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Abstract: Currently, Parkinson’s Disease (PD) is diagnosed primarily based on symptoms by experts
clinicians. Neuroimaging exams represent an important tool to confirm the clinical diagnosis. Among
them, Brain Parenchyma Sonography (BPS) is used to evaluate the hyperechogenicity of Substantia
Nigra (SN), found in more than 90% of PD patients. In this article, we exploit a new dataset of BPS
images to investigate an automatic segmentation approach for SN that can increase the accuracy of
the exam and its practicability in clinical routine. This study achieves state-of-the-art performance
in SN segmentation of BPS images. Indeed, it is found that the modified U-Net network scores a
Dice coefficient of 0.859 ± 0.037. The results presented in this study demonstrate the feasibility and
usefulness of SN automatic segmentation in BPS medical images, to the point that this study can be
considered as the first stage of the development of an end-to-end CAD (Computer Aided Detection)
system. Furthermore, the used dataset, which will be further enriched in the future, has proven to be
very effective in supporting the training of CNNs and may pave the way for future studies in the
field of CAD applied to PD.

Keywords: image segmentation; deep learning; neuroimaging; parkinson; ultrasound; brain parenchyma
sonography

1. Introduction

Parkinson’s disease (PD) is the second most common progressive neurodegenera-
tive disease whose typical pathological hallmark is the loss of dopaminergic neurons of
the Substantia Nigra (SN) of the mid-brain [1] and the deposition of alfa-synuclein in
neurons [1]. The diagnosis of PD is typically clinical and is based on cardinal symptoms,
including bradykinesia, rigidity, resting tremor and postural instability in later phases of
the disease [2]. Despite the relevant expertise of the neurologist, clinical diagnosis is often
challenging. Mostly in the early stage of the disease, PD may be confused with other disor-
ders (essential tremor (ET), secondary and atypical parkinsonisms), which have different
prognosis and management [3]. The gold standard is represented by neuropathological
examination [4]. Several methods have been developed to help PD diagnosis. Important
methods consist of functional imaging with Positron Emission Tomography (PET) or Single
Photon Emission Computer Tomography (SPECT) [5]. These examinations use different
presynaptic tracers to visualize the nigrostriatal system, and a presynaptic dopaminergic
deficit, particularly if asymmetric, indicates idiopathic PD. Their use is limited because
of the high costs and invasiveness. Furthermore, they may differentiate between PD and
ET, but not between the former and PD mimics like atypical parkinsonisms, i.e., Multiple
System Atrophy (MSA), Progressive Sopranuclear Palsy (PSP). Structural Magnetic Reso-
nance Imaging (MRI) is generally normal in PD, while it may show some specific disease
abnormalities of MSA or PSP, but only in later stages of the disease. Brain Parenchyma
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Sonography (BPS), using a transtemporal acoustic window (Figure 1), allows for the pos-
sibility of identifying SN hyperechogenicity, which is present in more than 90% of PD
patients [6].

Figure 1. Transcranial sonography of the mid-brain in a PD patient through the left temporal acoustic
bone window. The hypsilateral hyperechnogenicity of the SN within the butterfly-shaped mid-brain
is encircled by a segmented blue line traced by the neurologist. The image is anonymized, and it will
be cropped (cut) before entering the neural network in order to reduce the pixel imbalance between
SN and background.

George Becker identified for the first time this echofeature, which was not seen before
with other neuroimaging techniques [7]. BPS has thus become a reliable and valuable
tool for the diagnosis of PD with a great specificity (82.4%), sensitivity (90.75%) and high
predictive value for PD diagnosis (92.9%) [8]. When ultrasound waves propagate through
tissue and encounter interfaces between two types of tissue, some of the sound waves will
be reflected back. This reflected sound is defined the “echo" signal. The echo production is
dependent upon acoustic impedance, a property of the tissue, as a result of its density and
the propagation velocity of sound waves through that tissue. The causes of the echogenic
modifications of SN are not well understood. It has been associated with increased SN
iron content [9] and modifications in iron-binding proteins like decreases in neuromelanin
content in SN [10]. It is a stable marker that does not correlate with severity or disease
progression [11]. An important concept is that this echofeature is not directly correlated
with the progressive loss of SN neurons, but it may be considered a marker of a certain
vulnerability of the nigrostriatal system in PD patients, which could anticipate the onset of
motor symptoms [12].

Compared to the other technologies mentioned above, BPS is a broadly available, quick,
inexpensive and non-invasive method. However, its main limitations are represented by
the necessity of an adequate temporal acoustic bone window and by the dependency on
the skill of the operator. For these reasons, and also in view of the enormous progress made
in recent years by Deep Learning (DL) in the field of computer vision [13], the present
study aims to develop a tool to support the analysis of BPS images in such a way as to
mitigate the most serious limitation of the technology in question when applied to the
diagnosis of PD, namely the dependence of the method’s robustness on the availability of
operators with particular skills. To this end, we created a new dataset of BPS images, which
will be further extended in the future, in order to investigate the feasibility of automatic
SN segmentation using Convolutional Neural Networks (CNN) [14]. The article reports
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a comparison between two of the most widely used and promising CNN architectures
typically used for automatic segmentation, namely U-Net [15,16] and DeepLabV3+ [17],
providing a methodology for effective training and indications of the expected accuracy,
which, in spite of the relatively small size of the dataset available to date, proved quite
satisfactory. As explained in the next section, results on the achievable accuracy of SN
segmentation in BPS images by means of modern DL-based approaches are not frequent in
the literature.

The Substantia Nigra is found in the mid-brain area. Image segmentation means to
assign to each voxel/pixel of the image the status of true if it contains the PD indicator
(hyperechogenicity of Substantia Nigra), or false if to the contrary. Several previous
studies have tried to segment only the mid-brain. Very few studies have focused on the
segmentation of the SN. In relation to the latter studies, our study compares two deep
network architectures and shows higher performance (i.e., dice value).

The remainder of the article is organized as follows. In the next section, we discuss
the state-of-the-art concerning the specific application of SN automatic segmentation.
In Section 3, we give the details about the adopted methodology. Section 4 illustrates the
outcomes of the algorithms under comparison and a detailed discussion follows in the
subsequent Section 5. Finally, Section 6 concludes the article with some consideration on
the achieved results and on the planned future work.

2. Related Work

After recognizing that Ultra Sound (US) technology can be valuable for the diagnosis of
PD [12], several attempts have been made towards automatizing the analysis of transcranial
sonography images. The first attempts were based on heuristic semi-automated methods.
For example, in [18], after manually segmenting the interested area, the authors applied first
a mask to highlight the SN and then, according to heuristic rules, some filters (i.e., selection
of the largest object, dilation, mask, closing) to obtain the final SN segmentation. However,
such an approach was still based on an initial manual segmentation and then strongly
dependent on the skills of the operator. In [19], a complex pre-processing procedure
was presented to improve the results of a modified active contour (AC) segmentation
algorithm [20,21]. The latter iteratively fits an initially provided parametric curve (i.e.,
spline) to the target object (mid-brain) boundaries in the best manner possible. According
to the presented results, the average overlap between regions obtained automatically and
manually was 73.10 ± 7.45. However, the success of such a procedure strongly depends
on the proper placement of the initial contour. Later, several studies that appeared in the
literature were devoted to detecting or segmenting in US images only the mid-brain, almost
always missing the final stage of automatically segmenting the SN region, i.e., [22–26]. For
example, in [22] the authors presented a semi-automatic mid-brain segmentation method
from 3D TC-US. The technique was based on the application of shape models [27]. However,
besides leaving to a subsequent manual stage the SN segmentation, the approach did not
perform well for uncommon mid-brain shapes and was based on a small dataset (11 patients
+ 11 healthy controls). A study addressing the detection of SN in 3D TCS is described in [28],
where the authors devised an algorithm combining prior knowledge and a classifier based
on Random Forest that, starting from a set of labeled data, was able to provide for each voxel
of an unseen image the probability of belonging to the SN region. However, the study was
based on only 22 patients, and the reported F measure of 0.519 ± 0.148 was not particularly
satisfactory. The authors of [23] presented a fully automated method for segmenting
several anatomical structures (prostate, left ventricule, mid-brain) in 3D ultrasound images
with a Hough Forest-based framework, obtaining a DICE coefficient of 0.85 ± 0.03 for the
mid-brain. However, again the used dataset was very small (12 ultrasound volumes), and
the work did not address SN segmentation. Moreover, it is not clear the percentage of
data used for testing and nor, therefore, the actual reliability of the approach. The study
described in [24] adopted a multi-domain regularized deep learning method for anatomical
structure detection and segmentation in ultrasound images. The method was based on
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fully convolutional networks by leveraging the transfer learning approach but did not
address explicitly the SN segmentation issue. Another heuristic algorithm for helping in
the detection of the mid-brain area in US images was presented in [25]. The proposed
approach assumed that the shape of the mid-brain is almost constant, being the differences
only in width, length and orientation. According to the results, the algorithm performed
relatively poorly when the mid-brain shape differed from the average shape and, again,
it did not address SN segmentation. The authors of [26] used a statistical shape model
algorithm based on 90 manually delineated contours to segment the mid-brain. Then,
they applied a pixel-level classifier-based segmentation strategy for the extraction of the
SN region. The study was based on a dataset of 191 individuals, and the reported DICE
coefficient was in between 0.64 and 0.66 for the SN, which is much lower than the values
obtained in the present study. Some other recent studies presented in the literature were
based on the segmentation of the brain structure, but not specifically for the mid-brain
region. For example, in [29], a fully convolutional deep segmentation architecture was used
in combination with pre-training on simulated data for the segmentation on 3D-ultrasound
images. The work proved that pre-training the network can lead to better generalization.

Also worth mentioning is a relatively recent and comprehensive review of DL tech-
niques applied in the field of medical image analysis presented in [30]. A more specific
review was published about neural network applications for supporting the detection of
PD in [31]. According to the latter study, that analyzed 91 full-text peer-reviewed studies,
and most of the datasets were based on bio-metric data (i.e., voice, EEG, EMG) and some
were based on medical imaging (MRI, CT, PET, DaTscan). However, out of the 91 article
isolated by the authors of the study, no one used US medical images or calculated the SN
area to help detect PD. Furthermore, most of the studies makes use of detection and/or
classification, whilst only a small fraction of them were based on segmentation techniques.

In the literature, one can find several studies based on medical images segmentation—
for example, US breast image segmentation [32], thyroid nodule segmentation [33], cardiac
image segmentation [34], liver segmentation [35], kidney segmentation [36].

In [32], the authors improved US breast image segmentation by designing a new
network model based on U-Net. They added a bidirectional attention guidance network
(BAGNet) and a refinement residual network (RFNEt). In particular, the first U-Net is used
to generate a set of low-level and high-level features. The BAGNet is used to capture the
context between low-level and high-level features. Finally the residual refinement network
is applied to learn the difference between feature maps and ground-truth masks. In future
test, it would be interesting to apply this network model to our dataset and see how they
would perform.

In [33], the authors address the automatic thyroid nodule segmentation. They pro-
posed a “Super-resolution reconstruction” method for cleaning the US images prior to
passing them to the following stages. The following stages are quite complex and require
an N-shape network (consisting of several ASPP blocks), a multi-scale input layer, attention
module and a PAC module (constructed to accurately segment the thyroid module). Several
limitation were highlighted by the authors; however, it would be interesting to merge some
of our findings.

In [34], the authors propose a new framework to improve three-dimensional (3D)
cross-modality cardiac image segmentation, which they say is critical for cardiac disease
diagnosis and treatment. Their causal knowledge fusion (CKF) framework focuses on the
anatomical factor and discards the modality factor because of the fact that the anatomical
factor is the causal invariant representation that transfers between different modalities.
After testing their framework on the cardiac images of 503 MR patients and 518 CT patients,
they claim that their framework is effective (Dice > 0.949) and superior to eighteen state-of-
the-art segmentation methods.

The problem of kidney segmentation with a limited dataset size (i.e., MR scan images
from only a few subjects) has been addressed in [36]. The authors used the CHAOS public
dataset plus a private dataset. They tested two network models: single U-Net with a
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backbone of ResNet34 and two cascaded U-Net. The second U-Net was a slightly modified
U-Net with four channels composed of three slices and one mask for the third slice. The two
network were trained independently with 1, 3 or 6 subjects. They claim that the cascaded
U-Net performs better than the single U-Net when using only an MR scan image from
three patients (Dice value 0.893 vs. 0.864).

Overall, based on the literature review outlined above, despite the enormous progress
in the field of DL-based segmentation and the wide availability of the corresponding algo-
rithms, the problem of ascertaining the achievable accuracy of automatic SN segmentation
in US images has not been sufficiently addressed. Such a gap, probably due to the limited
availability of the necessary datasets, will be addressed in the remainder of this article.

3. Materials and Methods

We retrospectively studied 23 patients that were evaluated in the Movement Disorders
Centre of the Neurological Clinic of Sassari between June 2020 until June 2022.

As summarized in Table 1, the participants of the trial were 23 PD positive patients
and 8 healthy controls, 18 males and 13 females, aged from 52 to 84. All patients fulfilled
all criteria for the diagnosis of PD [2]. Furthermore, the 8 healthy controls were not under
investigation or treatment for any neurodegenerative disease. The study was approved
by the local ethics committee (Prot. PG/2023/7846) and was performed according to the
Declaration of Helsinki. Informed consent was obtained by all participants.

Table 1. Number of patients and healthy controls who participated in the trial. In total, there were 31
individuals (23 patients and 8 healthy controls), 18 males and 13 females.

Male Female

n. % n. % Total

Patients 14 60.9% 9 39.1% 23
Healthy Controls 4 50.0% 4 50.0% 8

Total 18 58.1% 13 41.9% 31

Inspired by NiftyNet [37], a small framework based on Python and TensorFlow has
been developed. This is useful to easily implement and test various network models, test
different datasets (see Table 2) and tune the hyper-parameters in a efficient and scalable way.
The framework is available for download as explained in the Data Availability Statement.

Table 2. Description of the datasets used in the study. The first four datasets are well known and
are used as benchmarks for novel algorithms and neural networks. They are composed of “normal”
images, and they have been used in this study to validate the software (developing, debugging,
testing). The “Nerves Ultrasound” dataset is made of US images, and it has been used for the transfer
learning technique in this study. The “Parkinson” dataset has been created by the authors and used
in this study to show the feasibility of the segmentation of SN in US images.

Dataset # of Images Reference

ImageNet ILSVRC2016 20,000 [38]
PASCAL VOC 7000 [39]
Cityscapes 25,000 [40]
Oxford-IIIT PET 7300 [41]
Nerves Ultrasound 5600 [42]
Parkinson (our) 63 This article

3.1. BPS Imaging

BPS imaging was performed using an ultrasound machine, Toshiba Aplio 500, equipped
with a phased array sector probe (2–2.5 Mhz). The main parameters of ultrasonic scanning
were those recommended in the literature [43]: image depth: 14–16 cm, dynamic range
45–55 dB with gain compensation and image brightness adapted manually as needed. All
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US scans were performed by a neurologist trained to vascular and parenchymal sonography
(C.F.). During the examinations, the subjects were sitting on supine position. Scans were
made in a mid-brain axial scanning plane in B-mode using bilateral temporal bone acoustic
window. The transducer was placed at the posterior or middle temporal bone, parallel
to the orbito-meatal line. In this position the butterfly-shaped mid-brain was visualized
as clearly as possible. In the mesencephalic plane, the area of the SN was measured (in cm2),
after manual encircling of the entire circumference of the echogenic SN area (see Figure 1).
The normative threshold of the SN area calculated in our laboratory were those accepted
by guidelines: marked hyperechogenicity Area > 0.25 cm2; moderate hyperechogenicity
0.20 cm2 < Area < 0.25 cm2; normal echogenicity Area < 0.20 cm2 [44].

3.2. Selection of CNN Models

A certain number of tasks were necessary before the final stage of training in order to
identify the best candidate network and to prepare the images for our Parkinson dataset.
Two networks were chosen for this study: U-Net and DeepLabV3+.

The U-Net model is widely used in the medical imaging research field, where it
has become the de-facto segmentation standard because it has proven to be reliable and
efficient [45,46]) and it has been deeply studied in various articles (e.g., in [47,48]). Several
versions of this model are publicly available, with subtle differences in the sequence of
layers, activation function, and other characteristics. However, they usually maintain the
original “auto-encoder” structure with the “skip” connections. Figure 2 shows the modified
U-net architecture used for this research.

Figure 2. The modified U-Net network architecture used in this study. Each box corresponds to a
multi-channel feature map. On top of each box is written the number of channels. The x-y size is
provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows
denote the operations. This architecture differs from the original U-net model because of input image
size, Dropout layers and Batch Normalization layers.
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The architecture of the modified-U-net network differs from the original U-net model
because of several factors. The input image size of plain U-net is 572 × 572 pixels, the U-Net
network converts a gray scale input image of size 572 × 572 × 1 into a binary segmented
output map of size 388 × 388 × 2. We can notice that the output size is smaller than the input
size because no padding is being used. Instead, our modified-U-net can receive, as input,
color images (RGB coded) of different sizes (from 200 × 200 × 3 px to 300 × 300 × 3 px).
Another difference between the two networks are the dropout layers present in the third
and four layers in the modified U-net. A dropout layer randomly sets input units to 0
with a frequency of rate at each step during training time, which helps prevent overfitting.
The third and last difference between the two architectures is the Batch Normalization
function present in all layers of the modified-U-net. Batch normalization is a method
used to make the training of artificial neural networks faster and more stable through the
normalization of the layers’ inputs by re-centering and re-scaling. For more details about
batch normalisation and dropout layers, see findings in [49].

The DeepLabV3+ model, Figure 3, is an improvement of the previous DeepLabV3
model [50]. The older model uses the concept of “spatial pyramid pooling” which cap-
tures rich contextual information by pooling features at different resolutions. Moreover,
the DeepLabV3+ model adds to this technique the “encoder-decoder” structure, which is
able to obtain sharper object boundaries. Furthermore, the DeepLabV3+ introduces adjust-
ments in order to perform atrous convolution on limited hardware [17]. The DeepLabV3+
model that we used is composed of a DeepLabV3 encoder followed by an Xception back-
bone as a decoder because during our preliminary tests, it proved to be more efficient than
the MobileNetV2 backbone.

Figure 3. The adopted DeepLabV3+ network architecture [17]. The input image enters an “Atrous
Convolution” block. The resulting object is sent to two different paths: the “spatial pyramid pooling”
block in the encoder and the 1 × 1 convolution block in the decoder. The encoder path is then
up-sampled by four and concatenated with the previous path. The resulting image is then convoluted
and up-sampled to give the output image.
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We downloaded several publicly available implementations of both models and tested
them with a Python script that was written specifically to compare several models and
to be scalable. Several hyper-parameters’ configuration were tested. Finally, we kept
only one implementation of each model and a few configurations [51,52]. During the
integration phase, in order to test the software, improve the script and build up reliability,
we tested the whole framework on some non-medical datasets, such as “The Oxford-IIIT Pet
Dataset” [41], “The ImageNet Dataset” [38], “The PASCAL Visual Object Classes Challenge
(VOC)” [39], “The Cityscapes Dataset” [40].

3.3. Data Preparation

Apart from preparing and integrating the network models into the framework, the other
task was to prepare the images and to prepare our “Parkinson” dataset. The neurologist
took care of providing two images for each ultrasound scan: the first image was clear of
any artificial annotation, and the second image was the same as the first plus a segmented
non-continuous line reporting the contours of the SN as shown in Figure 1. A specific
Python 3.8 software was developed to pre-process these images and get the final anno-
tations with a continuous contour and the content filled with solid color. The process is
depicted in Figure 4. It was semi automatic, as it required some “manual” refinement
during the cleaning stage to obtain the ground truth trimap images.

This is surely a weak point in the whole procedure and should be improved in
future investigations. All the images were taken in standard B-mode, or Doppler mode.
The images were automatically cropped from the original size of 960 × 720 pixels (class
imbalance 0.1%) to the size of 300× 300 pixels (class imbalance 1%) by isolating their central
part. This cropping operation tremendously improves the efficiency of the framework
without affecting scalability, because the mid-brain area is usually found at this location [43].
Finally, two version of the Parkinson dataset were created: the first one where the ground
truth has 2 classes (foreground, background) per pixel and the second one that has 3 classes
(foreground, border, background) per pixel.

As summarized in Table 3, the dataset was split in three sets: training set (70%),
validation set (10%), test set (20%). For each subject, two images were taken: one from the
left side and the other from the right side. One image was not taken because the thickness
of the temporal bone did not allow the neurologist to take the TCR image.

Table 3. Number of images in training, validation and testing sets in our dataset. The dataset is
composed of 61 images. Two US images were taken for each individual (one from the left side and
one from the right side). For one individual, one image was not taken because the temporal acoustic
bone was too thick for the US to work. The dataset was split in the following training/validation/test
ratios (70%, 10%, 20%).

# of Samples %

Training 43 70%
Validation 6 10%
Testing 12 20%

Total 61 100%
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Figure 4. Pre-processing flow for creating the Parkinson’s dataset. All staging were performed
automatically with a specific Python script, except for the cleaning stage, which was performed
“manually” with the software GIMP 2.10.32. The inputs are the US image of the individual and the
same images traced by the neurologist. In the first stage, they are anonymized to remove all sensible
data of the individual. Then, they are centered and cut (cropped) in order to reduce the imbalance
between “useful” pixels and background pixels, and to highlight the mid-brain region. The “clean
image” becomes the training image, whilst the traced image becomes the “Ground Truth” after being
filled and cleaned.

3.4. The Pre-Training Stage

Given the small size of our dataset, we adopted a fine-tuning approach. In short,
the network was first trained in a dataset much larger than the available dataset, but
with similar characteristics. Then, a final training on the target dataset aimed to refine
the network’s weights to maximize its segmentation capacity for the specific application
of SN segmentation. For the purpose of pre-training, we selected, after a series of tests
with various candidate datasets (see Table 2), the “Kaggle Ultrasound Nerve Segmenta-
tion dataset” [42]. The latter is a collection of ∼5600 B-mode ultrasound images (and
annotations) of the neck. The dataset was made available for a contest where users were
challenged to propose a network model that could identify nerve structures in a dataset of
ultrasound images of the neck. Each images in the training dataset is annotated with two
classes per pixel (foreground/background).

Here, several training were again made in order to find the hyper-parameters that
maximize the segmentation. Each training lasted around 2/3 h on a machine with a single
CPU Intel Xeon (Intel, Santa Clara, United States) at 2.27 GHz with 24 GiB and NVIDIA
GPU (NVIDIA, Santa Clara, United States) K-40c at 0.745 GHz and 12 GiB. The best results
were obtained with the U-Net model using dropping layers and DeepLabV3+ with Xception
backbone. The weights from this training were saved in order to be used later with our
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actual Parkinson dataset. All the results were compared using the Dice Similarity coefficient
(DICE in short), which can be expressed by the following formula:

DICE = DSC = 2 ∗ X ∩ Y
X ∪ Y

=
∑i xi ∗ yi

∑i xi + ∑i yi
(1)

The DICE coefficient ranges from 0 (no similarity at all) to 1 (perfect match) and
is used to compare the ground truth (obtained from the experienced neurologist) to the
network prediction.

3.5. The Training Stage

Eventually, the two selected networks were tested on the Parkinson dataset in three
different configurations:

• from scratch;
• fine tuning after pre-training on Ultrasound Nerve dataset;
• transfer learning (from Ultrasound Nerve dataset) freezing encoder or decoder.

The transfer learning was accomplished by freezing the encoder or the decoder. In
accordance with what was expected, the best result was obtained with weight initialization
(from Kaggle Ultrasound Nerve dataset) and transfer learning (freezing the decoder). Loss
functions in deep learning are used to measure how well a neural network model performs.
The scope of the network is to minimize such function in the back-propagation algorithm.
In our case, the SparseCategoricalCrossentropy function from the Tensorflow Keras library
was used. An epoch refers to one complete pass of the entire training dataset through
the learning algorithm. In other words, when all the data samples have been exposed to
the neural network for learning patterns, one epoch is said to be completed. To improve
the time of training of a network, in order to not waste time, it is possible to use an early
stopping parameter. This tells the network to stop training if there is no improvement for a
certain number of epochs. The loss functions of the best training are visible in Figure 5.

Several trainings were conducted on both selected network models to test for other
hyper-parameter changes: augmentation, learning rate, image size, transfer learning,
number of classes per pixel in the ground truth. The augmentation technique was limited
to horizontal flip because other augmentation techniques (vertical flip, rotation, zooming)
showed no improvements. The learning rate was tested for 1.00 × 10−2, 1.00 × 10−3 and
1.00 × 10−4 values and the best result were obtained with a value of 1.00 × 10−3. Several
training sets were repeated to identify the best image size (128, 248, 256, 300 pixels). The U-
Net model showed the best results for bigger values, the best being 256 due the network
limits. Even the DeepLabV3+ model showed the best result with 256 pixels, but showed no
specific trend. The average time of training for the U-Net model was around 10 min, whilst
the average time of training for DeepLabV3+ was around 20 min on the hardware cited in
Figure 5.
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Figure 5. Plot of loss functions obtained during the training that later revealed to be the best
one. The training finished after 37 epochs, in 3′42′′, on a computer equipped with CPU Xeon
@2.27 GHz/24 GiB and GPU K-40c/0.745 GHz/12 GiB. Early stopping was set to 10 epochs in order
to reduce overfitting.

4. Results

During this study, many hours were spent tuning the framework’s parameters and
training the network models. Some intuitions proved to be wrong, with the DICE going
lower than 0.6, and they have been discarded. For the sake of completeness, we report here
some of these experiments before giving the final results.

To overcome the small size of the dataset, we employed some well known augmen-
tation technique (A data augmentation technique consists of generating some random
variations in the dataset in order to increment the difference between samples and thus the
information received by the network during the training stage): random horizontal flip,
random translation, random rotation. As we can see in Table 4, in some cases the network
training did not converge (Horizontal Flip + Translation for both networks, Flip+Rotation
for DeepLabV3+). This effect may be caused by too big a displacement of the SN inside the
sample image, or it may be that the augmentation created too many different situations to
learn efficiently. In future experiments, it would be useful to zoom out the sample images
or to reduce the maximum angle/offset.

Table 4. Dice value obtained with some augmentation technique. The best result (DICE = 0.819)
was obtained by modified U-net with Horizontal Flip (swap left and right). The second best value
(DICE = 0.6452) was obtained by U-net modified with Horizontal Flip plus Rotation. The third best
value (DICE = 0.540) was obtained by DeepLabV3+ with Horizontal Flip. In all other combinations,
the training failed to converge (N/A).

U-Net DeepLabV3+/Xception

Horizontal Flip 0.819 0.540
Horizontal Flip + Rotation 0.6452 N/A
Horizontal Flip + Translation N/A N/A

We also explored the possibility of pre-training the networks. In fact, one of the
U-Net implementations that we used came with the possibility of loading weights from
ImageNet [38]. We slightly modified the code to allow the freezing (The weights in the
frozen layers do not get updated during the training process) of some layers. This technique
is called “Transfer Learning” because the idea is to pass the learning obtained on a given
dataset to another dataset. In particular, we initialized the U-Net model with the pre-trained
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weights and froze the encoder once (DICE = 0.5395), then the decoder (DICE = 0.5478).
As the reader can notice, in both cases the results are quite poor.

Then, we compared the two available sub-models of DeepLabV3+ (Xception and
MobileNetV2) with pretrained weights. The results are shown in Table 5. Here again, the
DICE values obtained are always lower than a sufficient threshold.

Table 5. Comparison of the two versions of DeepLabV3+ (Xception vs. MobileNetv2) with pretrained
weights. Neither model reaches satisfactory performance (the DICE value is always below 0.6).

Network Model PASCAL VOC Cityscapes None

DeepLabV3+/MobileNetv2 0.5406 ± 0.0156 0.5436 ± 0.0041 0.5436 ± 0.0041
DeepLabV3+/Xception 0.4815 ± 0.1441 0.5437 ± 0.0041 0.5400 ± 0.0

Another parameter that we decide to test for was the “learning rate”. The learning
rate deals with the derivative of the loss function. In simple words, this parameter controls
the speed at which the network learns (hopefully converging to a minimum). This is useful
when using pre-initialized weights and/or transfer learning. Three different rates were
analyzed in the study for the two network models: 0.01, 0.001, 0.0001. As we can see in
Figure 6, the U-Net network obtains better DICE coefficient values for a higher learning
rate (DICE is 0.8732@0.001), whilst the DeepLabV3+/Xception network obtains higher
DICE coefficient values for a lower learning rate (DICE is 0.8229@0.01). For all tests, the
networks were initialized with the “Kaggle Ultrasound Nerve” pretrained weights.

Figure 6. Dice coefficient obtained with three different learning rates (0.0001, 0.001, 0.01) by the
two network models. The best performance is obtained by modified U-Net (DICE = 0.8732@0.0001).
The network DeepLabV3+ shows best performance at learning rate 0.01 (DICE = 0.8229).

We thought that it was interesting to check what happens when the image size given
to the network changes. In this case (see Figure 7), we get an interesting trend for U-Net
where the DICE value is proportional to the image size (DICE = 0.6859@256 × 256 pixels).
Unfortunately, the implementation of the U-Net we employed does not allow us to use
images bigger than that. The DeepLabV3+, on the contrary, showed an unexpected fall
from 256 to 300 pixels (max DICE is 0.5184@256 × 256 pixel).
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Figure 7. Dice coefficient obtained with different image sizes. Modified U-Net always outperforms
DeepLabV3+. The best performance is obtained by modified U-Net (DICE = 0.6859@256 × 256 pixels),
which shows better performance at higher image size. The network DeepLabV3+ also shows best
performance at 256 × 256 pixels (DICE = 0.5184) but does not highlight a clear trend.

Finally, as the reader can see in Table 6, the best result was achieved by the U-Net model
with transfer learning (DICE 0.859 ± 0.037), followed by the U-Net model from scratch
(DICE 0.819 ± 0.110), then the U-Net with fine tuning (DICE 0.806 ± 0.152). However,
the last two are very close. DeepLabV3+ was not tested with transfer learning because
the model did not support it. It could be interesting to modify the code in order to
overcome this limitation. The best performance by DeepLabV3+ was obtained with fine
tuning (DICE 0.687 ± 0.143), followed by “from scratch” configuration (DICE 0.540 ± 0.0).
The best configuration used the following parameters: two-class annotation dataset, image
size is = 256 × 256 pixels, learning rate lr = 10−3, drop rate dr = 0.3. All training
was conducted with a 5-fold validation method technique instead of the usual tenfold
validation method to reach a trade-off between the statistical validation and the low number
of samples in the dataset. This could be improved with a higher number of samples.

Table 6. Summary of the performance achieved by the two network models (U-Net and DeepLabV3+)
on the 2-class dataset, using three different training strategies: A. from scratch, B. fine tuning after
pre-training on Ultrasound Nerve dataset, D. transfer learning from Ultrasound Nerve dataset.
The values indicated are the Dice mean and standard deviation after 5-fold trainings.

Network A. From scratch B. Fine Tuning C. Transfer Learning

Mean SD Mean SD Mean SD

U-Net 0.819 0.11 0.806 0.152 0.859 0.037
DeepLabV3+ 0.540 0.0 0.687 0.143 N/A N/A

In Figure 8 is given a black and white example where one can compare the prediction
from the network with the ground truth. In Figures 9–11, we can see some qualitative and
quantitative results obtained by the two network models on all samples of the test set (in
a single execution). As the reader can see, in this particular execution, U-Net performed
better than DeepLabV3+ on samples I011, I022, I038, I061, I064, I068, while DeepLabv3+
performed better on samples I016, I021, I025, I041, I044, I060. Note that the last sample,
I068, is related to a healthy control individual, and therefore, it does not show any evidence
of SN (the green contour is absent).
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Figure 8. Qualitative result for one sample image from the test-set. It shows, from left to right: sample
image, ground truth obtained from the human expert through some pre-processing, and prediction
by the network.

Figure 9. Comparison of the SN segmentation achieved by the two network models. The ground
truth is highlighted in green, the prediction is in red. In the background is visible the typical butterfly-
shaped mid-brain area (in black). The first row shows the results of modified U-Net, and the lower
row shows the results of DeepLabV3+. The red areas out of the green lines indicate false positive.
The black areas inside the green lines indicate false negative. For a better observation, the images are
out of range.

Figure 10. Comparison of the SN segmentation achieved by the two network models. The ground
truth is highlighted in green, the prediction is in red. In the background is visible the typical butterfly-
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shaped mid-brain area (in black). The first row shows the results of the modified U-Net, and the lower
row shows the results of DeepLabV3+. The red areas out of the green lines indicate false positive.
The black areas inside the green lines indicate false negative. For a better observation, the images are
out of range.

Figure 11. Comparison of the SN segmentation achieved by the two network models. The ground
truth is highlighted in green, and the prediction is in red. In the background is visible the typical
butterfly-shaped mid-brain area (in black). The first row shows the results of modified U-Net, and
the lower row shows the results of DeepLabV3+. The red areas out of the green lines indicate false
positive. The black areas inside the green lines indicate false negative. For a better observation, the
images are out of range.

5. Discussion

We aimed to assess the diagnostic ability of PD diagnosis using BPS thanks to an
automatic system. A lot of progress on BPS quality has been made, but nowadays, a
very important limit of sonographic B-mode evaluation is still the dependence on the
sonographer’s experience and skill. The use of software allows the possibility of partially
eliminating it.

Several limitations of our study should be mentioned. The small dataset size and
the low resolution of each sample image (compared to MRI and CT scans) are examples.
In fact, the quality of BPS images is influenced by the quality of the ultrasound machine,
sonographer’s manual measurements and sonography system setting. Changes in settings
may influence the image brightness and could lead to a bias. A very useful method
could be the MR imaging-TCS fusion imaging with virtual navigation technology. It
allows simultaneous real-time TCS exam and MR images with more exact identifications of
cerebral structures. The association of TCS-MR fusion with U-Net analysis could be a very
important diagnostic tool for in diagnosis of PD.

6. Conclusions

In this article, using two different Convolutional Neural Network architectures (mod-
ified U-Net and DeepLabV3+), we analyzed and demonstrated the feasibility of SN seg-
mentation in BPS 2D US medical images. As we used (almost) standard CNN network
models, we believe that our approach is much simpler than quite complex solutions found
in the literature and outlined in Section 2. Moreover, we payed attention to the scalability
of the approach, avoiding overfitting of the models and achieving a good trade-off between
complexity and performance, paving the way to a real-time system for PD detection.

In particular, the modified U-Net model pretrained on a public US dataset combined
with transfer learning and fine tuning (dropping layers, frozen decoder) reached a satisfac-
tory DICE mean value of 0.859 ± 0.037.
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Further studies would be necessary in order to evaluate the size of the SN area and to
integrate the software into medical devices. This would eventually lead to completing the
process of developing an end-to-end CAD system for PD detection.

Firstly, when preparing the dataset, the region extracted from the original images
and its size could be dynamically selected to reduce class imbalance and improve the
efficiency of our framework. For example, this could follow one of the methods mentioned
in Section 2.

Secondly, the accuracy of the algorithms used in the present study could be improved
by increasing the dataset size. Moreover, to generalize our findings, it would be interesting
to include images taken from other US devices. In fact, the lack of large and general datasets
is a common limitation in all medical informatics research.

Another interesting improvement for this study would be to transition to an unsu-
pervised deep learning approach, as suggested by some authors for other pathologies,
e.g., [53]. This could reduce the development time and the workload on physicians and
software engineers required to prepare the data and build and validate the software.
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