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Abstract: Fish processing produces large amounts of fish waste. Instead of disposing of it, it is wiser
to recover the valuable resource for high‑value‑added products. Our study proposed a process using
carbon dioxide‑acidified water as a green solvent under supercritical conditions to successfully re‑
cover collagen/gelatin from the skin and bone of striped catfish. The optimum extraction conditions
were obtained at 75 bar, 37 ◦C, and 24 h. The yields from the dry skin and bone mass were around
37% and 8%, respectively. The extracted products were characterized by Fourier‑transformed in‑
frared spectroscopy to study the functional groups, scanning electron microscopy to evaluate the
morphology, sodium dodecyl‑sulfate polyacrylamide gel electrophoresis to study the protein pat‑
tern, UV–vis analysis tomeasure the absorption peak, and thermal gravimetric analysis to determine
the denaturation temperature. The results show the viability of the proposed method on an indus‑
trial scale. The characteristics of the extracted product show promising results and potential for be‑
ing developed further in many applications such as biomaterial engineering in healthcare or natural
polymer‑based absorbent material for efficient removal of heavy metals from water and wastewater.

Keywords: collagen; gelatin; striped catfish; green solvent; optimization; 2k factorial

1. Introduction
Fish processing produces large amounts of fish waste (approximately 50–80%), sub‑

ject to the level of processing and species [1]. Improper disposal of these wastes causes
sanitation and environmental problems. Attempting to recycle what is still valuable in
such wastes is therefore a wiser waste management solution than disposal. Discards from
fish processing are abundant sources of protein and many valuable compounds [2]. Fish
waste is generally recycled for the production of fertilizers or applied directly as feed
in aquaculture. Currently, pursuing the biobased‑circular‑green economy (BCG) model
conversion of fish waste to high‑commercial value products at the same time plays a key
role in acquiring economic growth and achieving sustainable development [1]. Freshwa‑
ter and marine fishes have received much consideration as alternative sources for colla‑
gen/gelatin production. Many studies have valorized fish wastes to collagen, for example,
from channel catfish [3], tilapia [4,5], snakehead [6], golden carp [7], sole fish [8,9], and sil‑
ver carp [10]. Apart from tilapia, Pangasianodon hypophthalmus (striped catfish) is the most
abundant and vital aquaculture fish in Thailand. It is also a viable source of protein for
people in the Mekong subregion (i.e., Cambodia, Vietnam, and Loa) [11]. The leftovers
from catfish processing can be used as a potential alternative raw material for the produc‑
tion of collagen/gelatin, which is a highly valued added product and can be applied in
various applications [10,12–15]. Recently, one of the most interesting applications is to
develop further gelatin‑based composite absorbents for heavy metal removal from water
and wastewater [14,16–18].
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Collagen is one of themost essential structural proteins and constitutes approximately
30% of all proteins in animals. The signature feature of collagen is the unique amino
acid sequence [Gly–X–Y]n, in which proline and hydroxyproline are mostly X and Y lo‑
cations, respectively. A collagen triple‑helical structure is formed from the same three α‑
polypeptide chains and is stabilized by intramolecular hydrogen bonds. The XXIX types of
collagen have been studied and applied in various fields, such as pharmaceuticals, foods,
biomedical products, and cosmetics [3,19,20]. Collagen of mammalian origin is supplied
in amounts of more than a hundred thousand tons per year. However, there has been a
concern about disease spread, such as foot andmouth disease, avian influenza, transmissi‑
ble spongiform encephalopathy (TSEs), and bovine spongiform encephalopathy (BSE). In
addition, products derived from bovine and porcine sources are restricted by the Jewish,
Hindu, and Muslim religions [4,21,22].

Recovering collagen from fishwaste can be performed by various extractionmethods,
namely acid extraction, pepsin extraction, pulsed electric field (PEF), carbon dioxide acid‑
ified water, and supercritical fluid CO2 (SF) [22,23]. In the literature, the classical method
referring to acid extraction and pepsin extraction generally requires high acidity, large
amounts of chemicals and solvents, and long‑processing time, and requires complicated
steps, i.e., extracting, purifying, and cleaning [23,24]. In particular, harmful extracting
solvents can incorporate and remain in the extracted collagen, which causes both serious
health and environmental problems. Before PEF technology can be fully utilized, a number
of technical problems, financial obstacles, consumer acceptability challenges, regulatory
concerns, and toxicity dangers must be resolved [25]. Therefore, many researchers have in‑
vestigated innovative and sustainable extractionmethods to acquire higher collagen yields
faster and employ less toxic solvents. Many reports revealed positive findings on the use
of a pressurized technique, i.e., supercritical fluids technology or the use of water acidified
with carbon dioxide, to extract collagen/gelatin from various sources [12,15,22,26]. Beyond
the critical point, the physical properties of solvents (i.e., water and CO2) are modified to
have similar qualities to both gas and liquid, such as modest viscosity, modest density,
high solvation, high diffusion, and high mass transfer.

Our work is the first to apply the carbon dioxide‑acidifiedwater technique to both the
skins and bones of freshwater fish instead of marine sources. In addition, response surface
methodology (RSM) was used for optimization. Extraction temperature, which is an im‑
portant factor, was also studied. Our study proposed a collagen/gelatin extraction method
that can possibly be further applied on an industrial scale. Complying with the principles
of green chemistry, a combination of CO2 and water, i.e., carbon dioxide‑acidified water,
was used as the sole solvent in this study and was pressurized in an autoclave reactor
model P2313 (Amar, Mumbai, India). At this stage, the objective of this study was to op‑
timize the extraction process of gelatin/collagen from the skin and bone of striped catfish
using RSM. The independent variables, namely, carbon dioxide pressure, extraction time,
and extraction temperature, on the yields were investigated. The characterization of the
obtained product was also studied to confirm its suitability for use in various applications.

2. Results
2.1. Effect of Extraction Conditions on the Yield

The yields of the extracts from the designed conditions are reported in Table 1. We
found a significant difference in yields of collagen/gelatin from different operating condi‑
tions. At a pressure above 73.8 bars and a temperature of 31 ◦C, supercritical fluid CO2 can
be obtained [27]. Our results revealed that the yields were maximized under a supercriti‑
cal CO2 condition. From the same conditions of 75 bar, 37 ◦C, and 24 h, the highest yields
of 36.85% and 8.10% were obtained from skin and bone, respectively. At this condition,
CO2 has the density of liquid but the viscosity and diffusion of a gas. This condition pro‑
motes the diffusion of CO2 and water into the fish skin and bone matrix and enhances the
dissolution process. An increase in pressure will increase the density of CO2, which sub‑
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sequently increases the solubility of the solute. Extending the extraction time also showed
an increase in the yield until it reaches equilibrium.

Table 1. The 2k factorial design and the responses of collagen/gelatin from the skin and bone of
striped catfish.

Order
Process Conditions

Center Point
Yields (%)

Time (h) Temperature (◦C) Pressure (bar) Skin Bone

1 −1 −1 −1 1 1.05 0.28
2 1 −1 −1 1 12.10 2.65
3 −1 1 −1 1 1.90 0.55
4 1 1 −1 1 15.85 6.85
5 −1 −1 1 1 3.80 1.10
6 1 −1 1 1 30.40 6.65
7 −1 1 1 1 4.60 1.05
8 1 1 1 1 36.85 8.10
9 −1 −1 −1 1 1.10 0.25
10 1 −1 −1 1 12.20 2.60
11 −1 1 −1 1 2.10 0.40
12 1 1 −1 1 13.00 6.60
13 −1 −1 1 1 3.90 1.00
14 1 −1 1 1 30.20 6.72
15 −1 1 1 1 4.55 0.90
16 1 1 1 1 36.60 7.80
17 0 0 0 0 15.10 4.20
18 0 0 0 0 13.40 3.10

2.2. Optimization of Collagen Extraction Conditions on the Yield
The yieldswere correlated to the extraction conditions according to the following first‑

order polynomial Equations (1) and (2). The yields were predicted by substituting the
given levels of each condition (only in a range of experimental levels).

X = −4.28 + 0.276A+ 0.123B+ 0.0631C+ 0.00463AB − 0.00239AC − 0.00181BC+ 0.000455ABC+ 1.113D (1)

Y = 1.41 − 0.786A − 0.0511B − 0.0003C+ 0.02913AB+ 0.01041AC+ 0.00017BC − 0.000267ABC+ 0.306D (2)

where X and Y are the yields of the collagen/gelatin from the skin and bone of striped
catfish, and A, B, C, and D are the variables of extraction time, temperature, pressure, and
center point value, respectively.

Table 2 shows the analysis of variance (ANOVA) results of the yield from the skin
of striped catfish. A smaller p‑value and a larger F‑value suggested a more significant ef‑
fect on the yield [28]. The linear terms and 2‑way and 3‑way interactions were significant
(p < 0.05). In addition, the coefficient of determination (R2 = 0.9978) of the model indi‑
cated that most variations were explained. The adjusted coefficients of determination (Adj
R2 = 0.9959) showed a good fit for the linear regression. Center points were added to the
design; however, the result suggested that no curvature was detected (p > 0.05) for the se‑
lected ranges of each variable. The ANOVAof themodel for extraction yield from the bone
is provided in Table 3. Similarly, the linear and 2‑way and 3‑way interaction terms were
significant. The model also showed a coefficient (R2) of determination of 99.51% and an
adjusted coefficient (Adj R2) of determination of 99.08%. In addition, no curvature resulted
from each variable on the extracted yield from the bone.
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Table 2. Analysis of variance (ANOVA) of the yield of collagen/gelatin extraction from the skin.

Source DF Adj Sum of Squares Adj Mean Square F‑Value p‑Value

Model 8 2567.55 320.94 516.73 0.000
Linear 3 2236.29 745.43 1200.16 0.000

A = Time 1 1685.10 1685.10 2713.05 0.000
B = Temperature 1 26.78 26.78 43.12 0.000
C = Pressure 1 524.41 524.41 844.31 0.000

2‑way interactions 3 324.33 108.11 174.06 0.000
A × B 1 12.43 12.43 20.01 0.002
A × C 1 308.00 308.00 495.89 0.000
B × C 1 3.90 3.90 6.28 0.034

3‑way interactions 1 4.73 4.73 7.62 0.022
A × B × C 1 4.73 4.73 7.62 0.022
Curvature 1 2.20 2.20 3.54 0.092
Error 9 5.59 0.62 ‑ ‑
Total 17 2573.14 ‑ ‑ ‑

Table 3. ANOVA of the yield of collagen/gelatin extraction from the bone.

Source DF Adj Sum of Squares Adj Mean Square F‑Value p‑Value

Model 8 145.990 18.249 230.38 0.000
Linear 3 130.926 43.642 550.96 0.000

A = Time 1 112.572 112.572 1421.17 0.000
B = Temperature 1 7.563 7.563 95.47 0.000
C = Pressure 1 10.791 10.791 136.23 0.000

2‑way interactions 3 13.272 4.424 55.85 0.000
A × B 1 6.838 6.838 86.33 0.000
A × C 1 4.000 4.000 50.50 0.000
B × C 1 2.434 2.434 30.72 0.000

3‑way interactions 1 1.626 1.626 20.52 0.001
A × B × C 1 1.626 1.626 20.52 0.001
Curvature 1 0.167 0.167 2.10 0.181
Error 9 0.713 0.079 ‑ ‑
Total 17 146.703 ‑ ‑ ‑

2.3. Interaction of Process Conditions
The interactions between variables were studied using surface plots between two con‑

ditions, while the other was kept constant at the center point. Figures 1 and 2 show the
graphical surface plots of the interaction effects of extraction conditions against the yields
obtained from skin and bone samples, respectively. Similarly, the results showed a strong
interaction between yields and extraction pressures. The yields rapidly increased with in‑
creased pressure because CO2 pressure plays an important role in improving the solubility
of collagen in the extraction. The yields slowly increased with increasing temperature due
to the small range of selected levels. It is quite certain that using temperatures above 37 ◦C
may result in the degradation of the extracted collagen and lower yields. However, the
longer extraction time rapidly increased the maximum yields, which were in good agree‑
ment with the previous work [15] and the ANOVA results as shown in Tables 2 and 3.
Therefore, the optimum extraction conditions were determined at supercritical fluid CO2
at a pressure of 75 bar, a temperature of 37 ◦C, and an extraction time of 24 h. In com‑
parison to the yield of the extracted product from the skin of Pangasius, the values of our
study (36.60 to 36.85%) are higher than the previous report using the conventional extrac‑
tion methods (acidic and enzymatic extraction) [24], and are in the compatible range of
5 to 42.36% when using acids (pH 1.8 to 3.0, time 60 h, and temperature of 4 ◦C) [3,23].
In the previous work, 73% of the collagen was obtained by using conventional methods
of acidic and enzymatic extraction, which have many disadvantages, as mentioned in the
introduction section [29]. We did not compare them because the method and the purpose
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are different. Unlike our study, they used supercritical carbon dioxide for removing lipids
from crude collagen. However, our study employedwater‑acidified CO2 for the extraction
of collagen from the skin and bone of basa fish.
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2.4. Assessment of Process Efficiency
The process efficiency of the proposed method was evaluated, as shown in Table 4.

Our method required only three main steps, namely pretreatment, extraction, and drying
steps. However, the conventional acidic/enzymatic method for the extraction of collagen
from basa fish required more steps, namely pretreatment, extraction, salting out, dialy‑
sis, and drying steps [24,29]. Because the processing time is shortened, production time,
energy, and chemical usage could be reduced, suggesting the greenness of the proposed
method. Considering the chemicals used in the extraction step are only water and carbon
dioxide, it can be said that no harmful substances remained in the product. This suggested
that the product could be applied in a wide range of applications.

Table 4. Process efficiency of the proposed method based on 20 g of raw material.

Process Time (h) Chemical
Amount Yield (%)

Mass (g) Bone Skin

Pretreatment 8

Water 947.98

7.95 36.73

LASNa 0.5% 34.45

H2O2 1% 24.16

NaOH 0.05 N 0.99

Extraction 24
Water 498.50

CO2 0.51

Drying 24 ‑ ‑

2.5. FTIR Spectra
FTIR spectroscopy was used to confirm the functional groups present in collagen ex‑

pressed by absorbance and wavenumber. In general, the amide A band relates to the
stretching vibration of the NH group in the range of 3400–3440 cm−1 [30]. This value
will decrease to approximately 3300 cm−1 when the NH group incorporates the hydrogen
bonds of the peptide chain. Amide B band (2924–2928 cm−1) relates to the asymmetric
stretching vibration of =CH and –NH3

+. The shifting of amide B to a higher frequency
indicates an increase in free NH–NH3

+ clusters in the N‑terminal lysine residues. Addi‑
tionally, a set of amide bands indicates the secondary structure of the polypeptide chain,
and it could be used to recognize the presence of imino and amino acids (i.e., proline and
hydroxyproline rings). Amide I is used as a marker of the secondary structure. The C=O
stretching (1600–1700 cm−1) of the amide I band is associated with the formation of hydro‑
gen bonds between adjacent chains [31]. The amide II associated with the CN elongation
and NH deformation vibration (1550–1600 cm−1) is used to indicate the number of NH
groups involved in hydrogen bonds adhered to α‑chains. This bonding maintains the he‑
lical structure of the collagen. Amide III is used to indicate the presence of glycine CH2,
which is one of the predominant amino acids in collagen. This band is associated with NH
deformation and CN elongation in collagen. It was also suggested that the ratio between
the amide III and 1440 cm−1 peaks equal to one indicates the preservation of the triple helix
structure of collagen.

From Figure 3, our extracted products show a similar result to the previous report
of acid‑solubilized collagen (ASC) from the skin of striped catfish using the acid extrac‑
tion method [24,31,32]. Five major peaks of amide were observed. The peak locations
of the five major peaks of the extracted products obtained from the skin and bone were
similar to the standard type I collagen. From Table 5, the peaks of amide A obtained
from the skin and bone were 3282 and 3290 cm−1, respectively. According to previous
reports [30,31,33], a shifting of amide A from 3400–3440 cm−1 to a lower frequency (near
3300 cm−1) denoted that the NH group incorporates hydrogen bonds in the peptide chain.
The FTIR spectra showed amide A peaks at wavenumbers of 3290–3294 cm−1. The amide
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B bands were observed at wavenumbers of 2924–2927 cm−1, which is in the range of 2924–
2928 cm−1 [30,31]. This indicated asymmetric stretching vibration of =CH and –NH3

+ in
the polypeptide chains. There was no indication of the presence of free NH–NH3

+ clusters
in the N‑terminal lysine residues. The positions of amide I usually appear from 1600–
1700 cm−1, which is attributed to the stretching vibrations of the carbonyl (C=O) group
with the peptide backbone. Our study revealed an amide I peak at wavenumbers of 1631–
1633 cm−1. This confirmed the forming of hydrogen bonds between N‑H and the C=O of
the adjacent polypeptide chains of our extracted product. A slightly lower frequency than
ASC from the previous reports (1651.07 cm−1) is related to an increase in hydrogen bonds,
which subsequently increase in the molecular organization [31,33]. The amide II band was
located at 1537–1542 cm−1, representing CN stretching vibrations coupled with NH bend‑
ing vibrations. A shift to a lower frequency when comparedwith the typical amide II band
position of 1550–1600 cm−1 indicated a greater number of hydrogen bonds in the polypep‑
tide, which highlighted a high degree of maintaining the helical structure of the obtained
collagen. Additionally, the vibration of glycine CH2 bending was observed at 1542 cm−1

(from the skin) and 1544 cm−1 (from the bone), which was close to that of ASC from the
skin of Pangasius sp. reported earlier [31]. From Table 5, the absorption at 1337–1338 cm−1

for the skin and bone represents the CH2 wagging vibration of the proline side chains gen‑
erally found in the type I collage. The absorption frequencies at 1238–1239 cm−1 represent
the NH bending coupled with CH stretching from amide linkage as well as the absorption
resulting from the wagging vibration of the glycine CH2 backbone and the proline side
chains [21]. According to [10], for ASC from fish, the ratio of the absorption intensity be‑
tween the amide III peak and of the 1450 cm−1 band equal to 1.0 can explain the degree
of maintaining the original structure of the collagen molecule after the extraction step. As
shown in Figure 4, the ratio for the extracted product from the skin (0.22/0.22) and bone
(0.16/0.16) equal 1.0 proves that our extractionmethod can sustain the native collagen struc‑
ture and confirm that the extracted products contain a triple helical structure of collagen.
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Table 5. FTIR spectra range locations of Type I collagen standard and peak locations of the extracted
product from the skin and bone of striped catfish (Pangasianodon hypophthalmus).

Peaks

Extracted Product Using Water Acidified with CO2 under
Supercritical Condition ASC from the Skin

of Pangasius sp.
[31,32]

Peak AssignmentsType I Collagen
Standard (cm−1) Skin (cm−1) Bone (cm−1)

Amide A 3293–3319 3256–3309
(3282)

3264–3316
(3290) 3286.7

mainly N–H stretching
coupled with
hydrogen bond

Amide B 2914–2941 2918–2931
(2924)

2922–2927
(2924) 2947.23 CH2–asymmetric

stretching

Amide I 1626–1631 1625–1642
(1633)

1626–1636
(1631) 1651.07 C=O stretching hydrogen

bond coupled with COO–

Amide II

1548–1553 1536–1545
(1540)

1540–1545
(1542) ‑ N–H bend coupled with

C–N stretching

1451–1456 1450–1455
(1452)

1453–1455
(1454) 1450.47 Glycine CH2

bending vibration

1371–1409 1405–1387 (1396) 1398–1397 (1397) ‑ COO–symmetrical stretch

Amide III

1332–1343 1334–1342
(1338)

1332–1343
(1337) ‑ CH2 wagging of proline

1231–1240 1238–1240
(1239)

1236–1241
(1238) 1246.02

N–H bending
(deformation) coupled
with C–N stretching

1075–1084 1077–1085
(1081)

1078–1084
(1081) ‑ C–O stretching
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In recent reports, one of the most effective eliminations of heavy metals from con‑
taminated water is via hydrogel‑based absorbents, and collagen is classified as a natural
hydrogel because it is a natural source for the making of hydrogels. According to their
three‑dimensional porous networks and abundance of the inherent hydrophilic functional
groups, such as –COOH, –NH2, –OH, etc., collagen‑based hydrogels can be highly effec‑
tive absorbents in water and wastewater treatment. According to [16], examples of the
active functional groups capable of the removal of heavy metals from contaminated water
include R‑COOH, R‑OH, R‑CONH2, R‑NH2, etc. At the alkaline pH, the H+ ions release,
leaving the negative charge ions that readily absorb divalent metal cations (such as Pb2+,
Co2+, Cu2+, Cd2+, and Ni2+, etc.) [14,16].
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2.6. UV Spectra
UV spectra are one of the basic spectroscopic methods for collagen characterization.

Most proteins have a maximum absorption wavelength of approximately 356 nm, while
proteins with a high content of amino acids generally show a maximum absorption near
280 nm, resulting from the presence of aromatic groups, such as phenylalanine, tyrosine,
and tryptophan. For the triple‑helical proteins, the maximum absorbance wavelength usu‑
ally appears near 230 nm [31].

Figure 4 shows the UV spectra of the standard type I calf collagen (calfskin) and the
extracted products from the skin and bone of striped catfish. The maximum absorption
wavelengths of the extracted product from the catfish skin and bone appeared at 212 nm
and 211 nm, respectively, which were in a range of 210–240 nm for freshwater fish such as
Labeo rohita and Catla catla. According to [34], a relatively lower value compared with the
value obtained from the skin of southern catfish (220 nm) [35] suggests a low concentration
of tyrosine in the extracted products.

2.7. Electrophoretic Patterns
The SDS‑PAGE method was used as a qualitative tool to examine the protein content

in the extracted products. The standard type I collagen from calfskin was used as a refer‑
ence sample. Generally, a sample of the triple helical type I fish collagen consists of two
α‑chains (α1 andα2) andβ‑chainswith differentmobilities and intensities [35]. Many stud‑
ies have reported similar electrophoresis patterns for collagen from different parts (skin,
bone, and scale) of bigeye tuna [19] and the skin of channel catfish [3], golden carp [7], and
sole fish [8]. According to [23], the expectedmolarmass (KDa) of threemajor characteristic
bands considered to be the golden standard for the identification of collagen type I peptides
are α1 (120–150 KDa), α2 (120–150 KDa), and β (200–250 KDa). From the electrophoretic
analysis, our extracted products from the skin and bone of striped catfish contained similar
subunits of type I collagen, as shown in Figure 5. The molecular weights of the α1 and α2
for both the skin and bone range between 130 and 150 KDa, and the β band represents the
intermolecular crosslinked for all samples at around 250 KDa, which corresponds to the
golden standard. However, a blurred band in the β region indicated some impurities or
slight denaturation of collagen, which result in the formation of gelatin or collagen protein
hydrolysates. In all, the proposed extraction using a single step of CO2‑acidified water
under the supercritical condition as a green solvent can be successfully used for the co‑
extraction of collagen/gelatin from the skin and bone of striped catfish. These recovered
products (collagen/gelatin) are highly profitable and beneficial compounds that can be ap‑
plied further for biomaterial engineerings such as cartilage/bone tissue regeneration, bone
tissue engineering, or skin regeneration and wound healing [12,23].
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2.8. Morphology
After being freeze‑dried, the collagen/gelatin extracts were recovered as a soft white

sponge. The images of the extracted products obtained under the optimum extraction
condition (37 ◦C, 75 bars, and 24 h) using carbon dioxide‑acidified water are presented
in Figure 6. The soft white sponges from the skin and bone of striped catfish were ob‑
served with the naked eye. However, SEM revealed that dense and homogenous multi‑
layered samples had formed, probably during the lyophilization process. The extracted
collagen/gelatin structures were hexagonal at 50× magnification. At 200× magnification,
the sampleswere sponge‑likewith porous structures. The structureswere apparent, with a
fibrousmeshwork and loose and flaky orientation at furthermagnification. Our results are
consistent with the SEM images of the extracted collagen from the skin of Nile tilapia [36].
The cross‑sectional images revealed highly porous and homogenous structures with inter‑
connected pores for both the skin and bone. The pores and the wrinkles on the surface
of the products resulted from dehydration during the lyophilization step [32]. This rough
surface creates a generous surface area, which results in a high absorption capability. Ac‑
cording to [33,37], a well‑distributed pore structure is favorable for biomedical applica‑
tions, serving as matrices for absorption and cell proliferation. From our results, it can be
said that the extracted products obtained from carbon dioxide‑acidified water have the po‑
tential to be further developed as amaterial for wound dressing, hydrating agents, growth
gene expression, and drug delivery [10,38] or grafted on chitosan‑based polymer, which
can be used for heavy metal removal from drinking water [14].
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2.9. Thermal Stability
The thermal stability of the collagen/gelatin products under nitrogen flows was as‑

sessed by TGA. This technique measures the stability and degradation of the material, i.e.,
collagen. The loss of mass relates to hydrogen bond rupture and the loss of intermolec‑
ular water, followed by the degradation of protein chains and rupture of the collagen
fiber. In this study, the loss of hydrogen bonds and intermolecular water occurred during
the lyophilization step (−80 ◦C freeze‑drying). As shown in Figure 7, the mass of colla‑
gen/gelatin product is decreased by an increase in temperature. The loss was observed in
three phases as follows: denaturation (20–200 ◦C), collagen combustion (200–500 ◦C), and
residue formation (500–700 ◦C). The first phase showed denaturation of collagen samples,
attributing to 10–16%, at a temperature around 27–32 ◦C, which is compatible with the
values reported earlier: bigeye tuna (31–33 ◦C) [19], snakehead (34 ◦C) [6], and southern
catfish (34 ◦C) [35]. The second phase relates to the decomposition of the collagen struc‑
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ture due to the combustion of collagen. The results affirm that our extracted products have
compatible thermal stability with ASC obtained from other fish.
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3. Materials and Methods
3.1. Materials

Hydrogen peroxide (H2O2), sodium hydroxide (98% NaOH), and sodium chloride
(NaCl) were purchased from QRëC, Auckland, New Zealand. Linear alkylbenzene sul‑
fonate sodium salt (LASNa) 13% (w/w) (C18H29NaO3S) was obtained from commercial
sources. Standard type I calf collagen was obtained from Sigma–Aldrich, Saint Louis, MO,
USA. Carbon dioxide (99.8% CO2) was purchased from Linde, Samut Prakarn, Thailand
(HPLC grade). All other reagents were analytical grade.
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3.2. Preparation and Pretreatment of Fish Skin and Bone
The fish waste (i.e., skin and bone of striped catfish) was obtained from food vendors

of the KMUTT canteen, Bangkok, Thailand. The sampleswere further cleaned andwashed
with tap water to remove blood and dirt. After removing the fish meat and fat, the skin
and bone were washed again with deionized (DI) water and cut with scissors into small
pieces of approximately 10 × 10 mm. The prepared samples were kept in a polyethylene
bag and stored at −20 ◦C.

The samples were pretreated according to the method reported previously [29]. The
skin and bone samples were completely lyophilized at −80 ◦C using a freeze dryer FD8‑
T‑Series, Gold Sim (Gibthai, Bangkok, Thailand). The dried skin and bone were weighed
and recorded beforemixing in 0.5% (w/v) LASNawith a solid‑liquid ratio (S/L) of 1:25 (w/v)
for 6 h to remove lipids and minerals. The samples were filtered and washed with cold DI
water before mixing in 1% (v/v) H2O2 and 0.05 N NaOH solution with the same S/L for
2 h to remove pigments and noncollagenous substances. The residues were filtered and
washed with cold DI water.

3.3. Extraction Method and Extraction Yield
The pretreated sampleswere transferred into a Teflon reactor vessel, andDIwaterwas

added at an S/L ratio of 1:25. Figure 8 shows the experimental workflow of this study. A
high‑pressure lab‑scale autoclave was operated at various pressures (10, 42.5, and 75 bar),
temperatures (30, 33.5, and 37 ◦C), and reaction times (3, 13.5, and 24 h) as shown in Table 6
using the 2k factorial design by Minitab software Version 16. The gas was immediately
released after reaching the desired conditions. The obtained solutions were filtered, and
the filtrates were centrifuged by a refrigerated laboratory centrifuge MPW‑380R (MPW
Med. Instruments, Warsaw, Poland) and lyophilized.
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Table 6. Experimental design range and values of independent variables.

Independent Variables Symbol
Range and Levels

−1 0 +1

Extraction time (h) A 3 13.5 24
Temperature (◦C) B 30 33.5 37
CO2 pressure (bar) C 10 42.5 75

The extraction yield was calculated as the percentage between the dry mass of ex‑
tracted material and the dry weight of striped catfish skin or bone. The calculation is
as follows [32,39]:

Yield (%) =
Dried weight of the extract

Dried weight of the initial fish sample
× 100% (3)

3.4. Experimental Design and Modeling
RSM is the most common statistical tool for optimal condition prediction and process

improvement. The independent variables and their interactions could be studied [28,40,41].
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RSM is the most useful method for optimizing independent variables for the desired re‑
sponse. Among all the designs, the 2k factorial design is the most effective for many exper‑
iments involving the study of the main effects and interactions of more than two variables.
As shown in Table 6, the design of this study consisted of three variables, two replicates,
and two center points, which generated 18 random experiments as shown in Table 1.

The data are fitted into a model to predict the response according to the following
first‑order equation:

Y = β0 +
3

∑
i=1

βiXi +
2

∑
i=1

3

∑
j>i

βijXiXj+ε (4)

where Y is the extraction yield (response), β0 is a constant, ε is an error, βi and βij are
regression coefficients, and Xi and Xj are the levels of factors.

3.5. Characterization of the Obtained Product
3.5.1. Fourier Transform Infrared Spectroscopy (FTIR)

The typical functional groups of collagenwere confirmed by aNicolet 6700 FTIR Spec‑
trometer (Thermo Fisher Scientific, Glendale, WI, USA). Approximately 2 mg of dry sam‑
ples were mixed with approximately 200 mg of potassium bromide (KBr). The FTIR spec‑
tral regions of 650–4000 cm−1 at a resolution of 4 cm−1 were selected. The scanning was
recorded 32 times for the average of each sample.

3.5.2. Electrophoretic Pattern
Protein patterns were studied by sodium dodecyl‑sulfate polyacrylamide gel elec‑

trophoresis (SDS–PAGE) according to a previously published method with a slight ad‑
justment [42]. The dry samples were dissolved in 10% SDS before incubation at 85 ◦C for
1 h. The dissolvable debris was centrifuged from the mixtures at 5000× g for 10 min. Then,
5× sample loading buffer (0.5% bromophenol blue pH 6.8, 0.25 M Tris‑HCl, 50% glycerol,
0.5 M dithiothreitol (DTT), and 10% SDS) was added to solubilized samples. The mixtures
were incubated again for 2 min in boiling water. The samples were loaded into the wells
of a gel consisting of 5% stacking and 7% resolving gel. A constant voltage of 35 mA was
applied. After electrophoresis, the resolving gel was cleaned and stained with Coomassie
blue R250. Type I calf collagen was utilized as a standard. A protein marker was used to
evaluate the molecular weight (MW) of proteins.

3.5.3. Scanning Electron Microscopy (SEM)
The morphology of the products obtained from the skin and bone was evaluated by a

JSM‑6610LV scanning electronmicroscope (Jeol Ltd., Tokyo, Japan). The dry samples were
stabilized on aluminum stubs with mutual conductive adhesive tape and sputtered with
a gold nanolayer. The samples were placed on the sample holder and observed at 1000×,
400×, 200×, and 50×magnifications.

3.5.4. Thermal Gravimetric Analysis (TGA)
The thermal stability of the dry samples was studied using a TGA/DSC 3+ (Mettler

Toledo, Nänikon, Switzerland). The instrument was operated at a temperature ranging
from 25 to 700 ◦C and a heating rate of 10 ◦C/min in a nitrogen (N2) atmosphere. The
decomposition temperatures were obtained from the thermogravimetric curves.

3.5.5. UV Absorption Spectrum
The ultraviolet (UV) spectra of the sample were measured using a Lambda 35 UV/Vis

Spectrophotometer (Perkin Elmer, Waltham, MA, USA). The samples of 0.1 mg/mL were
prepared in 0.05 M acetic acid. The mixtures were centrifuged, and the supernatants
were placed into a quartz cell. The UV spectra were scanned in the wavelength range
of 190–390 nm with a speed of 2 nm/s and an interval of 1 nm. Type I calf collagen was
utilized as a standard.
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4. Conclusions
Organic acids are commonly used to extract collagen from fish waste. Our work sug‑

gested a process to successfully recover collagen/gelatin from the waste of striped catfish.
In this study, a novel technique using a green solvent (water and CO2) can increase yield
and/or enhance the quality of the extracted product. The optimum extraction conditions
were highlighted. Overall, the findings confirm the effectiveness of the suggested method
for improvement of extraction yield compared to the conventional acid/enzymaticmethod,
and the properties of the products indicate the potential for further development in a vari‑
ety of applications.
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