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Abstract: Bio-composites have been formulated by exploiting post-industrial PLA derived from thin
film production and silver skin, a by-product of the coffee’s roasting process. The mix design for the
compounds exploits the effects of regrading and toughening agents. The mechanical properties of
the materials have been investigated as well as the thermal and physical ones. The recycled material
mixed with the regrading additive shows good mechanical properties. The filler addition increases
the elastic modulus of PLA up to a 20% but decreases the mechanical properties (about 20% on tensile
strength), leading to a brittle behavior (minus 35% of impact strength). The use of a toughening agent
restores the plastic deformation ability of the matrix.
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1. Introduction

The future progressive withdrawal from oil exploitation drives the industry towards
the use of polymers deriving from renewable sources. Polylactide (PLA) is presently the
most commercialized one, all over the world [1]. According to the large volumes of PLA
commodities produced, mainly for packaging [2,3], PLA waste recycling is becoming
an important issue. Although tertiary recycling, either chemical [4] or enzymatic [5], can be
a possible route [6], mechanical recycling offers many advantages [7]. One of these is the
possibility to obtain composites though a single step extrusion process. In the new material,
the recycled polymer acts as a matrix filled by a second phase. If this second phase is another
waste, the overall price of the material is lowered and a further positive environmental
benefit is obtained [8]. The decrease of the mechanical properties of the derived composites,
caused both by the polymer degradation and the scanty filler-matrix interaction, can be
a drawback for subsequent applications [9–11]. Since the decrease of the mechanical
properties of the degraded matrix derives from the reduction in the value of the average
molecular weight, during the extrusion process the addition of regrading molecules [12–14]
can restore the value. Moreover, to increase the polymer filler interaction, the use of
a compatibilizer, a modified polymer [15–17] having affinity with both phases, can instead
improve the mechanical properties. When the extreme brittleness of the material becomes
the limiting factor to the final application, the microstructural modification through the
insertion of a toughening phase [18–22] can be performed. In the present research the
production of composites based on post-industrial PLA and a filler deriving from the
roasting process of coffee beans has been investigated. The amount of silver skin deriving
from the roasting process is remarkable, since it is estimated that it makes up a 4% weight
of the bean [23]. Coffee silver skin has consequently attracted a lot of interest in the
production of bio-composites due to its widespread availability and to its composition
that contains antioxidant and UV radiation absorbing molecules such as phenols and
Maillard reaction products [24,25]. In order to overcame possible problems deriving from
the reduced mechanical properties of the composites, a mix design of the investigated
materials including also a regrading chain extender and a toughening phase is proposed.

Recycling 2022, 7, 89. https://doi.org/10.3390/recycling7060089 https://www.mdpi.com/journal/recycling

https://doi.org/10.3390/recycling7060089
https://doi.org/10.3390/recycling7060089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/recycling
https://www.mdpi.com
https://orcid.org/0000-0002-5773-8423
https://orcid.org/0000-0002-3510-6062
https://doi.org/10.3390/recycling7060089
https://www.mdpi.com/journal/recycling
https://www.mdpi.com/article/10.3390/recycling7060089?type=check_update&version=2


Recycling 2022, 7, 89 2 of 8

The effect on the mechanical properties of the different composition has been evaluated in
view of a possible reuse in the formulation of packaging items.

2. Experimental
2.1. Materials

Post-industrial PLA, deriving from films production, kindly supplied by Taghleef
(Como, Italy).

Coffee silver skins (hereafter defined as CSS) deriving from a mixture (80/20 wt%)
of Arabica and Robusta variety have been ball milled to obtain powders with a dimension
lower than 200 µm. In details, the filler had a D10 value of 7 µm, a D50 of 34 µm and a D90
value of 107 µm.

Chain extender: Chain extender (hereafter referred to as CE) is Jonkryl ADR 4368-C (BASF).
Toughening additive (hereafter referred to as T) is a thermoplastic polyurethane

Elastollan N65A12P (BASF)

2.2. Compounding

Before compounding, all components were kept in dynamic vacuum at 60 ◦C for
12 h to eliminate moisture. A twin screw extruder (Coperion ZSK-18) was used, having
an output of 5 kg/h and a round die (4mm diameter). The complete screw profile is
reported in Figure 1.
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Figure 1. Screw profile.

As to the extrusion parameters, a temperature profile of 160, 170, 180, 190, 200, 190
and 190 ◦C in the extruder was applied and the rotational speed of the screw was 250 rpm.
The obtained pellets were dryed and afterwards used to prepare suitable samples for the
subsequent characterizations by injection molding by means of a Negri Bossi, VE70 injection
machine. The process conditions were the following: temperature 140–160–180–190 (last
is nozzle temp), max injection pressure 800 bar. Holding pressure: 100 bar for 4 s, mold
cooled at 25 ◦C, cycle time 50 s.

In Table 1 the composition (wt%) of the investigated materials is reported as well as
the codes that will be used henceforth in the paper.

Table 1. Compositions (wt%) and codes of the investigated compounds.

Sample PLA CE CSS T

PLA 99.5 0.5 0 0
PLA_CSS 79.5 0.5 20 0

PLA_CSS_T 59.5 0.5 20 20

Figure 2 shows the specimens derived by injection molding to be submitted to the
mechanical characterization.



Recycling 2022, 7, 89 3 of 8Recycling 2022, 7, x FOR PEER REVIEW 3 of 8 
 

 
Figure 2. specimens derived by injection molding (reported composition is of PLA_CSS). 

2.3. Tests 
Thermal analysis was performed by DSC (Q10, TA Instruments) from 0 to 170 °C in 

nitrogen flux (40 mL/min). Three scans were performed. The first one from 30 to 170, fol-
lowed by an isothermal treatment at the highest temperature, erased the previous poly-
mer history. Afterwards, a cooling scan to 0 °C at 15 °C/min was performed, followed by 
a third heating scan at 15 °C/min to 170 °C. The amount of crystalline phase was calculated 
accoding to the following expression: Xୡ(%) = ∆H୫∆H୫ ଴ . f୵ 100 

where ΔHm° is the melting enthalpy of the fully crystallized material ΔHm is the calcu-
lated enthalpy of the investigated sample and fw is the PLA amount in the sample. 

The thermal stability was studied by TGA (Perkin Elmer) from 40 to 700 °C in nitro-
gen flux (50 mL/min). 

Tensile mechanical tests were performed by an INSTRON 5966 series instrument 
with a 10 kN load cell operating at test speed of 5 mm/min on the dog bone specimens 
reported in Figure 2. The laboratory temperature was 22 ± 1 °C and a 60 ± 10% relative 
humidity. The average of five different test for each material was obtained. Impact 
strength was determined in the Charpy configuration on unnotched samples in the previ-
ous laboratory conditions. Charpy tests were performed by using a Ceast Resil 5.5 Impact 
Strength Machine (CEAST S.p.a., Torino, Italy) according to ISO 179 on specimens of 4 × 
10 × 80 mm derived from the injection moulded dog-bone ones (Figure 2). 

The surfaces of the composite specimens fractured in the Charpy test, were observed 
by scanning electron microscopy (SEM, FEI XL20) after gold metallization (Quorum 150R 
ES). 

3. Results 
Table 2 summarizes the results from the DSC analysis derived by the thermograms 

of Figure 3a. 

Figure 2. Specimens derived by injection molding (reported composition is of PLA_CSS).

2.3. Tests

Thermal analysis was performed by DSC (Q10, TA Instruments) from 0 to 170 ◦C
in nitrogen flux (40 mL/min). Three scans were performed. The first one from 30 to
170, followed by an isothermal treatment at the highest temperature, erased the previous
polymer history. Afterwards, a cooling scan to 0 ◦C at 15 ◦C/min was performed, followed
by a third heating scan at 15 ◦C/min to 170 ◦C. The amount of crystalline phase was
calculated accoding to the following expression:

Xc(%) =
∆Hm

∆H0
m × fw

100

where ∆H0
m is the melting enthalpy of the fully crystallized material ∆Hm is the calculated

enthalpy of the investigated sample and fw is the PLA amount in the sample.
The thermal stability was studied by TGA (Perkin Elmer) from 40 to 700 ◦C in nitrogen

flux (50 mL/min).
Tensile mechanical tests were performed by an INSTRON 5966 series instrument with

a 10 kN load cell operating at test speed of 5 mm/min on the dog bone specimens reported
in Figure 2. The laboratory temperature was 22 ± 1 ◦C and a 60 ± 10% relative humidity.
The average of five different test for each material was obtained. Impact strength was
determined in the Charpy configuration on unnotched samples in the previous laboratory
conditions. Charpy tests were performed by using a Ceast Resil 5.5 Impact Strength
Machine (CEAST S.p.a., Torino, Italy) according to ISO 179 on specimens of 4 × 10 × 80 mm
derived from the injection moulded dog-bone ones (Figure 2).

The surfaces of the composite specimens fractured in the Charpy test, were observed by
scanning electron microscopy (SEM, FEI XL20) after gold metallization (Quorum 150R ES).

3. Results

Table 2 summarizes the results from the DSC analysis derived by the thermograms of
Figure 3a.

Table 2. Thermal analysis results of the investigated materials 1.

Sample Tg (◦C) 1 Tm (◦C) 1 ∆Hf (J/g) 1 Xc %

PLA 49 152.0 3.7 4.0
PLA_CSS 51 152.8 1.1 1.5

PLA_CSS_T 46 151.3 5.1 8.9
1 The first column refers to the second scan, the others to the third one.
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All the investigated materials have close values of glass transition and melting tem-
peratures. Only a small fraction of the regraded PLA is crystallized. CSS addition seems
to hinder the development of the ordered phase, while the presence of the polyurethane
acts possibly as a nucleating agent, creating crystals of different sizes as evidenced by the
melting peak broadening. This leads to a higher fraction of crystallinity, as can be seen
from the normalized percentage value in Table 2. The selected melting enthalpy value for
the fully crystalline PLA phase is of 93 J/g, as reported in [26].

In Table 3, the results of the TGA analysis derived from Figure 3b are summarized. The
onset temperature of decomposition (Tonset) of the polymer is decreased by the presence of
the filler as well as by the presence of the polyurethane. Nevertheless, in all cases the onset
decomposition temperature is always above the highest compounding one (i.e., 200 ◦C)
and consequently the possible degrading reactions taking place during compounding,
should be comparable in all the samples. The same trend is recorded for the temperature of
the maximum degradation rate.
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Table 3. Thermogravimetric analysis results of the investigated materials.

Sample Tonset (◦C) Tmax (◦C) Residue (%) 1

PLA 354 376 0.0

PLA_CSS 302 323 1.1

PLA_CSS_T 290 317 6
1 at 700 ◦C.

The average values, as well as the standard deviations, of the tensile properties and of
the impact strength (IS) are summarized in Table 4.

Table 4. Mechanical properties, from the tensile tests, of the investigated materials.

Sample E (MPa) σmax (MPa) εbreak (%) IS (kJ/m2)

PLA
3600 63.6 13.6 17.1

50 * 3.2 * 1.8 * 1.7 *

PLA_CSS
4400 49.5 2.1 10.9

100 * 1.9 * 0.2 * 0.7 *

PLA_CSS_T
3300 33.0 12.2 15.9

50 * 0.4 * 3.6 * 0.8 *
* Standard deviations are reported below the average values.

The filler strongly increases the value of the modulus (about 20%) but at the same
time induces a more brittle behavior of the composite and negatively affects the values
of the tensile strength. This feature is common to other types of organic fillers such as
vine and grapes, potato pulp, wood flour, hemp hurd powder and alfalfa [11,27–29]. The
effect derives from the weak adhesion between the filler and PLA, a feature that could be
modified by adding a compatibilizer or by the surface modification of the filler [30]. These
procedures would however would affect the cost of the process. Although being reduced
by the CSS addition, the mechanical properties of the composites are however still eligible
for many packaging applications.

The results of the impact strength tests are summarized in Table 4. The bare matrix still
shows good mechanical properties, a feature that possibly underlines the positive effect
of the chain extender during the processing step. As can be seen, the presence of the filler
causes an embrittlement of the polymer, as a 50% decrease in the IS value takes place. The
use of the toughening additive, however restores almost completely the matrix behavior.

The microstructure of the composites, as well as the one of the plain matrix, is shown
in Figure 4, where the fracture surfaces of the samples deriving from the Charpy test are
reported. The filler presence leads to a rougher surface than the one of PLA (a). CSS
modification creates a rougher fracture surface that the one of the bare matrix. The com-
pounding process manages to evenly disperse the CSS particles inside the matrix leading
to a homogeneous microstructure without the presence of CSS clusters or agglomeration.
Both in micrograph (b) and (c) the silver skin particles are well enclosed inside the matrix
without visible porosities at the interphase. The presence of the toughening phase leads to
an even rougher surface, where this second phase appears as homogeneously dispersed in
the PLA matrix, as highlighted in Figure 4d. The average dimension of this second phase is
of about 3 µm.
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4. Conclusions

Although a deeper understanding of the effects of the compounding process on the
PLA characteristics is required, the present experimental work forecasts the possibility to
recycle post-industrial PLA for the production composite materials, where an agro-waste
can be used as a filler. In the present research the filler has been used without any chemical
treatments that could have improved its interaction with the biopolymer. However, these
treatments necessarily imply an economical draw back affecting the whole process. This
feature on one side promotes the concepts of circular economy, on the other side allows
to reduce the overall amount of biopolymer used thus decreasing the final material cost.
Moreover, it could allow the recovery of at least a fraction of the large volume of coffee silver
skin produced all over the world. The filler decreases the impact and tensile strength of the
composites but on the other side it increases the value of the elastic modulus. The behavior
of the plain PLA can be restored by properly modifying the composite microstructure by
adding on a single mixing step a further toughening phase in the formulation.

Author Contributions: Conceptualization, M.F. and A.S.; methodology, M.F.; validation A.S.; formal
analysis G.B.; investigation, G.B. and M.F.; data curation, G.B.; writing—original draft preparation,
G.B.; writing—review and editing, A.S. and M.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
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