.S.; investigation, V.L.; project administration, V.K.; resources, Y.K., N.S. and V.K.; validation,
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and agreed to the published version of the manuscript.
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