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Abstract: In this paper, we propose a new model for image segmentation under geometric constraints.
We define the geometric constraints and we give a minimization problem leading to a variational
equation. This new model based on a minimal surface makes it possible to consider many different
applications from image segmentation to data approximation.

Keywords: energy minimization; level set methods; numerical analysis

1. Introduction

Image segmentation has been heavily studied for more than 40 years in image pro-
cessing, computer science, mathematics, and from a more general framework in image
understanding and computer vision. In [1], the authors present the modeling, techniques,
and applications of variational image processing from the theory to the implementation,
which constitutes an excellent introduction to image segmentation using variational ap-
proaches (including a rigorous study of the mathematical formulations). In [2], the authors
give a unified approach of basic computational model reviews for image segmentation,
including the Mumford–Shah model (see also [3]), region-based variational active contours,
edge-based variational snakes, generalized fast marching method (see also [4]) , and active
contours. In recent years, deep learning (DL) approaches have been developed (see [5] for
a precise and recent state of the art): deep learning approaches have shown qualitatively
impressive results but their performance is strongly related to labeled data, and this is, of
course, a major drawback on many numerical simulations in case of a lack of labeled data
(such that in geosciences, or the specific case of medical images, for instance).

In many applications (geosciences, or even specific medical image processing), the
availability of ground truth labels is an important limitation of supervised methods in
practice. Another limitation also appears from the excessive cost and time taken to annotate
images (in [6,7], the authors estimate that this task requires around 1.5 h of annotation per
image in the well-known Cityscapes dataset).

To address this constraint, the study of unsupervised domain adaptation proce-
dures applied to semantic segmentation has been recently conducted in the form of self-
training [8]. The addition of geometric constraints makes it possible to improve existing
models to obtain good results when acquiring training data is complicated or not possible.
In [9], the authors underline that the semi-supervised learning technique is a basic principle
which constitutes a strong and efficient solution to consider geometrical constraints in
learning semantic segmentation. In [7], the authors propose a multi-modal regularization
model applied to self-training procedures in an unsupervised domain linked to semantic
segmentation; the introduced regularizer significantly improves self-training methods to
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various unsupervised domain adaptation benchmarks for semantic segmentation. In [10],
the authors propose an enhanced U-Net model with a novel geometric consistency loss
for geometry-informed structural component segmentation of post-earthquake buildings,
which is of great interest in many applications. In [11], the authors give a new model
including a cost term with geometrical constraints during the 2DCNN processing; this
term is constructed on a Dice term linked to intensity pairing, a weighted total variation
quantity, a piecewise-constant Mumford–Shah-based quantity (see [3] for more details)
enforcing intensity homogeneity, and an area penalization. Adding this new cost term with
a standard CNN has greatly improved image segmentation results [11].

In [12], the authors introduce a variational approach, in which they combine the
approximation from a set of points (like in the model introduced by Zhao et al. [13]) and
the curve evolution approach introduced in Caselles et al. [14] under geometric constraints
given by the user (points/curves/patches should be taken into account as geometric
conditions, as in [15–18]). This is of great interest in numerical simulations wherein data are
incomplete or of insufficient quality. Elsewhere, as stressed in [12], occultation phenomena
should appear, making it pertinent to add geometrical constraints in the modeling to guide
the image segmentation processing.

In this work, a new model is proposed, improving the segmentation model under
geometric constraints, guaranteeing at the same time the convergence (that is not the case
in [19]) toward the strong gradients of the image and the approximation of the geometrical
data, by giving an energy functional of quadratic type.

In the segmentation process, the geometric constraints (point(s), curve(s), surface
patch(es)...) are considered to belong to the searched contour of interest. These conditions
are defined manually by the user. The proposed model leads to the minimization of an
energy functional, admitting a unique solution, and leading to a variational problem. The
introduced model also makes it possible to approximate point cloud datasets, like seafloor
or topographic surface approximation (see [20,21] for many applications linked to data
approximation). The main focus of this work is about the image segmentation process but
we also provide applications to data approximation.

2. Modeling

We propose to segment an image I : Ω ⊂ IR3 → IR. This image is defined after usual
regularization (Gaussian, for example): it is well-known that the Gaussian smoothing oper-
ator is useful for noise reduction (see Sonka et al. [22]). We consider such a regularization
process since we plan to test our method on (potentially noisy) medical images. In case of a
large amount of noise, we refer the readers to [23], where the authors introduce a model
suitable for segmenting a range of images that have intensity inhomogeneity, noise, and a
combination of both.

We propose to segment I under geometric constraints. These constraints can be a set of
points (as considered in this paper), a set of curves, or a set of surface patches. We consider
Ω ⊂ IR3 to simplify the problem, but other choices can be made.

We denote by D the geometric dataset:

D =
{

a = (a1, a2, a3) ∈ IR3
}
⊂ Ω. (1)

We denote by dD the distance function defined by

dD : (x, y, z) ∈ Ω → dD(x, y, z) = inf
a∈D

(∥(x, y, z)− a∥) (2)

corresponding to the Euclidean distance of the point (x, y, z) to the set D.
The problem is then the following: we try to find the surface S ⊂ Ω, S being located

near the points of maximum gradient of I : it corresponds to the points (x, y, z) ∈ Ω where
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the usual potential g(∥∇I∥) = 1

1 + ∥∇I∥2 is minimum and considering that the set D is

close to this set of points (meaning that S also approximates the set D).
We now introduce the energy functional E(S) :

E(S) = α
∫

S
d2

D(s)ds + β
∫

S
g2(∥∇I∥)(s)ds (3)

where α and β are strictly positive, α permits to control the fidelity criterion to the dataset
D, and β controls the attraction force of S linked to the potential g(∥∇I∥).

To represent the minimal active contour S, we use a level set approach (see Osher and
Sethian [24], or Sethian [25]). Minimizing the energy E(S) defined in Equation (3) can be
rewritten using the level set approach with S = {(x, y, z) ∈ Ω; Φ(x, y, z) = 0} and Φ the
solution of Problem (2):∣∣∣∣∣∣∣∣∣∣∣

Find Φ : Ω → IR such that
∀ξ : Ω → IR, F(Φ) = min

ξ
F(ξ)

where
F(ξ) = α

∫
Ω d2

D(x, y, z)δ(ξ(x, y, z))∥∇ξ(x, y, z)∥dxdydz
+β

∫
Ω g2(∥∇I∥)δ(ξ(x, y, z))∥∇ξ(x, y, z)∥dxdydz

(4)

where δ is the Dirac in ξ(x, y, z) (see, for instance, [19], Section 3 for more details).
Problem (4) can be reformulated as∣∣∣∣∣∣∣∣∣∣∣

Find Φ : Ω → IR such that
∀ξ : Ω → IR, F(Φ) = min

ξ
F(ξ)

where
F(ξ) =∫

Ω

(
αd2

D + βg2(∥∇I∥)
)
δ(ξ)∥∇ξ∥dxdydz.

(5)

We now suppose that the solution Φ depends on time introducing t ∈ ]0, T[), and we
consider that Φ ∈ W(]0, T[; V) where V is a Sobolev space with V ⟲ H2(Ω) to obtain a
continuous final contour. The space W(]0, T[; V) is equipped with its usual scalar product

(u, v)W(]0,T[;V) =∫ T

0
(u(t), v(t))Vdt +

∫ T

0

(
∂u
∂t

(t),
∂v
∂t

(t)
)

V′
dt. (6)

Considering a level set framework [24], the solution S(t) is the zero level at each
instant t

S(t) = {(x, y, z) ∈ Ω, Φ(t, x, y, z) = 0} (7)

where the explicit (“mother”) function Φ is the solution of the following evolution problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Φ ∈ W(]0, T[; V) such that
J(Φ) = min

ξ∈W(]0,T[;V)
J(ξ)

with

J(ξ) = F(ξ) +
1
2

∂

∂t

(
ε(t)∥ξ(t, .)∥2

L2(Ω)

)
,

ξ = ξ(., x, y, z), where F(ξ)is defined in (5) at each
instant t, and where
ε(t) > 0, Φ(0, ·) = Φ0 ∈ L2(Ω) (initial condition).

(8)

The parameter ε introduced in (8) makes it possible to control the variation on time of
the energy in space of the solution Φ of (8).
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Of course, it is necessary to approximate the Dirac δ by a continuous function in the
functional F (see Figures 1–3).

Figure 1. Left: Dirac distribution δ (in red). Right: In Gout et al.’s work [19], the authors introduce a
regularized function δγ of δ.

Figure 2. In 1D, in [19], the function δγ(Φ(t, x, y, z)) (in red) is equal to 0 outside a neighborhood of
(x, y, z) such that Φ(t, x, y, z)) = 0, i.e., outside the points r, s ∈ S = {x, Φ(x) = 0}.

Figure 3. Left: the function Φ(t, x, y, z) (in red) is close to a constant between the points of S.
Right: Thus, we have ∇Φ(t, x, y, z) ∼= 0 (in red) outside the neighborhood of S.

Here, we propose to replace δγ(ξ) by ∥∇ξ(t, x, y, z)∥; for any t, it means that, in first
approximation, we suppose that for the solution Φ of (8), we consider that δγ(Φ(t, x, y, z))
is close to ∥∇Φ(t, x, y, z)∥ outside a neighborhood of the zero level S = S(t) of Φ(t, x, y, z).

This choice makes it possible to link the behavior of the solution Φ of (8) with weak
variation zones of the image I (zones where the values of the pixels are almost constant,
and thus the gradients are close to zero), and this is performed outside the large variation
zones of I, that is to say, outside a neighborhood of S = S(t) approximating the set of large
variation of I.

We also recall that, like in Gout et al.’s work [19], the term
1
2

∂

∂t

(
ε(t)∥∇ξ(x, y, z)∥2

L2

)
makes it possible to control the variation in time of the energy in space of the solution of
Problem (8). We also state that ε(t) = ε > 0 for any t ∈ ]0, T[. This modeling ensures a
simultaneous minimization of both d and g.

Moreover, a rescaling can be performed by replacing δ with ∥∇ξ(x, y, z)∥, as per-
formed in Khayretdinova et al.’s work [12]: this rescaling makes it possible to apply the
motion to all level sets.

Finally, we obtain the following non-linear energy minimization of a convex functional
on the Hilbert space W(]0, T[; V) :
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Φ ∈ W(]0, T[; V) such that
J̃(Φ) = min

ξ∈W(]0,T[;V)
J̃(ξ)

with

J̃(ξ) =
ε

2
∂

∂t
(∫

Ω ξ2(t, x, y, z)dxdydz
)

+
∫

Ω h(x, y, z)∥∇ξ(t, x, y, z)∥2dxdydz
where
h(x, y, z) = αd2

D(x, y, z) + βg2(∥∇I(x, y, z)∥),
α > 0, β > 0, ε > 0 and Φ(0, ·) = Φ0 ∈ L2(Ω).

(9)

3. Main Results

First, we give the variational formulation of our minimization problem. We then
give a result about the minimization problem (the convexity comes from that ε > 0 and
h(x, y, z) > 0):

Theorem 1. Problem (9) is a non-linear energy minimization problem of the convex functional J̃
introduced in Equation (9) on the Hilbert space W(]0, T[; V) with V = H2 (Ω).

The uniqueness of the solution Φ comes from this theorem, and we can obtain the
following variational formulation (using differential calculus—Gâteaux derivatives—and
functional analysis tools): for any ξ ∈ W(]0, T[; V), ∀v ∈ V, and ∀t ∈]0, T[

J̃′(ξ).v = ε
∫

Ω
∂ξ

∂t
vdxdydz

+2
∫

Ω hv∇(ξ(t, x, y, z)) · ∇(v(t, x, y, z))dxdydz
(10)

where ∇() · ∇() is the Euclidean scalar product in IR3 of two gradients.
If we consider that Φ is the solution of Equation (9), this leads to the following theorem:

Theorem 2. Problem (9) is equivalent to the following problem∣∣∣∣∣∣∣∣
Find Φ ∈ W(]0, T[; V)
such that for any v ∈ W(]0, T[; V), and ∀t ∈]0, T[
J̃′(Φ).v = 0
with Φ(0, ., ., .) = Φ0 ∈ L2(Ω).

(11)

We can rewrite problem (11) as follows.
Problem (9) is equivalent to the following variational problem:∣∣∣∣∣∣∣∣∣

Find Φ ∈ W(]0, T[; V) such that for any v ∈ W(]0, T[; V)
and ∀t ∈ ]0, T[ :

ε
∫

Ω
∂Φ
∂t

vdxdydz + a(Φ, v) = 0

and Φ(0, ·) = Φ0 ∈ L2(Ω),

(12)

where the bilinear form a(·, ·) on V × V is defined as

a(u, v) = 2
∫

Ω
h(x, y, z)

[
∂u
∂x

∂v
∂x

+
∂u
∂y

∂v
∂y

+
∂u
∂z

∂v
∂z

]
dxdydz (13)

with h(x, y, z) = αd2
D(x, y, z) + βg2(∥∇I(x, y, z)∥).

Let us note that the bilinear form defined in Equation (13) is symmetric, continuous
on V × V since h(x, y, z) is positive, and superiorly bounded by (α × dH(Ω, D) + β) where
dH represents the Hausdorff distance.
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4. Numerical Examples
4.1. Discretization of the Variational Problem

The discretization is performed using finite differences in time and finite elements in
space. We have chosen the C1 Bogner Fox Schmidt rectangle as generic finite elements (see
Ciarlet [26]). We approximate a(·, ·) using a quadrature formula (using the nodes of a voxel
grid of image I).

4.1.1. Discretization on Time

We divide ]0, T[ into m subintervals of equal lengths δt : we introduce the steps

tm, ∀m ∈
{

1, 2, ...,
T
δt

}
, and we have

tm = mδt.

We then use a classical finite difference scheme to approximate
∂Φ
∂t

(t, x, y, z):


∀m ∈

{
1, 2, ...,

T
δt

}
,

∂Φ
∂t

(tm, x, y, z) ≃ Φ(tm, x, y, z)− Φ(tm−1)(x, y, z)
∂t

.
(14)

4.1.2. Discretization of the Bilinear Form

The main difficulty in this part is the discretization of the function h. This function
uses the computation of the distance dD and the computation of the potential g.

We propose to use a quadrature formula: for any measurable function f on Ω

∫
Ω

f (x, y, z)dxdydz ≃
N

∑
i=1

λi f (xi, yi, zi) (15)

where (xi, yi, zi)i are the nodes of the quadrature formula and (λi)i the corresponding weights.
Considering that the function h is applied on the values of the image I (via the function

g), we choose to take for the nodes (xi, yi, zi)i the centroids of the voxels of the image I.
This makes it possible to compute

g2(∥∇I(xi, yi, zi)∥) =
1(

1 + ∥∇I(xi, yi, zi)∥2
)2

after having discretized the term (∥∇I∥) using finite differences.
Moreover, the choice of the weights (λi)i should be made such that high degrees

polynomials satisfy the quadrature Formula (15), to have a numerical integration error
which is consistent with the approximation error of the space V = H2 (Ω) by the finite
element space Vh we will introduce in the following subsection.

Therefore, at this stage, we replace the bilinear form a(·, ·) by
∀u, v ∈ V,

ã(u, v) = 2
N
∑

i=1
λih(xi, yi, zi)

(
∂u
∂x

∂v
∂x

+
∂u
∂y

∂v
∂y

+
∂u
∂z

∂v
∂z

)
(xi, yi, zi)

. (16)
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4.1.3. Discretization on Time and Space

Following the discretization in time and the discretization of a(·, ·), the Problem (12) is

approximated by the following: for any m ∈
{

1, 2, ...,
T
δt

}
, noting Φm = Φ(tm),


Find Φ ∈ W(]0, T[; V) such that, ∀m ∈

{
1, 2, ...,

T
δt

}
, ∀v ∈ V,

ε
∫

Ω Φm(x, y, z)v(x, y, z)dxdydz + δt ã(Φm, v)
= ε

∫
Ω Φm−1(x, y, z)v(x, y, z)dxdydz

(17)

where ã(·, ·) is defined in (16), with Φ0 = Φ0 ∈ L2(Ω) (initial condition).
Now, we have to discretize Problem (17) on space; thus, we have to approximate

V = H2 (Ω) by a finite element space Vh ⊂ V.
We consider a meshing (Bogner Fox Schmit, for example, see [26] for more details)

corresponding to the voxel grid of the image I.
We then consider a finite element space Vh : Vh is of finite dimension

(dim Vh = M(h) = M), and Vh ⊂ V. Let
(

φj
)

j=1,...,M be a basis of Vh.
We state 

∀m = 1, ...,
T
δt

,

Φm =
M
∑

j=1
αm

j φj

and αm =
(

αm
j

)
j=1,...,M

.

(18)

As usual, we then take v = φl ∈ Vh ⊂ V, l = 1, ..., M, and using (18), we then deduce
that Problem (17) is approximated by

∀m ∈
{

1, 2, ...,
T
δt

}
, find αm =

(
αm

j

)
j=1,...,M

. such that,∀l = 1, ..., M,

ε
M
∑

j=1
αm

j
∫

Ω φj(x, y, z)φl(x, y, z)dxdydz

+δt
M
∑

j=1
αm

j ã(φj, φl)

= ε
∫

Ω Φm−1(x, y, z)φl(x, y, z)dxdydz
with Φ0 = Φ0 ∈ L2(Ω) (initial condition).

(19)

Let us note that the initial guess Φ0 = Φ0 is chosen in order to obtain

Φ0 ∈ Ck(Ω) ⊂ V ⊂ L2(Ω), k ∈ IN∗,

so, this initial condition is regular enough to define its interpolation Φh
0 ∈ Vh such that

Φ0 ≃ Φh
0 =

M

∑
j=1

α0
j φj ∈ Vh

where α0 =
(

α0
j

)
j=1,...,M

are the degrees of freedom of Φ0 in Vh.

We now write
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∀m ∈
{

1, 2, ...,
T
δt

}
, find αm =

(
αm

j

)
j=1,...,M

. such that, ∀l = 1, ..., M,

ε
M
∑

j=1
αm

j
∫

Ω φj(x, y, z)φl(x, y, z)dxdydz

+δt
M
∑

j=1
αm

j ã(φj, φl)

= ε
M
∑

j=1
αm−1

j

∫
Ω φj(x, y, z)φl(x, y, z)dxdydz

with α0 =
(

α0
j

)
j=1,...,M

∈ IRM.

(20)

Problem (18) can be written as a linear system, and we first write

R =
(

Rjl

)
∈ MM,M(IR) with

∀j, l = 1, ..., M,
Rjl = ε

∫
Ω φj(x, y, z)φl(x, y, z)dxdydz + δt ã(φj, φl)

and
Lm−1 = ε

(
Lm−1

l

)
∈ MM,1(IR) with ∀l = 1, ..., M,

Lm−1
l = ε

M
∑

j=1
αm−1

j

∫
Ω φj(x, y, z)φl(x, y, z)dxdydz.

(21)

and then, we obtain the following linear system with (20) and (21):
∀m ∈

{
1, 2, ...,

T
δt

}
,

find αm ∈ IRM, such that
Rαm= Lm−1

with α0 ∈ IRM.

(22)

4.2. Image Segmentation

To illustrate our approach, we choose to consider the BraTS Dataset [27]. We take
an analogous process as we did in [12]: we take 274 MR scans, each with four MIR
sequences. The training data have the size 240 × 240 × 155 pixels, and we obtain the
(manual) segmentation labels for different brain tumors. We trained the deep network
using 79 training data, and we set the initial learning rate as 10−4 and multiplied this by
0.5 after every 20 epochs.

To define the geometric constraints, we choose two to three points given by the user
and located near the boundary of the part we want to segment. Let us note that the choice
of the geometric constraints (two or three points in all our tests) modifies the dice score by
less than 6% on the 150 different tests we have conducted on the examples of the second
and fourth column of Figure 4, but it reaches 20% on several cases, for example, in the first
and third columns of Figure 4. An explanation for this is that, in these images, the contours
are rather blurred/noisy. Regarding the sensitivity of the model, we can say that the choice
of geometric conditions logically impacts the final result, especially in very noisy areas.

We recall that a high Dice value or a small Hd value represent a high-quality segmenta-
tion result. In Table 1, we notice that the computational time is acceptable with our method
(Chan–Vese being the fastest). The quality of the segmentation result is analogous: our
algorithm and the one of [12] are slightly better. Of course, we have to take into account
that our approach is not user-free: the user has to define the geometric conditions (with
the mouse), and several parameters have to be defined (time step, space step, α, β, and the
initial condition for the level set approach which is a cone in all cases.) Our approach has
the benefits of topological independence given by the level set method [24]. Our method
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is fast and very useful when not working with many labeled datasets, or when having
blurred data or missing data on the image.

Figure 4. We give 4 examples from the Brats dataset [27] with comparisons between our method
and U-Nets. First line: considered images. Second line: initial guess (yellow crosses represent
geometrical conditions (set of point(s)), and yellow discus is zero level of initial condition). Third line:
ground-truth labels. Fourth line: segmentation obtained using supervised U-Nets [28]. Fifth line:
segmentation obtained with our algorithm. In all examples, we considered α = 1, β = 1, δt = 0.3,
and δx = 0.1. The given values represent the Dice score. These results illustrate the efficiency of our
proposed approach.
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Table 1. Precision of segmentations models on 1/3 of labeled data from BraTS dataset [27]. The
computations were conducted on a Nvidia GeForce RTX 2080 (GPU memory: 11 GB). We compare
our method with U-Net, with the image segmentation approach under geometric constraints of [12]
(taking equivalent points as initial condition as we did with our method) and with the Chan–Vese
segmentation method ([29]) (the initial guess here corresponds to a closed contour located inside the
region of interest). We give the results of classical metrics in image segmentation: mean Intersection
over Union (mIoU), Dice, Hausdorff distance (Hd), and GPU time for these 4 segmentation methods.

Method mIoU Dice Hd GPU Time

U-Net [28] 78.3 87.7 43.5 4.45
Chan–Vese [29] 77.6 88.1 41.5 2.02
Khayretdinova et al. [12] 79.6 89.1 39.5 2.12
Our method 79.4 89.1 39.5 2.72

Remark 1. The main difference between the model presented in this paper and the model given
in the work of Gout and Le Guyader [16] is the assurance that we (here) minimize both d and g
simultaneously, while the energy to be minimized in [16,19] does not guarantee this point (where
the minimization concerns the product d × g). In [12], the advantage is the initial guess (generated
from the geometric conditions), but the approximation method is less efficient than the one presented
in this paper.

To test the robustness of our algorithm, we now present several comparisons on noisy
images. In Figure 5, we show the considered image (courtesy of CHU Bordeaux, this
image represents a slice set perpendicularly to the main pulmonary artery axis). We then
artificially add noise to this image, and we compare our algorithm with the one of [12] and
the classic geodesic active contour without geometric conditions (in Figures 6 and 7). We
can see that our method gives the best results, although it remains sensitive to noise. It is, of
course, possible to improve the modeling in the case of applications to image segmentation
of noisy images by adding, for instance, the gradient vector flow in the modeling, as
stressed in [30].

Figure 5. Initial image. The arrow shows the vessel to be segmented (main pulmonary artery).
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Figure 6. Studied zone around the main pulmonary artery. We use the model proposed in this paper.
Left: the MPA is perfectly segmented on the initial image (we have considered 2 points as geometric
conditions). We obtain equivalent results until adding 40% of noise. Middle: after adding 50% of
noise on the initial image, the geometric conditions are efficient, but in the right part of the artery,
the segmentation contour is (logically) distorted by the noise. Right: after adding 200% of noise, the
result is of course worse (except near the geometric conditions).

Figure 7. Left: with the same geometric conditions as in Figure 6 and on the image with the addition
of 200% of noise, we test the algorithm given in [12]. We can see that the result is equivalent to the
one of our approach near the 2 points to be interpolated but worse than with our algorithm in other
zones. Right: the geodesic active contours (without interpolation conditions) do not give a good
result (it is well-known that they are sensitive to noise).

4.3. Data Approximation

The main objective of the proposed modeling is image segmentation under geometric
constraints, but it is also of interest to underline that our proposed modeling is efficient for
data approximation from a large amount of data. Data approximation remains an important
research field. For example, ocean mapping to obtain a complete map of the Earth’s seabed
is a main objective of the next years: this is a crucial point to better understand many
environmental challenges from ocean circulation and climate models to tsunami forecasting,
cable routing, sediment transportation, renewable energy production, rising of a submarine
volcano becoming a new island on a hot spot (like in Hawai’i), etc.

Projects like TOPEX (https://topex.ucsd.edu/ (accessed on 21 December 2023)) (Scripps
Institution of Oceanography, UC San Diego) or more recently GEBCO (https://www.gebco.
net/data_and_products (accessed on 21 December 2023)) (International Hydrographic
Organization and the Intergovernmental Oceanographic Commission of UNESCO) focus
on Earth mapping (especially seafloor surfaces). Another current project is Seabed 2030
(of the Nippon Foundation and the General Bathymetric Chart of the Oceans nonprofit
organization), the goal being to map the entire seafloor by 2030 (we are currently at 21%,
we were at only 6% in 2017 [31]). Elsewhere, it is of course of interest to propose a surface
approximation method from topographic data (from Earth, or other planets like Mars) or
lidar/bathymetry data to obtain the value of a surface on every point of a studied domain.
Of course, several well-known approaches have been introduced like spline approximation
or spline under tension (see [32] for more details), Dm spline [20,21,33,34], or kriging [35].
All these methods have drawbacks like presenting oscillations in the case of rapidly vary-
ing data (spline functions), or lack of regularity of the obtained approximant (kriging),

https://topex.ucsd.edu/
https://www.gebco.net/data_and_products
https://www.gebco.net/data_and_products
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or difficulties in managing significant amounts of data (approximation using polynomial
approximation with a significant CPU cost...).

Here, we consider the energy functional E(S) of Equation (3) with α > 0 and β = 0.
The initial condition has no impact on the quality of the result (but it has a small impact on
the CPU time). The considered dataset was obtained from the TOPEX project. The dataset
is constituted of 8736 points giving the seafloor surface and topography of Maui and the Big
Island, Hawai’i (Figure 8). This zone (around Mauna Kea) is of interest since it is the largest
“mountain” on Earth from base to top (from −7000 m to +4207 m, so around 11,207 m in
total) and this zone is in permanent evolution (Hawaiian hot point, with active volcanoes
like Kilauea, Mauna Loa, Mauna Kea, or the youngest volcano Kama’ehuakanaloa). We
give the approximation in Figure 9.

To compute the error rate, we recall the quadratic error formula:

Quad_Err =


1500
∑

i=1
(z̃i − zi)

2

1500
∑

i=1
z2

i


1/2

, (23)

where zi is the value of the z-data, and z̃i is the value of the z-approximation for the (same)
point (xi, yi).

To compute quadratic errors (Table 2), we only consider 7236 points of the dataset (out
of 8736) and we compute the error of Equation (23) on the 1500 randomly deleted points.

Table 2. Error tables: we give the quadratic error (23) between the obtained approximation and the
dataset. We give the results for 2 different finite element meshes.

Mesh Mesh
Method 20 × 20 10 × 10

Spline [21] 0.0000045 0.00026
Kriging [36] 0.0074 0.0074
Our method 0.000068 0.00092

The best error is obtained by the Dm-spline operator of [21], and our proposed method
here is (rather) equivalent in terms of error, but faster than the Dm-spline (see Table 3).
Kriging is the fastest but the approximation quality is inferior. A drawback of our approach
is that it requires an initial condition while it is not necessary when using spline approx-
imation/kriging. The CPU time with our proposed approach can be improved: instead
of using finite elements (that have the advantage of guaranteeing a C1 regularity of the
final surface), it is possible to use the fast sweeping scheme (Gauss–Seidel iterations with
alternating orderings) to solve the Eikonal equation and the Euler–Lagrange equations can
be computed by gradient descent algorithm, and with finite differences in the discretization.

Table 3. Tests are carried out on a 2.7 GHz laptop with an Intel Core i7-7500U CPU @2.70 GHz,
2901 MHz. We give a comparison of the CPU time between the different methods we have tested. We
give the results (in seconds) for 2 different finite element meshes. Of course, there is no mesh needed
for kriging.

Mesh Mesh
Method 20 × 20 10 × 10

Spline (Fortran) [21] 26 s 11
Kriging (C++) [36] 4 4
Our method (C++) 16 9
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Figure 8. Two-dimensional and three-dimensional views of the dataset: Big Island (Hawaii) zone,
8736 points.
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Figure 9. Obtained approximation of the Big Island (Hawai’i) zone using a finite element grid of
400 Bogner Fox Schmidt rectangles (of class C1, see [26] for more details). The step δt is equal to
0.3. The quadratic error (23) is equal to 6.8 × 10−5. Such quadratic error values are very good in the
surface approximation framework, and show that our approach is efficient, even in the case of this
rather complex dataset (having large variations). In the global dataset, the maximum error measured
is 6%, corresponding to a maximal error of 42 m (the location of this maximum error is logically near
the steep valleys).
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5. Conclusions

We have proposed efficient modeling for both image segmentation under geometric
constraints and data approximation.

For image segmentation, the considered constraints are a set of points to interpolate,
but other choices can be made (set of curves, surface patches...). The user defines these
points with the mouse.

The role of these geometric constraints is multiple: they can contribute to the accelera-
tion of the convergence of the algorithm by having a similar role as the inflation force of the
Balloons model [37], or they can be imposed in the model as wells data in geophysics [17].
These geometric conditions are also useful when image data are blurred or are missing (to
help the segmentation process).

We insist on the fact that the goal of our variational approach is not to challenge DL
approaches when having a significantly large set of labeled datasets, the goal is mainly
to use it on specific cases (when not having a labeled dataset, which is the case in several
medical applications and segmentation in geophysics).

In all our segmentation examples, we have kept the same values of the coefficients
that modulate the relative weight of the data fidelity term (β) and the one associated with
the gradient modulus measure (α) can be optimized to improve the results (but it makes
the method less user-free, which is why we have chosen α = β = 1).

The first numerical results we obtained are very promising. Of course, other tests
and comparisons (geophysical datasets like seismic datasets, and 3D datasets in medicine
or geosciences...) have to be conducted (work in progress). In Figure 10, we show a 3D
geophysical dataset: from this dataset, the goal is to be able to give a visualization of
layers and faults like on Figure 11 using a segmentation process; the geometric conditions
correspond in this case to wells data, helping the segmentation process to obtain the
right layer.

This is a work in progress: a current difficulty we face consists in having a sufficiently
good visualization to choose the points (geometric conditions given by the user) inside the
3D bloc; this is unsolved for now (for 3D datasets, we have unsuccessfully tried to link our
segmentation process with Paraview [38] and Tecplot [39] so far).

Regarding the parameters, the spatial step is (in general) chosen so that a finite element
of the mesh comprises approximately 25 to 100 pixels. Let us note that this leads to more
relevant results if we choose a smaller space step (which involves solving a larger linear
system). The time step is related to the accuracy of the calculation: less errors will be made
between two iterations if we choose a small time step. Values of the order of 10−3 seem
to be suitable in many tests we have conducted and a smaller number of iterations can be
given as a stop criterion.

Moreover, in the energy defined in Equation (3), it is possible to consider the following
cases to obtain many different applications:

• α > 0 and β > 0: it corresponds to our proposed segmentation model under geometric
conditions.

• α = 0 and β > 0: it corresponds to a basic segmentation model without geometric
conditions.

• α > 0 and β = 0: it corresponds to data approximation from a finite set of data with
potential applications to seafloor surfaces approximation from various kinds of data
(ship tracks data in bathymetry, lidar measurements...) or to shape optimization.

Another work in progress concerns the data approximation of coastal cliffs in Normandy
(France) from topographic datasets and from infrared datasets (see Figures 12 and 13).
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Figure 10. Example of a 3D seismic dataset wherein two continuous reflectors (layer A and layer B) appear.

Figure 11. An example of layers and a vertical fault extracted from the complex 3D dataset of
Figure 10. Obtaining such visualization requires for a geologist to directly work on the 3D bloc
(almost pixel after pixel); we propose to use a segmentation process with geometric constraints to
segment one layer after another.
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Figure 12. An example of a studied zone in Normandy (Sainte Marguerite cliffs). From different
datasets (including acquisition using drones carrying infrared cameras and photogrammetry). The
goal is to precisely reconstruct the topography (credits: Defhy3geo project, with Cerema Normandie).

Figure 13. A studied zone with infrared datasets (Vaches noires cliffs, credits: Defhy3geo project,
with Cerema Normandie). Approximation of coastal zones is required for many applications like
security concerns (cliffs collapsing), or to study the impact of topography on velocity wind fields
(Intertwind project).

This general framework is promising, and the model Equation (3) can be developed,
adding new kinds of geometric datasets, such as surface patches, Hermite datasets with
tangent planes to given 3D datasets, wind velocity fields approximation from lidar datasets,
in applications both linked to image segmentation and data approximation.
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