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Abstract: Second-generation biorefinery refers to the production of different types of biofuels, bioma-
terials, and biochemicals by using agri-based and other lignocellulosic biomasses as substrates, which
do not compete with arable lands, water for irrigation, and food supply. From the perspective of
transportation fuels, second-generation bioethanol plays a crucial role in minimizing the dependency
on fossil-based fuels, especially gasoline. Significant efforts have been invested in the research
and development of second-generation bioethanol for commercialization in both developing and
developed countries. However, in different developing countries like India, commercialization of
second-generation bioethanol has been obstructed despite the abundance and variety of agricultural
feedstocks. This commercial obstruction was majorly attributed to the recalcitrance of the feedstock,
by-product management, and marginal subsidies compared to other nations. This article reviews the
major roadblocks to the viability and commercialization of second-generation biofuels, especially
bioethanol in India and a few other leading developed and developing nations. This article also
reviews the biomass availability, technological advancements, investments, policies, and scale-up
potential for biorefineries. A thorough discussion is made on the prospects and barriers to research,
development, and demonstration as well as strengths, weaknesses, opportunities, and threats for the
commercialization of second-generation bioethanol.

Keywords: bioethanol; biochemicals; biofuels; commercialization; lignocellulosic biomass; policies;
scale-up; second-generation biorefinery

1. Introduction

The global energy demand is seeing a significant escalation because of population
growth and the industrial and economic progress seen in emerging nations like China
and India. The current situation is characterized by growing concerns over greenhouse
gas emissions, uncertainties relating to energy security, increasing fossil fuel prices, and
geopolitical situations [1]. Renewable energy sources such as solar, hydro, tidal, wind,
geothermal, and biomass-based energy have garnered heightened interest as potential
substitutes for nonrenewable sources [2]. Nevertheless, the need for platform chemicals
produced in petroleum refineries may only be substituted by renewable bioresources,
namely refineries based on lignocellulosic biomass.

Lignocellulosic biorefineries are seeing a progressive global expansion whereby biomass
is being used as a sustainable energy source [3]. The term lignocellulosic biorefinery pertains
to a kind of biorefinery known as a second-generation biorefinery, whereby lignocellu-
losic biomass is used as the primary feedstock material. Lignocellulose is a plentiful and
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carbon-neutral bioenergy resource in comparison to conventional fossil fuels. Massive
potential exists for lignocellulosic biomass to serve as a partial substitute for fossil fuels,
petrochemicals, and synthetic plastics in the energy and consumer product market and
meet sustainability [4]. The implementation of biorefineries offers a viable solution for the
conversion of biomass into a diverse range of products, including high-value commodities
and biofuels [5].

Figure 1 illustrates the many pathways involved in the production of several by-
products in a second-generation biorefinery using lignocellulosic biomass. The method-
ological approach for the valorization of lignocellulosic biomasses to second-generation
liquid biofuels, especially bioethanol, is constituted of three major steps: (i) partial dis-
integration of the recalcitrant moieties of the feedstock through pretreatment techniques,
(ii) production of monomeric sugar hydrolysate from the fragmentation of biopolymeric
matrix, and (iii) fermentation of monomeric sugars into alcohols [6]. Besides the fermen-
tative or biochemical conversion, thermocatalytic routes can also be employed in the
making of bioethanol to produce different platform chemicals like furfurals, phenolics, and
levulinic acid.
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The predominant practice for managing lignocellulosic biomass, especially in devel-
oping countries, is direct combustion, which leads to the inefficient use of resources and air
pollution [7]. Hence, the development of alternative technologies is essential to enhance
the responsible usage, management, and valorization of lignocellulosic biomass [8]. The
use of lignocellulose as a potential substitute is supported by its abundant and diverse
sources of raw materials, as well as the advantageous market prospects of its conversion
products. The primary components of biomass, including cellulose, hemicellulose, and
lignin, play a crucial role in the biorefinery system and significantly contribute to the overall
expansion of the global bioeconomy [9,10]. The generation of sugar monomers can be
achieved using cellulose and hemicellulose, which are the polysaccharide constituents
found in lignocellulosic biomass. The efficiency and cost-effectiveness of the bioconversion
process are contingent upon the extent to which polysaccharides are effectively converted
into monomeric sugars and subsequent fermentation to biofuels and biochemicals [11].

The upscaling of biochemicals and biofuel production from lignocellulosic biomass
continues to pose significant problems, necessitating the resolution of many fundamental
operational obstacles. The primary obstacle to the efficient use of biomass is the intricate
recalcitrance and structure of lignocellulosic biomass [12,13]. The limited production of
fermentable sugars could be attributed to the presence of lignin polymer and the common
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component of lignocellulosic feedstocks, which act as barriers to the nonspecific binding
of hydrolytic enzymes [14–16]. To address these concerns, it is necessary to include lignin
removal as an additional pretreatment step. This step is essential for eliminating the refrac-
tory nature of lignocellulosic biomass and facilitating its further processing [17]. Numerous
pretreatment methods have been proposed over recent years to generate fermentable sugars
effectively [13,18,19]. However, pretreatment is a costly and energy-intensive process that
has a significant influence on the economic competitiveness of lignocellulosic biorefineries.
The economic feasibility of the biomass market and supply chain, the level of technologi-
cal advancement of the utilized technologies, and the transition from laboratory-scale to
pilot-scale processes are additional significant obstacles that hinder the commercialization
of lignocellulosic biorefineries [9,20].

The process of expanding biorefinery operations from a laboratory setting to a commer-
cial scale is intricate and requires significant financial investment. Similarly, the optimiza-
tion of energy efficiency and the effective management of waste by-products are imperative
technical endeavors. Economic hurdles encompass several factors, such as substantial
upfront investment requirements, the challenge of maintaining economic sustainability
in the face of volatile oil prices, and the scarcity of available financing alternatives [21].
The prioritization of environmental sustainability and the active involvement of local
communities is of utmost importance [22]. Developing countries have notable hurdles
and roadblocks concerning the diversification of biomass sources, the scaling up of biore-
finery technologies, and the commercialization of biofuels [23]. The restricted spectrum
of biomass sources is mostly attributed to the geographical diversity of feedstocks with
a heavy reliance on agricultural residues and a lack of awareness of sustainable waste
management practices [24]. Addressing these obstacles and filling the gaps in knowledge
is imperative to fully harness the promise of biofuels in the area and advance a sustainable,
low-carbon energy trajectory.

The focus of this article is to shed light on the regulatory measures, policies, research
advancements, and socioeconomic aspects of biomass utilization to produce biofuels in
India with reference to a few other leading economies. While numerous reports are
available in the literature on various aspects of biorefineries, the emphasis of this article
is specifically on second-generation biorefineries that require lignocellulosic feedstocks
without competing with food or fodder production, arable land, and water required for
irrigation. Moreover, this review elucidates the primary obstacles encountered in biomass
supply chains and biofuel commercialization, which are crucial factors in shifting the
paradigm from fossil fuels to renewable energy.

2. Different Generations of Biorefinery

The notion of biorefinery has garnered considerable interest as a viable approach to
achieving sustainable resource usage and the generation of biobased commodities [25]. A
biorefinery refers to a comprehensive and interconnected system that transforms biomass
into a diverse range of valuable biobased commodities, including biofuels, biochemicals,
and biomaterials [26]. The initial wave of biorefineries prioritized the use of food crops
for biofuel production. However, a more sophisticated and environmentally conscious
approach has been adopted by second-generation biorefineries. These newer facilities
aim to minimize the conflict between food and fuel production by utilizing lignocellulosic
biomass. This shift in focus not only addresses environmental concerns but also enhances
overall efficiency.

Concern about greenhouse gas emissions and the demand for energy resources re-
sults in shifting global attention towards biofuel production. As mentioned earlier, there
are different generations of biofuels categorized based on their raw materials and pro-
duction methods, such as the first, second, and third generations of biofuels [27]. The
first-generation biomasses are mostly food crops such as corn, wheat, barley, sugar beet,
sugarcane, paddy, and potato that are cultivated as energy crops to produce biofuels such
as bioethanol [28]. These biofuels are produced through the fermentation of starch, a
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simple sugar present in these food crops and grains. However, the industrial production
of first-generation bioethanol can be unethical and impact the socioeconomic aspects of
biorefinery since it creates a food-versus-fuel scenario and competes with food supply and
arable farms as well as nutrients and resource input [29].

Second-generation biorefineries predominantly utilize lignocellulosic feedstocks, in-
cluding agricultural residues, forest residues, dedicated energy crops, and municipal solid
waste [30]. These feedstocks are abundant in nature and inexpensive. The change in the se-
lection of feedstock resolves problems of food security and competition for land usage. The
feedstocks commonly encompass lignocellulosic materials, which necessitate more intricate
processing methods owing to their inherent resistance. Lignocellulosic biomass comprises
cellulose, hemicellulose, and lignin. It requires intensive methodologies for the effective
separation and conversion of these components. The generation of biofuels needs devel-
opment at a competitive cost due to more technical obstacles that must be overcome [31].
Second-generation biorefinery has become more attractive than traditional petroleum-based
refineries due to liquid fuel substitutes, biobased materials, and bioproducts.

Third-generation biofuels are generally extracted from marine resource supply chains
such as microalgae and water hyacinth [32]. Algal biomass is ideal for the generation of
biofuels because of its photosynthetic properties to fix CO2 biologically, produce lipid-
based fuels and products, and utilize wastewater as a growth substrate [33,34]. Based on
the size and morphology, algae are classified as macroalgae (up to 60 m) and microalgae
(5–100 µm) [35,36]. However, microalgae have some important features, such as the ability
to grow in all environments, produce high lipid (oil) content, and require relatively fewer
nutrients to grow. The unique advantage of microalgae is the capability for both hydrogen
production and oxygenic photosynthesis while capturing CO2. Zhou et al. [37] reported that
around 1.8 kg of CO2 was consumed by 1 kg of algal biomass during production. However,
the oil produced from algae has a high unsaturation level, which makes it more volatile
and susceptible to denaturation at high temperatures [38]. Because algae have a short
growth cycle, more biomass precursors can be harvested at a rate faster than that of other
energy crops (e.g., switchgrass and hybrid poplar) and other first- and second-generation
feedstocks. Additionally, since algae may thrive in industrial effluent and wastewater, there
is a limited requirement for fresh, clean water [39].

One of the primary obstacles encountered in second-generation biorefineries is the
enzymatic hydrolysis of the intricate lignocellulosic matrix to extract its constituent compo-
nents. Numerous investigations have been made to achieve this goal by applying biological,
chemical, thermal, or hydrothermal processes [40–42]. Since all conversion techniques face
some difficulties, chemical processes are recognized as the most suitable, considering the
faster and more flexible conversion of biomass to biofuels and biochemicals [43]. Various
pretreatment methods, such as steam explosion, acid hydrolysis, and enzymatic treatments,
are utilized to weaken the structure of biomass and enhance the extraction of cellulose,
hemicellulose, and lignin components [44]. The optimization of pretreatment processes
is crucial to achieving high product yields and minimizing the formation of undesired
by-products that can impact the downstream processing and fermentation process [45].

Second-generation biorefineries utilize several conversion methods to convert the
recovered biomass fractions into products that are derived from biological sources. Enzy-
matic hydrolysis is a widely employed process in which cellulose and hemicellulose are
enzymatically degraded into fermentable sugars [46]. These sugars can then be utilized for
the formation of bioethanol and other biochemicals. The biological conversion of biomass
entails the following key steps: (i) selection and processing of biomass, (ii) pretreatment
of biomass, (iii) biomass saccharification, (iv) fermentation of pentose and hexose, and
(v) downstream operations [20,47,48]. On the other hand, thermochemical conversion
techniques, namely, liquefaction, pyrolysis, and gasification can transform lignocellulosic
materials into biofuels in the form of solid (biochar), liquid (bio-oil and biocrude oil), and
gas (syngas and hydrogen) [49].
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One distinguishing characteristic of second-generation biorefineries is their adaptation
of an integrated strategy toward achieving maximum product diversity. These biorefineries
strive to optimize the extraction of high-value from low-cost feedstocks by utilizing a com-
bination of chemical, biological, and thermochemical processes [50,51]. For example, lignin
is commonly seen as a secondary product within the pulping industry. However, it has the
potential to be transformed into valuable biochemicals and biomaterials such as biobased
polymers and adhesives [52,53]. However, from a commercial point of view, the integration
of different biological and thermochemical conversion processes may deliver a more sus-
tainable process for the industrial production and utilization of biomass-derived products
in a circular approach. For instance, Giuliano et al. [54] proposed an integrated process for
the valorization of biomass by producing multiple products like levulinic acid, succinic acid,
and bioethanol by using both the thermocatalytic and biochemical conversion routes. Mul-
tiple product-based biorefineries could be more feasible than single-product biorefineries,
which has become one of the main future visions of second-generation biorefineries.

Second-generation biorefineries play a significant role in promoting sustainability
through the mitigation of greenhouse gas emissions, the reduction of dependence on fossil
fuels, and the efficient utilization of waste materials [55]. These benefits also serve as the
fundamental aspects of a circular economy since they involve the use of waste streams and
the production of biobased commodities with a significantly low impact on the environ-
ment. Nevertheless, it is imperative to tackle the obstacles associated with the availability
of feedstock, energy consumption throughout the process, and economic feasibility to
guarantee the enduring sustainability of these biorefineries. These lignocellulosic-based,
second-generation biorefineries aim to establish a sustainable and diverse biobased econ-
omy by employing lignocellulosic feedstocks, modern conversion technologies, and an
integrated circular economy strategy.

3. Second-Generation Biorefinery in India and Other Leading Economies

Asian countries like India and China are the major contributors to the second-generation
feedstock. India is a prominent global producer of food grains, generating a substantial
amount of agricultural waste each year estimated at 1043 million metric tons [56]. The major
portion of the agricultural residues solely from the Asian countries rely on the intensive
agricultural practices throughout the different regions. Besides India and China, Brazil
is the leading producer of sugarcane in the world, which generates around 780 million
metric tons of bagasse and pith [57]. The yearly generation of agricultural waste in the US,
particularly from corn stover and wheat straw, amounts to 215 million metric tons, whereas
a majority of Europe produces more than 150 million metric tons of various agricultural
wastes [58].

A rapidly developing economy, population growth, urbanization, changing lifestyles,
and rising per capita energy requirements are the driving factors to India’s growing energy
demands. Fossil fuels account for more than 90% of the fuel needed in India, with biofuels
providing an insignificant fraction. Imports meet about 85% of India’s oil needs, especially
for the transportation sector [59]. Domestic biofuel production offers the nation a strategic
advantage because it lessens its reliance on imports of liquid fossil fuels. By investigating
the market dynamics of different biofuels in India, it can be observed that bioethanol had a
market value of USD 2.35 billion in 2023, which is forecast to double by 2030 [60]. Similarly,
gaseous biofuels, such as biomethane and biohydrogen, had approximate market values
of USD 4.20 billion and USD 1.47 billion, respectively, in India in 2024 [61,62]. Besides,
there is a huge market demand for different platform biochemicals like lactic acid, succinic
acid, and other organic acids derived from biomass to replace petrochemicals. Thus, the
rapid innovation and development in the field of biorefinery or biofuels in India can
strategically contribute to the world economy and the domestic economy. India has taken
numerous initiatives to establish a strong developmental situation for biorefinery, especially
for bioethanol produced from second-generation feedstocks. India is known as a global
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innovator in the field of bioenergy due to its rapid and effective industrial and pilot-scale
programs facilitated by various governmental and nongovernmental organizations.

In 2020, Brazil and the US contributed to about 85% of the world’s bioethanol produc-
tion from sugarcane and corn, respectively. In contrast, India produced only 2% despite
producing a huge amount of lignocellulosic residues with an annual average surplus of
around 357 million metric tons, which has the potential to produce 64 billion liters of
bioethanol per year and significantly lessen India’s reliance on crude oil imports [56,63,64]
(Figure 2). However, it should be noted that the production of bioethanol in India has
steadily increased from 2057 million liters to 5300 million liters from the years 2013 to 2022,
which is forecast to reach 6300 million liters by the end of 2023 [65] (Figure 3). This signifi-
cant change in bioethanol production in the last 5–6 years is attributed to the facilitation of
the Indian federal and provincial governments towards renewable transportation fuel [65].
The Government of India has been steadily promoting the production of second-generation
bioethanol from agricultural residues to subsidize farmers and biomass producers with
additional sources of income, address growing environmental concerns, and support the
20% bioethanol-blended liquid fuel program.
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Recently, some leading oil companies in India such as Hindustan Petroleum Corpora-
tion Ltd. (HPCL), Indian Oil Corporation Ltd. (IOCL), Bharat Petroleum Corporation Ltd.
(BPCL), Mangalore Refinery and Petrochemicals Limited (MPCL), and Numaligarh Refinery
Limited (NRL) have deliberated and strategized their plans to establish second-generation
bioethanol facilities to supplement the country’s growing fuel demands and accelerate the
path to emission reduction. A few planned establishments of second-generation bioethanol
refineries in India are shown in Table 1.

Table 1. A few proposed or planned commercial second-generation bioethanol refineries in India.

Company Expected Plant Capacity (Kiloliters/Day) Proposed Location

BPCL 100 Bargarh, Odisha
BPCL 100 Sagar, Madhya Pradesh
BPCL 100 Maharashtra
HPCL 100 Bathinda, Punjab
HPCL 100 Budaun, Uttar Pradesh
HPCL 100 Supaul, Bihar
HPCL 100 West Godavari, Andhra Pradesh
IOCL 100 Panipat, Haryana
IOCL 100 Gorakhpur, Uttar Pradesh
IOCL 100 Dahej, Gujarat
MRPL 60 Davangere, Karnataka
NRL 187 Numaligarh, Assam

Reference: Press Information Bureau [66]. Abbreviations: Bharat Petroleum Corporation Ltd. (BPCL), Hindustan
Petroleum Corporation Ltd. (HPCL), Indian Oil Corporation Ltd. (IOCL), Mangalore Refinery and Petrochemicals
Limited (MPCL) and Numaligarh Refinery Limited (NRL). Note: The authors take no liability for the accuracy of
the information provided in this Table since variations in the plant capacity, location and, the proposed plans
could change depending on the company’s priorities, environmental approvals and other factors.

In 2019, a bamboo-based 187 kiloliters/day bioethanol refinery began operations in
Assam, India, with a partnership between the Finnish biorefining company (Chempolis)
in Oulu, Finland and the Numaligarh Refinery Limited in Assam, India. MRPL has
started construction of a lignocellulosic bioethanol plant with an expected capacity of
60 kiloliters/day near Harihar, Davangere, Karnataka. The project has already acquired
land, and in 2025, the plant is anticipated to be operational, where bioethanol will be utilized
only for blending with gasoline. Besides these public sector and government-aided projects
on the biorefineries, the promotion of sustainable and environmentally friendly energy
sources has been significantly facilitated by the notable accomplishments in bioethanol
production within the Indian business sector, particularly by known businesses such as
Reliance Industries Limited, Tata Group, Adani Group, and Praj Industries Limited.

Reliance Industries Limited has been actively engaged in the production of bioethanol
derived from sugarcane molasses and anticipates introducing algal biomass as a feed-
stock for various biofuel production, making significant contributions towards mitigating
greenhouse gas emissions and fostering the use of clean energy alternatives [67]. The Tata
Group has demonstrated notable progress in leveraging modern technology to produce
ethanol from diverse feedstocks. Moreover, Tata Group has been a stakeholder in the BPCL
project in Bargarh, Odisha, to produce 100 kiloliters/day of bioethanol [68]. Similarly, the
Adani Group, which is a unicorn company dealing with petrochemicals, has determined to
invest over USD 50 billion in the coming decade to create a sustainable energy ecosystem,
especially focusing on bio-alcohols and biohydrogen (with a production capacity of around
1 million metric tons of hydrogen per year) [69]. This strategic move has resulted in a signif-
icant and noteworthy contribution to the biofuel industry in India. These accomplishments
demonstrate the long-term vision of leading corporations to mitigate carbon emissions and
advance India’s renewable energy targets while promoting the utilization of bioethanol as
an environmentally viable substitute for conventional fossil fuels. Significant R&D efforts
on biomass conversion and biofuel applications across different academic institutions as
well as public or private research organizations in India have led to these demonstration
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or commercial-scale interventions. The Department of Science and Technology (DST) and
the Department of Biotechnology (DBT) are some of the primary funding agencies by the
Government of India supporting different high-quality research projects on biofuels in
addition to other fundamental, applied, and emerging areas.

According to the biorefinery policies of India, multiple feedstocks are processed by
smart biorefinery techniques, which will also create a variety of outputs, including biobu-
tanol, bioethanol, biomethane, biochemicals, and clean thermal energy. Hence, second-
generation biorefineries are integrated bioenergy units, which will help address and miti-
gate environmental issues such as greenhouse gas emissions. Additionally, they could boost
the socioeconomic growth in rural India and generate employment in the biorefinery and
biomass supply chain. The generation of high-value by-products such as furfurals, xylitol,
monosaccharides, organic and fatty acids, and phenolics in second-generation biorefineries
has considerable potential to boost overall profitability [20,48,70].

4. Biofuel Policies and Regulations in India and Other Leading Economies

In recent years, numerous developed and developing countries have implemented
several laws and policies to encourage or mandate the use of renewable energy [69]. The
“Biomass Research and Development Act” became effective in the US in 2000 to effectively
initiate biofuel activities [20]. Similarly, the US Environmental Protection Agency is required
by law to establish production mandates for biofuels [71]. Moreover, the US government
initiated the “Energy Independence and Security Act” to advance the production of biofuels
for domestic energy security.

RenovaBio, a Brazilian biofuel policy, is more appealing than other programs and has
led to a higher overall bioethanol blending ratio [72]. This strategy incorporates tools for
lifecycle assessment, fuel market commercialization, and predictability, enhancing national
energy security and reducing greenhouse gas emissions. Brazil is the only nation in the
world that permits the use of E100 (100% bioethanol) in place of gasoline. In contrast,
Sweden is the only country that utilizes E85 (85% bioethanol blending with gasoline) and
has the highest usage of biofuels (up to 32%) in Europe. The German “Biofuel Quota Act”
of 2007 recommended a 17% target for biofuels by 2020 [73]. The UK follows an E5 mandate
(5% ethanol blending), which is a lower blending ratio compared to other countries.

The Government of China unveiled laws in September 2017 that mandate the use
of bioethanol with a 10% bioethanol blend target in fuel for the entirety of China [74].
In Thailand, the “Alternative Energy Development Plan” aims to boost the proportion
of renewable and alternative fuels from 7% of total fuel energy usage in 2015 to 25% in
2036 [20,59]. New Zealand, Australia, Colombia, Bolivia, Peru, Malaysia, the UK, Paraguay,
the Philippines, South Korea, and South Africa have proposed to implement mandates on
the percentage of biofuel blends [75–77].

To meet its escalating needs for transportation fuels, India largely relies on importing
petroleum crude from Russia and a few Gulf countries. Since 2003, the Government of
India has started E5 (5% bioethanol) blending with gasoline in four union territories and
nine states, which was later extended to 20 states by 2006 [78]. The “National Mission
on Biodiesel”, which sought to reach 20% biodiesel blending in petrodiesel by 2012, was
introduced together with the adoption of the biofuel mission in 2003. Moreover, the
“National Policy on Biofuel”, first released in 2009, was amended twice in 2018 and 2022.
The goal of this policy is to lessen the dependency on imports of petroleum products by
promoting the development and production of biofuels domestically. The National Policy
on Biofuels 2009 projected an optional 20% blending goal for bioethanol and biodiesel
by 2017. It aimed to promote the best indigenous biomass feedstock growth for biofuel
production. It provided a framework for allowing technological, institutional, and financial
initiatives that outlined the vision, objectives, and plan for producing biofuels.

The “National Mission on Biodiesel” by the Government of India started in 2003,
where the primary recommendation made by the government was to grow Jatropha on
11 million hectares of wasteland by 2012. However, the government’s goals were hampered
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due to the higher cost of biodiesel production than its purchase price [79]. Additionally,
the National Mission on Biodiesel lost traction and interest due to numerous economic
and agronomic restrictions. Although most of the local administrations have kept the state
excise tax in place, one financial incentive for biodiesel production was the exemption from
the 4% central excise tax.

In 2018, the new National Policy on Biofuels by the Government of India became effec-
tive, which recommended a blending target of 5% biodiesel in diesel and 20% bioethanol
in gasoline by 2030 [80]. Reduced imports of crude oil, increased farmer income, rural
jobs, optimum use of drylands, and environmental sustainability are the major objectives
of the new National Policy on Biofuels. This policy was also commissioned to provide
financial and tax advantages tailored to the first-, second-, and third-generation biofuels.
However, this policy was modified by the Indian Union Government in 2021–2022 to set
the goals for bioethanol blending for 2025. Additionally, the use of residual food grains or
food waste generated from the different food processing units, such as surplus corn and
rice, was permitted as the feedstocks to generate biofuels. According to the recently formed
expert committee on the “Roadmap for Bioethanol Blending in India”, 14 billion liters of
bioethanol are expected to be produced by 2025 to meet the updated targets [81,82]. The
plan aims to produce 6.8 billion liters of bioethanol from sugarcane and 6.6 billion liters
from food grains, which poses a significant impact on the agriculture sector.

The Government of India accelerated its E20 goal to blend 20% bioethanol into gasoline
by 2025, five years earlier than it was planned to be executed [82]. However, the deficit
of bioethanol is a major challenge to achieving this target. To meet the 10% bioethanol
blending objective, about 4.5 billion liters of bioethanol will be required, considering the
demand for gasoline by 2022 [20]. However, the existing production capacity, which mostly
relies on bioethanol derived from first-generation technologies, is insufficient to meet
10% blending standards. The “JI-VAN” (Jaiv Indhan-Vatavaran Anukool Fasal Awashesh
Nivaran—in Hindi) initiative was established by the Government of India’s Ministry of
Petroleum and Natural Gas in 2017 to provide financial assistance to lignocellulosic (second-
generation) biorefineries [9]. The global expansion of biorefineries has been accelerated by
these policies, which have encouraged the efficient use of plentiful lignocellulosic biomass
for the sustainable production of by-products.

5. Challenges for Commercialization of Second-Generation Biorefineries
5.1. Supply Chain and Availability of Second-Generation Biomass

The potential obstacles for second-generation biorefinery operations are illustrated in
Figure 4. Despite the higher initial investment required, biorefining proves to be a more
economically efficient approach. Therefore, to ensure economic feasibility, the feedstock
utilized in the biorefinery must be both cost-effective and readily accessible [19]. Various
categories of second-generation biomasses can be used as feedstock, contingent upon their
availability at different times throughout the year. Nevertheless, the main challenge in
the commercialization of second-generation biorefineries is the consistent affordability of
seasonal feedstock [83]. Considerable amounts of agricultural residues are generated in
Asian countries such as China and India, presenting a viable opportunity for utilization as
feedstock in biorefineries. According to a report by Datta et al. [84], India produced over
685 million metric tons of agricultural waste in 2018. However, a significant portion of this
trash, up to 87 million metric tons, was disposed of by open burning on the farm, which
consistently led to poor regional air quality and smog formation lingering for several days.

The primary source of raw materials for biorefineries consists of the surplus biomass
available within a specific nation. For instance, Canada’s predominant source of lignocel-
lulosic biomass is derived from forest wastes since it contains 9% of the world’s forests,
resulting in an annual production of around 52 billion liters of biofuels, primarily as
bioethanol [20]. As a result of the considerable availability of these sustainable biomass
resources, countries such as the US and Brazil employ the residual corn stover and sugar-
cane bagasse. Furthermore, several biorefineries in the US rely on dedicated energy crops
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(e.g., switchgrass, elephant grass, hybrid poplar, etc.) as supplementary sources of second-
generation feedstock due to their fast growth cycle, less-intensive cultivation practices,
and high biomass yield [70]. Within the European Union, a variety of biomass sources
originating from forestry, fishery, and agriculture are employed to generate biomaterials
and bioenergy [77].
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The determination of the minimum selling price for second-generation feedstocks in a
biorefinery at a certain site is heavily influenced by the expenses associated with purchasing
biomass from farmers as well as the costs incurred during its bulk transportation and
storage. Hence, it is imperative to assess the financial implications associated with the
preprocessing and postprocessing stages of biomass before proposing the establishment
of a biorefinery. Furthermore, it has been observed that the expenditure on feedstock in
second-generation biorefineries constitutes around 50% of the total production cost of
bioethanol [85]. Various types of biomasses can be utilized to address this issue, enabling
uninterrupted availability of biomass resources at a single site throughout the year. To
ensure the sustainable operation of biorefineries, the concept must incorporate facilities
for the utilization of diverse feedstocks, hence mitigating dependence on a particular
variety of biomass [47]. The various stages involved in the supply chain of a biorefinery’s
feedstock encompass sorting, transportation, storage, and biomass processing [86]. The
primary factor influencing the minimum selling price of the feedstock logistic network is
predominantly the transportation expenses.

According to Usmani et al. [20], the expenses related to the large-scale production
of biofuels can vary between 40% and 60%, encompassing factors such as supply chain
management and feedstock processing. The determination of biomass transit and storage
duration is contingent upon the geographical establishment of the biorefinery. To mitigate
the increased final minimum selling price and transportation expenses associated with feed-
stocks, the proximity of the feedstock availability to the biorefinery must be ensured [87].
Potential options for outlining the feedstock supply chain include the development of
biomass exchange models that can effectively meet both economic and environmental
criteria, as well as the use of biomass torrefaction and densification techniques to reduce
volume [86]. The moisture content, expressed as a percentage, is a significant concern
about the storage and transportation of biomass. Microbial growth within the moisture
content range of 20% and above has the potential to affect both the biomass composition
and selection of the conversion process. In addition, another barrier is the task of main-
taining an equilibrium between the demand and supply of biomass to establish a steady
bioresource market. The presence of competition among suppliers in the biomass market
has the potential to mitigate fluctuations in prices.
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5.2. Efficiency of Pretreatment and Enzymatic Saccharification

Along with the availability of biomass and the supply chain, choosing an effective
pretreatment method for different feedstocks is a crucial challenge that must be taken
into consideration. Biomass pretreatment is considered an essential step in the effective
usage of second-generation biomass because it disintegrates the structure of biomass
and separates the cellulose hemicellulose from the lignin matrix [17]. Furthermore, it
improves the efficiency of the final products followed by subsequent saccharification and
fermentation processes. Several physicals (e.g., extrusion and milling), physicochemical
(e.g., steam explosion and ammonia fiber expansion), chemical (e.g., alkalis, acids, and
ionic liquids), and biological (e.g., bacteria, fungi, and enzymes) pretreatment methods
have been developed for effective biomass pretreatment and hydrolysis [13,19,20].

Table 2 lists the benefits and drawbacks of a few biomass pretreatment technologies.
A significant problem in second-generation biomass pretreatment is the formation of high-
solid loadings. Therefore, for easier processing, increased production and productivity
and efficient feeding of biomass into various reactors with a high total solid concentration
is crucial. Additionally, the economics of the process can be enhanced by recovering and
reusing the chemicals and enzymes used in any pretreatment procedure.

Table 2. Comparison of second-generation biomass pretreatment methods.

Methods Mechanism Advantages Disadvantages

Biological pretreatment

• Enzymes (laccases,
peroxidases, etc.)

• Microorganisms (fungi
and bacteria)

• Decomposition of
polysaccharides to
monosaccharides.

• Low energy intake
• Requires no chemicals
• Mild reaction conditions

• Lower hydrolysis
• Slower process
• Continual monitoring is

required to prevent
contamination

Chemical pretreatment

• Organosolv method
• Dilute sulfuric acid
• Alkali bleaching
• Ionic liquid
• Deep eutectic solvents

• Releasing of lignin
and/or hemicellulose
increases the accessible
surface area of cellulose.

• Moderate reaction rates
• Higher yield of sugars
• High delignification

efficiency
• High conversion rate

• Corrosive, toxic and
hazardous material
handling is required

• More water is required
• High amounts of

wastewater are
generated

• Loss of lignin and
hemicellulose is
inevitable

Physicochemical pretreatment

• Torrefaction
• Ammonia fiber

expansion
• Steam explosion
• Wet oxidation

• The breakdown of
biomass cell walls
increases the digestibility
of fibrillated cellulose

• Drying of biomass
enhances bulk handling
and storage

• Less corrosive chemicals
are involved

• Highly effective

• Cost-effective setup
• Require special reactors
• Require high pressures

and temperatures

Pretreatment is often expensive and essential, accounting for roughly 30–50% of the
cost of all equipment and 20–25% of all operational costs in second-generation biorefin-
ery [20,48]. Compared to the physical pretreatments, the chemical pretreatment method
uses less energy. However, the use of different chemicals and certain digesters makes
the process more expensive [88,89]. The chemical reactions result in the production of
toxic or inhibitory products (e.g., furfurals, organic acids, and phenolics), which need
to be neutralized before saccharification and fermentation [90]. Several researchers have
suggested using techniques such as membrane evaporation, biochar-based adsorption,
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and ionic liquid-based pretreatment to remove inhibitors continuously while boosting
production [14,47,88,91].

In biological pretreatment, microorganisms and their hydrolytic enzymes are utilized
to break down the structure of cellulose and hemicellulose into monomeric pentose and
hexose sugars [40–42]. Recently, biological pretreatment processes have been adopted over
other pretreatment methods due to their low energy consumption, non-toxic by-product
formation, and environmental friendliness [92]. However, the slow rate of microbial growth
and expensive enzymes are some key challenges in the biological pretreatment of biomass.

The following pretreatment requirements are anticipated for successful commercializa-
tion of the second-generation biorefineries: (i) avoiding severity in biomass pretreatment
conditions, (ii) reducing the formation of toxic or inhibitory by-products, (iii) preventing
the loss of hemicellulose sugars, (iv) ensuring less water and energy consumption, (v) seek-
ing valorization of lignin, (vi) cost-effective recycling of catalysts, and (vii) seeking total
utilization of by-products for a closed-loop and circular bioprocessing approach.

As mentioned earlier, upon biological pretreatment, the polysaccharides undergo
enzymatic hydrolysis to yield monosaccharides. The expenses associated with enzymatic
hydrolysis can constitute around 25% of the overall expenditures in a second-generation
biorefinery [9,20]. Therefore, it is of utmost importance to develop cost-effective enzyme
combinations for the conversion of second-generation biomass into the desired products.
The efficacy of enzymatic hydrolysis is impacted by various factors, including catalytic
parameters, enzyme loading, hydrolysis duration, temperature, and pH [93–95]. Different
pretreatment approaches result in a diverse composition of biomass, necessitating the
adoption of a tailored enzymatic combination for each unique biomass. On-site enzyme
manufacturing technology has recently been proposed as an alternative to conventional
off-site enzyme production facilities to reduce the price of hydrolytic enzymes [96].

Several studies have examined the issues associated with scaling up, particularly
in the context of second-generation biorefineries. These studies have suggested that an
integrated approach to enzyme production is a recommended method [97–99]. When
second-generation biomass is utilized for both enzyme production and enzymatic hy-
drolysis, microorganisms can generate enzyme isoforms that exhibit enhanced substrate
affinities [100]. Consequently, market players involved in the production of enzyme combi-
nations should be attracted to this area to facilitate the cultivation of specific fungal strains
capable of synthesizing biomass-specific enzymes. Research efforts should be invested to
engineer microorganisms capable of efficiently fermenting and hydrolyzing pretreated or
minimally treated lignocellulosic biomass at levels of productivity that are adequate for
industrial applications [101–103].

5.3. Technology Scale-Up

The process of scaling up second-generation biorefineries to meet the increasing need
for renewable energy products presents considerable challenges. In many cases, the param-
eters and operational conditions that have been adjusted at the laboratory scale may not
exhibit the same level of efficiency when applied to demonstration-scale or pilot-scale oper-
ations [70,99]. The identification of pertinent factors for transitioning from laboratory-scale
to pilot-scale, and subsequently to commercial-scale is of utmost importance. Several im-
portant factors need to be considered when scaling up biorefineries for commercialization,
including the development of techno-economic models, process optimization, technological
advancements, lifecycle analysis, and the simulation of cost and risk mitigation [77,104,105].
Furthermore, it is important to consider several other essential factors, such as minimiz-
ing waste discharge streams, limiting water consumption, efficiently utilizing resources
(biomass, materials, equipment, and labor), appropriately integrating pretreatment and
conversion techniques, diversifying products for the expansion of second-generation biore-
fineries [106].

The sequence of expenses in biomass management and processing involves prioritizing
operational expenditures followed by capital expenditures, as the latter determines the
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approach for scaling up operations. To mitigate the risk of a commercial failure, it is
imperative to safeguard capital expenditures and actively seek opportunities to minimize
it to the greatest extent possible. One potential strategy for reducing the initial expenses
involved with establishing a greenfield site is to leverage the existing infrastructure within
enterprises engaged in the production of biochemicals [20].

It is also essential to consider the automation of second-generation biorefinery oper-
ations for effective commercialization. Automation can eliminate manual interventions,
enhance operational efficiencies, and reduce energy use [48,95]. The implementation of
second-generation bioethanol facilities in future production is imperative due to several
factors. These include the substantial production costs associated with such facilities, sig-
nificant political and regulatory problems surrounding their establishment, as well as the
technological hazards they provide, and their limited potential returns.

Besides automating the conversion processes, another major step can be taken in the
commercialization of second-generation biofuels, which is the establishment of an inte-
grated, flexible, and versatile conversion process. Unlike the “single product” biorefinery
approach, the integrated biorefinery approach works in synergy to combine biological and
thermochemical conversion processes to utilize resources and by-products and manage
wastes to deliver multiple products. The commercialization of the integrated biorefinery
process appears to be more attractive, feasible, and sustainable. For instance, in a bioethanol
refinery, a major by-product is CO2 resulting from microbial metabolism, which can be
reused as a non-polar solvent by converting it into supercritical CO2 fluid that can be used
as an environmentally friendly extraction medium for food-grade extractions. Moreover,
the major problem in a commercial bioethanol plant relies on the utilization of the residual
or spent feedstock generated from the bioethanol making can be used as the feedstock for
the production of carbon-rich bioproducts (e.g., biochar, hydrochar, and activated carbon)
through the carbonization of the residual biomass, which can be used as a solid fuel that
can be used in the distillers to for energy or can be used as a fertilizer in agriculture. This
integration of the different bioconversion processes will feasibly achieve the commercial
bioethanol refineries by establishing a multiproduct and zero-waste approach.

6. Future Prospects and Recommendations

Table 3 presents the strengths, weaknesses, opportunities, and threats (SWOT) analysis
of the second-generation biorefinery, which is intended to guide its future development.
There is a wide availability of processing technologies and valorization strategies for
mixed biomass in the context of second-generation biorefinery. The scaling-up process of
two biorefineries poses a significant barrier in terms of their commercialization. Therefore,
drawing from the findings of laboratory and pilot-scale investigations, it is imperative to es-
tablish a complete repository of second-generation biomass treatment techniques and their
corresponding process optimization strategies. The establishment of a second-generation
biorefinery setup with high efficiency and scalability would yield significant advantages.

The utilization of state-of-the-art biotechnological methods and novel single-step
technologies is imperative to achieve cost competitiveness with fossil fuels driven by the
progress made in second-generation biorefinery. Accordingly, it is possible to provide an
extra research platform that facilitates the integration of second-generation biorefineries
with existing petroleum refineries, thus enabling sustainable applications. The primary
objectives of the integrated biorefinery model are two-fold: (i) to optimize the utilization
of second-generation biomass by simultaneously producing biofuels and value-added
biochemicals, and (ii) to integrate two biorefineries with an existing petroleum refinery
to reduce both initial investment and ongoing operational expenses [77]. Hence, it is
reasonable to prioritize this viewpoint considering the progressively diminishing large-
scale use of fossil fuels.
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Table 3. SWOT analysis of second-generation biorefinery for future development.

Strengths Weaknesses

• Sustainable development of energy and products,
carbon-neutral and eco-friendly

• Circular bioeconomy concept
• Less reliance on fossil fuels
• Waste management and minimization
• Open to agricultural and chemical processing sectors for

collaboration
• Boosts rural economy and generates additional revenue

sources for industries and individuals

• Higher operational and capital expenses
• Lack of funding for operations at a commercial scale and

demonstration
• Distinctive gap among lab-scale, pilot-scale, and

commercial-scale processing
• Lack of uniform biomass supply chain
• Difficulty in large-scale biomass processing

Opportunities Threats

• Strengthening of the economy by clustering of agricultural,
chemical, and energy sectors

• Increase employment opportunities
• Scope to reduce greenhouse gas emissions
• Generation of technical and scientific knowledge base
• Ensures domestic energy security
• Innovation for waste to energy
• Increased creation of start-up and spin-off companies

• Consistent use of traditional energy sources (e.g., fossil
fuels) is a major threat.

• Dwindling investments due to long-term uncertainty and
risks

• Inconsistencies relating to seasonal biomass availability
and logistical difficulties

• Immaturity in process improvement and automation
• Food-versus-fuel debate

References: Usmani et al. [20], Singh et al. [48], Chandel et al. [70].

It is worth noting that second-generation biorefineries have the potential to utilize
alternative methodologies that differ from the infrastructure often applied in petroleum-
based refineries. To ensure a circular economy, the residual or discarded second-generation
biomass can be utilized to generate syngas, value-added products, and long-chain hydro-
carbons within refineries [107,108]. Therefore, this has the potential to enable the utilization
of diverse feedstocks more efficiently, resulting in the production of many co-products
including power and heat. The utilization of lignin, a residual substance with a high energy
density, can also be employed for energy production.

7. Conclusions

The second-generation biorefinery has gained attention due to environmental con-
cerns, the growing need for energy, and global warming. This has led to increased interest
in the production of bioethanol, which can be used as a commercial and sustainable bio-
fuel and industrial biochemical. The development of second-generation biorefinery offers
numerous advantages. Nevertheless, the commercialization of biofuels and valuable chem-
icals poses significant challenges, encompassing the consistent availability of feedstock, the
technological intricacies of the conversion process, and the imperative of cost-effectiveness
for scale-up. Therefore, the implementation of second-generation biorefinery necessitates
the establishment of a more robust supply chain that would effectively utilize the surplus
lignocellulosic biomass into biofuels and biochemicals. Brazil has proposed a 100% (E100)
blending of bioethanol, while India amended its biofuel policies to meet a target of 20%
(E20) bioethanol blending in the near future. On the other hand, countries like the US,
Russia, Germany, China, and the Gulf countries have targeted a bioethanol blending of
5–17%. In addition, to achieve this blending of E20, India (in association with leading oil
corporations and established for-profit organizations) has established a few bioethanol
refineries across its subcontinent using abundantly available lignocellulosic feedstocks such
as rice husk, wheat straw, corn stover, and other agricultural biomass by implementing
various advanced fermentative and effective pretreatment techniques.

To effectively maximize and maintain the potential of a second-generation biorefinery,
it is necessary to amend government policies on biofuels in regular intervals, ensure the
availability of biomass throughout different seasons, make advancements in technology
for biomass processing and pretreatment, develop indigenous enzyme cocktails, and
value-addition of the by-products that are suitable for various types of lignocellulosic
biomass. Moreover, biofuels have the potential to serve as sustainable and environmentally
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friendly energy sources when employed responsibly. This could lead to a multitude
of advantageous consequences encompassing the transformation of waste into valuable
resources, enhancement of energy stability, mitigation of carbon emissions, use of impaired
and unutilized food grains, augmentation of agricultural income, generation of employment
chances, and expansion of avenues for investment.
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