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Abstract: Face swapping is an intriguing and intricate task in the field of computer vision. Currently,
most mainstream face swapping methods employ face recognition models to extract identity features
and inject them into the generation process. Nonetheless, such methods often struggle to effectively
transfer identity information, which leads to generated results failing to achieve a high identity
similarity to the source face. Furthermore, if we can accurately disentangle identity information,
we can achieve controllable face swapping, thereby providing more choices to users. In pursuit of
this goal, we propose a new face swapping framework (ControlFace) based on the disentanglement
of identity information. We disentangle the structure and texture of the source face, encoding and
characterizing them in the form of feature embeddings separately. According to the semantic level
of each feature representation, we inject them into the corresponding feature mapper and fuse
them adequately in the latent space of StyleGAN. Owing to such disentanglement of structure and
texture, we are able to controllably transfer parts of the identity features. Extensive experiments
and comparisons with state-of-the-art face swapping methods demonstrate the superiority of our
face swapping framework in terms of transferring identity information, producing high-quality face
images, and controllable face swapping.

Keywords: face swapping; feature disentanglement; semantic hierarchy-based feature fusion;
controllable identity feature transfer

1. Introduction

Face swapping is a technique that transfers the identity information from a source face
to a target face while preserving the identity-independent attributes (e.g., pose, expression,
lighting, and background) of the target face. It has been used extensively in entertain-
ment, filmmaking, television, and advertisements, thereby creating amusing effects and
elevating visual experiences. Artists leverage this technology for innovative digital art,
pushing the boundaries of creativity. In the realm of filmmaking, it facilitates seamless
facial replacements between characters, thereby enhancing visual effects. Industries such
as e-commerce and beauty employ face swapping for virtual try-ons and makeup experi-
ments, contributing to an enhanced shopping experience. This technique has attracted
considerable attention from researchers in the field of computer vision.

The key problem of face swapping technology is identity transfer, i.e., how to precisely
and adequately transfer the identity-relevant facial features, comprising both structure and
texture, to the target face. Most current methods [1–5] use a pre-trained 2D face recognition
network [6] to extract identity features and inject them into a generator to achieve identity
transfer. However, due to the difference between face generation and face recognition
tasks, the identity information extracted by this network may miss many important facial
structure details, like face contours, which can result in swapped faces with structure
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between the source and target faces. More importantly, previous methods rarely consider
the transfer of texture features of the face, such as skin color. We believe that texture, as
well as structure, is an important component of face identity information. Such an identity
transfer method can lead to huge identity differences between the swapped face and the
source face in human visual perception.

Another significant challenge pertains to the development of a more versatile and
controllable face swapping methodology. We think that it is essential to provide users with
the capability to controllably transfer specific facial attributes according to their preferences.
For instance, users should have the option to transfer solely the texture of the source face
while preserving the structure of the target face, and vice versa. However, since current face
swapping methods can not disentangle the structure and texture of the face, controllable
face swapping cannot be achieved.

To effectively address the above problems, we propose a novel face swapping network
based on the disentanglement of face features. Inspired by works on face reconstruc-
tion [7,8], our method uses two 3D autoencoders to disentangle the facial structure and
texture, characterizing them as depth embedding and albedo embedding, respectively.
Additionally, we complement them with Arcface embedding extracted by the 2D face
recognition network [6] for more information about the internal structure of the face. The
combination of these three feature embeddings collectively constitutes the identity repre-
sentation extracted from the source face. Leveraging this disentanglement approach, we
are able to achieve controllable face swapping by extracting a portion of the identity embed-
dings from the source face and another portion from the target face, thereby transferring
the partial identity information we choose.

Simultaneously, we encode the target face image into a latent code w ∈ R18×512 using
the StyleGAN encoder to preserve its identity-independent information. In order to fuse the
structure and texture from the source face and the identity-independent information from
the target face together to control and guide the generation of swapped faces, we designed
a face feature fusion network. We inject the extracted feature embeddings into the feature
mappers according to their semantic levels and fuse them with the identity-independent
information to obtain a new latent code w′ in theW+ space and then generate the swapped
faces through the StyleGAN generator.

During the training process, to more effectively disentangle the structure and texture
information, we designed three types of training losses: (1) identity-consistent losses used
to guide the transfer of identity-related information (structure and texture); (2) attribute-
consistent losses used to preserve identity-independent information (expression, pose, and
lighting); and (3) ancillary losses used to improve the fidelity of the generated image and
facilitate convergence of model training.

Through these approaches, we can accurately transfer the structure and texture of
the source face to the target face. In comparison to previous face swapping methods, our
method excels in the more adequate transfer of identity information, particularly in terms
of facial contours and texture. This results in face swapping results with higher identity
similarity to the source face. Moreover, by disentangling structure and texture, our method
enables controllable face swapping, allowing users to select the identity information they
wish to transfer and expanding its applicability to a wider range of domains.

Overall, our contribution can be summarized in the following three points:

• We propose a new idea for the face swapping task that we can transfer the identity
information more adequately and flexibly via identity feature disentanglement, based
on which we propose a new high-quality face swapping framework (ControlFace)
and achieve controllable face swapping.

• We propose a novel approach for disentangling structure and texture and accordingly
propose a semantic hierarchy-based face feature fusion module, where different
semantic levels of features are fused to enable the model to efficiently learn these
features and generate the swapped faces. Moreover, we designed some loss functions
to make the disentanglement more adequate and accurate.
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• Extensive experiments demonstrate the effectiveness of our approach to transfer
identity information and perform controllable face swapping.

2. Related Work
2.1. GAN Inversion

The purpose of GAN inversion is to reconstruct the input image as accurately as
possible by mapping it to the corresponding latent code. In this way, we can edit the latent
code in order to perform the desired image manipulation. There are two key points in
this technique: the latent space and the inversion algorithm. StyleGAN [9,10] can generate
high-resolution face images with vivid details due to its powerful representation and
synthesis capabilities. Its latent space has been proved to have good disentanglement
properties [11–14] and is well suited for feature editing. In addition, some StyleGAN
works [15,16] extend the latent space from w ∈ R1∗512 to w ∈ R18∗512, obtaining better
reconstruction results. Our approach accomplishes the fusion of face features of different
semantic levels based on theW+ space of the pre-trained StyleGAN model.

2.2. Face Swapping

As a research interest in computer vision, face swapping tasks have a long history.
Most of the early face swapping studies [17–19] are based on 3D shape estimation for
face alignment and feature transfer, which can produce obvious traces of forgery. Most
of the GAN-based methods [1–4,20–25] are target-oriented methods, which use an en-
coder to extract the identity information of the source face and transfer it to the target
face. These methods use a discriminator to improve the fidelity of the swapped images.
References [1,2,4] obtain the identity embedding from the face recognition model [6], which
is injected into the layers of the generator network for fusion. HifiFace [3] adds a landmark
obtained from 3D Morphable Model (3DMM) to this identity embedding to complement
the identity-related geometric information. References [22,23] represent source and target
faces with latent codes via a pre-trained StyleGAN encoder and fuse them in theW+ space
according to the semantic level. These methods control the attributes of the target faces
through landmarks or segmentation masks. Recently, some face swapping methods based
on a diffusion model [5] have been proposed.

However, all of these face swapping methods above only transfer the structure of the
source face, neglecting the texture. They generate swapped images with skin colors that
are consistent with the target face. E4S [26] is capable of texture transfer, but its feature
disentangling approach and its reliance on pre-trained face reenactment models affect
its generation quality. Our approach uses a 2D face recognition model [6] and two 3D
autoencoders to extract identity information, resulting in more adequate identity transfer
and higher-quality, more controllable face swapping.

2.3. Feature Disentanglement

Existing face disentangling methods can be classified into parametric and non-parametric
methods. Parametric disentangling methods [27–33] separate face features such as shape,
expression, and texture by modeling the face with 3DMM assumptions. Such methods fit
the 3DMM parameters via optimization algorithms or use deep neural networks to regress
the results on the input images. Non-parametric methods no longer require predefined
models and parameters. SFS-Net [34] and Unsup3d [7] perform unsupervised training
based on guessing from shading to shape. LAP [8] exploits multi-image consistency in
a non-parametric paradigm to disentangle faces into global facial structure and texture
features. GAN2Shape [35] and LiftedGAN [36] attempt to disentangle face facial features
using 2D GAN. Unlike the above methods, NPF [37] performs 3D face modeling through a
neural rendering mechanism and therefore performs better in terms of detail, resolution,
and non-face objects.
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3. Method

In this section, we will describe our method ControlFace, which is based on a Style-
GAN model. After cropping and aligning the given target and source faces, we first use
the StyleGAN encoder to obtain the latent code w of the target face inW+ space while
extracting the identity embeddings of the source face using two 3D autoencoders and a
2D face recognition model [6]. Then, we inject the disentangled identity embeddings of
different semantic levels into W+ space with three feature mappers in the face feature
fusion network, obtaining the latent code change ∆w. Finally, we input the new latent
code w′ = w + ∆w into the pre-trained StyleGAN generator to generate the face swapping
results. The overall framework is illustrated in Figure 1, and each component will be
described in detail below.

网络结构

StyleGAN

Encoder

Source Face

Target Face
𝒘 ∆𝒘

Swapped Face

𝑴𝒄

𝑴𝒎
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𝒘′

StyleGAN

Generator

ArcFace
𝐞𝒂𝒓𝒄

𝐞𝒅

𝐞𝒂
Depth Map Albedo Map

Depth Loss & 

Albedo Loss

δd&δa φd&φa

Figure 1. Overview of the proposed ControlFace method. We disentangle and extract the identity
information of the source face with two 3D autoencoders and a 2D face recognition model and then
represent it as three identity embeddings. Meanwhile, we obtain the latent code of the target face in
theW+ space using the StyleGAN encoder. We inject the identity embeddings into theW+ space
according to their semantic levels with three feature mappers. Finally, we use the StyleGAN generator
to obtain the swapped face.

3.1. Disentangling of Identity Feature

To achieve controllable face swapping, we first need to accurately and adequately
disentangle the structure and texture of the source face. Inspired by work on non-parametric
3D face reconstruction [7,8], we use an autoencoder-based approach to disentangle face
features. These works use four autoencoders φd, φa, φω , φl to separate each face image into
four parts: the depth map d ∈ R+, albedo map a ∈ R3, viewpoint ω ∈ R6, and global light
direction l ∈ S2. Such disentanglement is achieved by using the UV relationship of the face
features and the basic symmetry principles of structure and texture as follows:

Î = Π(Λ(a, d, l), d, ω), Î′ = Π
(
Λ
(
a′, d′, l

)
, d′, ω

)
, (1)

where Π and Λ are the illumination and projection steps in the reconstruction process,
respectively, and a′ and d′ are the flipped versions of a and d. The method constrains the
self-encoders according to the symmetry relationship I ≈ Î′.

We employ such depth maps and albedo maps obtained from the autoencoders based
upon symmetry principles as the representation of structure and texture in our face swap-
ping method. These maps exhibit high identity consistency since facial identity information
in the image possesses significantly greater symmetry compared to non-identity infor-
mation. Specifically, we disentangle the structure and texture of the source face using a
depth autoencoder φd = (δd, ϕd) as well as an albedo autoencoder φa = (δa, ϕa) that are
pre-trained. We use the encoders δd and δa to extract the structure and texture of the source
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face and represent them as a depth embedding ed and an albedo embedding ea, which are
both vectors of dimension 512. Then, we inject these two embeddings into the generative
network to guide the face generation. Moreover, we upsample the depth embedding ed
and the albedo embedding ea with the decoders ϕd and ϕa into the depth map dre f and
the albedo map are f . During the training process, we use these identity feature maps to
calculate the identity-consistency loss and guide the face swapping results.

However, since depth maps dre f represent the structure of a face by displaying its
distance from the observer in terms of the size of each pixel’s gray value, depth embeddings
ed are not sufficient for representing local structure features of the face, especially the eyes,
eyebrows, and other detailed parts of the face. Therefore, we still need to complement the
source face structure information using ArcFace [6], a 2D face recognition network. We use
it to map the source faces into 512-dimensional ArcFace embeddings earc, which will have
high cosine similarity if they are extracted from different images of the same identity. Such
feature embeddings can effectively complement the information that depth embeddings ed
fail to extract in representing facial structure.

Due to the characteristics of the face recognition task, the identity-related informa-
tion extracted by this face recognition network [6] contains more structure information
about the interior of the face, while it is hard for this network to extract texture and face
contours effectively. So, we characterize the structure by combining depth embedding
ed with ArcFace embedding earc together while representing the texture through albedo
embedding ea.

Based on our disentanglement of structure and texture, our method achieves the
capability to perform controllable face swapping tasks. To this end, we devised a multi-
mode training strategy that allows the model to learn four modes of identity feature transfer
during training, including complete identity transfer, structure-only transfer, texture-only
transfer, and self-swapping. When the structure-only transfer is performed, we extract ed
and earc from the source face and ea from the target face. In contrast, when performing the
texture-only transfer, we extract ed and earc from the target face and ea from the source face.
When self-swapping, all identity embeddings are extracted from the target face, while they
are all extracted from the source face when performing the complete identity transfer. This
enables us to achieve four different types of identity feature transfer with the same model,
allowing users to choose the identity transfer mode according to their needs. It also enables
a small remnant of texture information in earc to be eliminated during the fusion process,
making the feature disentanglement more adequate.

3.2. Feature Fusion Based on Semantic Hierarchy

In order to preserve the identity-independent features of the target image and generate
high-quality, high-resolution face swapping results, we use the StyleGAN model with
powerful representation capabilities. To optimize computational efficiency and enhance
training stability, we do not train the StyleGAN model from scratch. For a given target face
image, we encode it using the end-to-end StyleGAN inversion method “e4e” [38] into latent
codes w ∈ R18∗512 in the W+ potential space. Previous face swapping methods [22,23]
tend to consider feature fusion only for high-level semantics, but we believe that low-level
identity information is equally important for face swapping tasks. For this reason, we
designed a multi-level identity injection network for feature fusion.

Many studies [9,39] have shown that the StyleGAN encoder has robust semantic
disentangling capability, which means that it is able to disentangle features at different
semantic levels of the face image and represent them at different layers in theW+ space,
with the more preceding network layers in the model framework corresponding to image
information at higher semantic levels. Taking this characteristic of the StyleGAN model
as a basis, we separate these layers into three groups (coarse, medium, and fine). Corre-
spondingly, we classify the latent code w that represents the image in theW+ space into
wc, wm, and w f , which denote high, medium, and low-level semantic features, respectively.
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In order to fuse identity-related information at different semantic levels inW+ space, we
devised three facial feature mappers with the same structure: Mc, Mm, and M f .

Based on the semantic levels to which different identity feature embeddings belong,
we direct their injection into the corresponding mappers. Specifically, the depth embedding
ed represents the global structure and contour, with a higher semantic level, and we
inject it into Mc and Mm; the albedo embedding ea represents the texture, with a lower
semantic level, and we inject it into M f . The ArcFace embedding obtained from the 2D
face recognition network represents the structure detail information of the internal face, so
we inject it into all of the three feature mappers. Therefore, the output of the face feature
mapper can be expressed as:

∆wc = Mc(wc, earc, ed), (2)

∆wm = Mm(wm, earc, ed), (3)

∆w f = M f

(
w f , earc, ea

)
. (4)

Each mapper consists of 10 units. The first 5 units perform earc injection, and the
last 5 units perform ed or ea injection. In each unit, we further extract the useful parts of
the identity embedding through two fully connected networks, especially separating the
textures left in the earc. We fuse them inW+ space according to the following formula:

x′ = LeakyRelu
(
(1 + fγ(e)) LayerNorm (x) + fβ(e)

)
, (5)

where both fβ and fγ are fully connected networks.
Finally, we use the facial parsing network [40] to predict the face region of the target

face and generate the mask, and then we fuse the face region of the swapped face result
with the background of the target image using Poisson fusion. In order not to leave visible
artifacts at the fusion junction, we performed a soft erosion operation on the generated
masks to enable gradient transformations at the blending boundaries of the fused image.

3.3. Loss Functions

Our goal is to disentangle and transfer texture and structure from the source face xsrc
while preserving identity-independent attribute information such as expression, pose, and
lighting of the target face xtgt. Therefore, we designed several types of loss functions to
constrain the generation process of swapped face xswap. In the following, we will introduce
the identity-consistency loss, attribute consistency loss, and ancillary loss of our method:

3.3.1. Identity-Consistency Loss

For the earc extracted from the 2D face recognition network [6], we use cosine similarity
to compute the ArcFace loss:

Larc = 1− cos
(
earc, R

(
xswap

))
, (6)

where R refers to the 2D face recognition model ArcFace.
In order to transfer the structure and texture of the source image more efficiently,

we use the autoencoder φd and φa to disentangle the source face xsrc and swapped face
xswap into a depth map dre f and albedo map are f , then compute the depth loss and albedo
loss, respectively:

Ldepth =
∥∥∥Φd(xswap

)
− dre f

∥∥∥
2
, (7)

Lalbedo =
∥∥∥Φa(xswap

)
− are f

∥∥∥
2
. (8)
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Our identity-consistency loss is formulated as:

Lid = λarcLarc + λdepthLdepth + λalbedoLalbedo, (9)

where λarc = 1, λdepth = 10, λalbedo = 10.
While performing structure-only transfer or texture-only transfer, we calculate these

loss functions according to the specific structure-reference images and texture-reference
images of these modes.

3.3.2. Attribute-Consistency Loss

In order to keep the attribute information of the swapped face consistent with the target
face, we use an advanced pre-trained 3D face model [32] to parametrically encode the shape,
expression, pose, texture, and lighting information of the source face xsrc and the target
face xtgt to obtain the 3DMM coefficients csrc and ctgt. Then, we mix the shape coefficients
(complete identity transfer and structure-only transfer) and texture coefficients (complete
identity transfer and texture-only transfer) of the source face with the other coefficients
of the target face to obtain the fused 3DMM coefficients c f use so that we can obtain the
indicative key point coordinates q f use and the color coefficient color f use of the swapped face
corresponding to it through the mesh renderer and its affine model, respectively. In this
way, we can constrain the attribute information of the expression, pose, and lighting by
using the landmark loss and color loss:

Llandmark =
∥∥∥q f use − qswap

∥∥∥
1
, (10)

Lcolor = ‖color f use − colorswap‖1. (11)

Moreover, in order to limit the shape change in the swapped face for better foreground-
and-background fusion, we designed a segmentation loss:

Lseg =
∥∥Mswap −Mtgt

∥∥
1, (12)

where Mswap and Mtgt are the face region masks predicted by the facial parsing network [40]
for the swapped face and the target face, respectively.

Our attribute-consistent loss is formulated as:

Lattr = λlandmarkLlandmark + λcolorLcolor + λsegLseg, (13)

where λlandmark = 0.1, λcolor = 5, λseg = 1.

3.3.3. Ancillary Loss

In order to make the model converge faster in the training process, we designed the
self-swapping mode, which accounts for 9% of the training steps, in which mode the source
face and the target face are the same face image. We calculate the reconstruction loss using
the following equation:

Lrec =
∥∥xtgt − xrec

∥∥
1, (14)

where xrec denotes the swapped face obtained from the self-swapping mode.
In order to improve the fidelity of the generated images, we used the original discrimi-

nator and the adversarial loss function of the StyleGAN2 model, resizing the swapped face
images to 256 to input them to the discriminator.

Our ancillary loss is formulated as:

Lanci = λrecLrec + λadvLadv, (15)
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where λrec = 1, λadv = 0.05. To this end, the total loss of our proposed framework has the
following form:

Ltotal = Lid + Lattr + Lanci. (16)

4. Results and Discussion
4.1. Experimental Setup

The CelebAMask-HQ dataset [40] contains 30K high-quality 1024 × 1024 face images
with great diversity in gender, skin color, and age. We divided it into 27 K and 3 K images,
which were used as the training and testing sets, respectively. FaceForensics++ dataset [41]
consists of 1000 original videos from the Internet. It serves as the benchmark of many face
swapping works and face forgery detection works.

We adopted the same data preprocessing approach as e4e [38], using a pre-trained
68-keypoint detection model to detect the key points of all face images and subsequently
cropping and align them and then resize them to a size of 256.

We trained our model on an A6000 GPU. During training, we set the batch size to
16 and used the Adam optimizer [42] with β1 and β2 of 0.9 and 0.999 and learning rates
of 0.0005 and 0.00005 for the generator and discriminator, respectively. The number of
training iterations was 400,000. During the experiment, the inference of our method was
about 230 ms/it, around the average level of current face swapping methods.

We compared our approach with previous face swapping methods that have had
a large impact, including FaceShifter [1], SimSwap [2], HifiFace [3], InfoSwap [43], and
FaceDancer [44]. We also compared with previous StyleGAN-based methods, MegaFS [22]
and HiRes [23]. Specifically, we applied all of these methods to the high-resolution
CelebAMask-HQ dataset on a test set of 3000 source-target pairs to generate swapped
faces. Additionally, we used the two StyleGAN-based methods to conduct an experiment
on the low-resolution FaceForensics++ dataset.

4.2. Qualitative Evaluation

A qualitative comparison of our method with current state-of-the-art face swapping
methods which are not StyleGAN-based is shown in Figure 2. It shows that compared to
other methods, our ControlFace method can transfer the identity features from the source
face more comprehensively and effectively. It can be seen that FaceShifter [1] is not able
to transfer the identity information sufficiently on high-resolution face images, such as
the structure of the mouth and nose. FaceDancer [44] also does not perform well in the
CelebAMask-HQ dataset, with many artifacts like wrinkles in the face. For SimSwap [2]
and HifiFace [3], the detail parts of their results are not processed well enough; especially,
the part of the eyes and mouth have more obvious artifacts. Compared to them, swapped
faces generated by our model do not have many artifacts. The quality of the swapped face
generated by InfoSwap [43] is higher than the methods mentioned before, but compared
with our method it is still missing a large amount of important identity-related information,
which directly leads to these results having a relatively large identity gap with the source
face, especially when there are large differences in contour and skin color between the
source and target faces. Among these methods, our method is the only face swapping
approach that can transfer texture features and facial contours efficiently. To highlight the
advantages of our method, we selected several pairs of faces with significant differences in
texture and contour. It can be seen that while dealing with source and target faces with
widely varied textures, we are able to transfer the facial color and other texture details of
the source face to the target face accurately. For example, for the two faces in the second
row, the source face has a darker skin color, while the target face has a lighter skin color.
Our method is capable of transferring the skin color from the source face to the target face,
ensuring that the swapped face has a skin color as deep as the source face. In contrast, other
face swapping methods tend to generate swapped faces with skin colors similar to the
target face. Moreover, while dealing with faces in the third row, our ControlFace method is
able to transfer the beard from the source face to the target face, while other methods fail to
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achieve this. In addition, the facial contours of our swapped face results are more consistent
with the source face, especially when the source and target faces have large differences in
face shapes. This leads to our swapped face results having higher identity similarities to
the source face than others.

Source Target FaceShifter SimSwap HifiFace InfoSwap FaceDancer Ours

Figure 2. Qualitative comparison of our face swapping results with current state-of-the-art face
swapping methods [1–3,43,44]. Please pay attention to the texture of the face swapped image.

To further compare the performance of our model, we conducted comparative ex-
periments with popular StyleGAN-based face swapping methods. The qualitative results
are shown in Figure 3. It is evident that HiRes [23] is unable to transfer the contours and
textures of the source face, and the generated images exhibit some artifacts around the
mouth area. In contrast, MegaFS [22] can transfer certain textures but fails to disentangle
them from the lighting, resulting in blurry and less realistic generated images. Moreover, it
struggles to transfer contours effectively. Our ControlFace method, compared to the other
two StyleGAN-based methods, excels in transferring both structure and texture. For exam-
ple, in the first row, the contour of the source face is wider than that of the target face. The
swapped faces generated by the other two methods maintain contours almost identical to
the target face, while our method produces swapped faces with wider contours, resembling
the source face more closely. In the results of the second row, there are noticeable patches
of lights on the target face. MegaFS fails to capture this during texture transfer, resulting in
facial skin tones with minimal variation in brightness. In contrast, our generated faces are
brighter in the lighted areas, demonstrating our model’s ability to transfer texture while
preserving the lighting characteristics of the target face.

4.3. Quantitative Evaluation

We also conducted a quantitative comparison with the leading methods to compare
the ability to transfer source face identity information and preserve target face attributes.
We use the face recognition model [6] to extract the earc of each swapped face and its
corresponding source face and calculate the cosine similarity between them to calculate the
accuracy rate of identity transfer. Furthermore, we used the depth autoencoder φd and the
albedo autoencoder φa to separate the depth map and albedo map of the swapped face and
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the source face and compute their l2 distances as an indicator of depth error and albedo
error to estimate the transfer of structure and texture, respectively. Moreover, in order to
quantitatively calculate the preservation of each face feature, we used a 3D face model [32]
to extract the shape, texture, expression, pose, and lighting coefficients of each swapped
face and the corresponding source face and target face. We computed the l2 distances of
shape coefficients and texture coefficients between the swapped face and the source face
and the other coefficients between the swapped face and the target face.
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As can be seen from Table 1, it is evident that our method indeed surpasses current
mainstream approaches in the comprehensiveness and accuracy of identity transfer. Our
method has the highest ArcFace similarity, which indicates that the swapped faces gener-
ated by our method have a high identity transfer rate based on face recognition models.
For depth error, the generated results of our method are slightly higher than other methods,
which is due to the fact that we are able to transfer the source face contours better. The
albedo error of our results is higher than other methods, which shows that our model has
better results in transferring the source face texture information, while most of the other
methods do not pay much attention to texture transfer.

As can be seen from Table 2, our model achieves near-top results for each face feature.
For the shape and texture transfer, our ControlFace method is also more accurate than the
others. For attribution preservation, our method achieves third place for expression control
and second place for pose control; such a result is mainly based on the landmark loss we
propose. The disentanglement of texture and light is currently a significant challenge in
texture transfer, due to the fact that they both act together on every pixel value. Neverthe-
less, our model still manages to maintain low error in light, while ControlFace is the only
method that transfers texture in the experiment. This enables our swapped faces to have a
high fidelity.

Figure 3. Qualitative comparison of our face swapping results with StyleGAN-based face swapping
methods [22,23]. Our method can transfer more identity features than others (facial contours and
skin color).

As can be seen from Table 1, it is evident that our method indeed surpasses current
mainstream approaches in the comprehensiveness and accuracy of identity transfer. Our
method has the highest ArcFace similarity, which indicates that the swapped faces gener-
ated by our method have a high identity transfer rate based on face recognition models.
For depth error, the generated results of our method are slightly higher than other methods,
which is due to the fact that we are able to transfer the source face contours better. The
albedo error of our results is higher than other methods, which shows that our model has
better results in transferring the source face texture information, while most of the other
methods do not pay much attention to texture transfer.

As can be seen from Table 2, our model achieves near-top results for each face feature.
For the shape and texture transfer, our ControlFace method is also more accurate than the
others. For attribution preservation, our method achieves third place for expression control
and second place for pose control; such a result is mainly based on the landmark loss we
propose. The disentanglement of texture and light is currently a significant challenge in
texture transfer, due to the fact that they both act together on every pixel value. Neverthe-
less, our model still manages to maintain low error in light, while ControlFace is the only
method that transfers texture in the experiment. This enables our swapped faces to have a
high fidelity.
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Table 1. Quantitative results of identity transfer. We compared our model with five competing
methods in ArcFace Similarity and depth & albedo error for the ability of identity transfer. The best
results are shown in bold. ↑means higher is better, and ↓means lower is better.

Method Arc. Simi. ↑ Depth ↓ Albedo ↓
FaceShifter [1] 49.33 31.68 49.59
SimSwap [2] 52.03 32.32 48.49
HifiFace [3] 48.24 32.35 50.22

InfoSwap [43] 52.58 31.04 51.58
FaceDancer [44] 38.62 33.68 52.49

MegaFS [22] 48.49 33.44 48.18
HiRes [23] 48.81 30.71 42.58

Ours 55.20 27.89 35.17

Table 2. Quantitative results of each face feature. We measured the error of shape, texture, expres-
sion, pose, and lighting. ↑means higher is better, and ↓means lower is better.

Method Shape ↓ Tex. ↓ Exp. ↓ Pose ↓ Light. ↓
FaceShifter [1] 2.07 5.34 0.74 0.57 1.08
SimSwap [2] 2.01 5.09 1.15 0.75 1.71
HifiFace [3] 1.75 4.95 1.23 0.63 2.14

InfoSwap [43] 2.01 4.91 1.38 2.41 1.93
FaceDancer [44] 3.45 7.19 0.77 0.75 0.83

MegaFS [22] 2.34 5.25 1.25 2.77 3.04
HiRes [23] 2.12 5.25 1.09 1.51 1.84

Ours 1.26 3.12 1.02 0.60 1.72

4.4. Comparison on FaceForensics++ Dataset

To test the robustness of our model on low-resolution images, we conducted an
experiment on the FaceForensics++ dataset [41]. We uniformly selected 10 frames from
each video and performed face swapping according to the identities specified by the dataset.
To control variables, we compared our results with MegaFS and HiRes, both based on
StyleGAN and trained on high-resolution face datasets. We calculated the identity retrieval
with the 2D face recognition model and depth and albedo error with 3D autoencoders. The
quantitative results of the experiments are shown in Table 3:

Table 3. Quantitative results of StyleGAN-based face swapping methods for FaceForensics++
dataset. We compared our model with two StyleGAN-based methods on the FaceForensics++ dataset
to test the robustness of our method. ↑means higher is better, and ↓means lower is better.

Method ID. Ret. ↑ Depth ↓ Albedo ↓
MegaFS [22] 90.31 34.03 47.91
HiRes [23] 88.23 33.14 44.05

Ours 94.11 31.07 39.93

We can see that all the StyleGAN-based methods perform worse on the low-resolution
dataset. This is because these face swapping methods are all based on StyleGAN2 trained
on high-resolution images as the baseline. Nonetheless, our approach still outperforms
the other two StyleGAN-based face swapping methods and is able to transfer some of
the texture. In the future, we will further optimize the model to enhance its robustness,
improve its ability to transfer identity information in low-resolution images and generate
high-quality face images.
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4.5. Ablation Study

We verified the effectiveness of the identity embedding selection and feature injection
of our proposed method using an ablation study. We also tested how the size of the training
dataset influences the accuracy of our model. In each experiment, we only changed one of
the components in our framework to keep the remaining variables constant. The identity
transfer capabilities of each model were tested, and the quantitative results are shown in
Table 4.

Choice of identity embeddings: Our identity extraction network extracts a total
of three identity embeddings earc, ed, and ea. To demonstrate the necessity of individual
identity embeddings, we reduced 1–2 identity embeddings at a time and retrained the
model. We reduced earc, ed, ea, and both ed and ea. When we did not inject ed or ea into
the feature fusion network, we also correspondingly stopped using Ldepth or Lalbedo. The
experimental results show that reducing a certain embedding may lead to a better transfer
of other identity features but have a large impact on the identity information represented
by that embedding.

Table 4. Quantitative ablation study. The comparison of different strategies of identity embedding
selection, feature injection, and size of the training set. ↑means higher is better, and ↓means lower
is better.

Method Arc. Simi. ↑ Depth ↓ Albedo ↓
Ours 55.20 27.89 35.17

w/o earc 49.44 27.80 34.58
w/o ed 55.97 28.62 35.07
w/o ea 56.82 27.86 38.82
w/o ed&ea 57.06 28.73 39.34
(a) 53.26 28.43 36.77
(b) 51.98 28.71 35.48
(c) 51.86 28.46 36.41
18 k-data 53.52 29.09 36.21
9 k-data 51.21 29.91 38.32

Feature injection strategy: For feature injection, we conducted experiments with
three different strategies: (a) injecting the albedo embedding ea into the coarse feature
mapper Mc and the medium feature mapper Mm and injecting the depth embedding ed into
the fine feature mapper M f , (b) injecting the depth embedding ed into the coarse feature
mapper Mc and injecting the albedo embedding ea into the fine feature mapper M f and
the medium feature mapper Mm, and (c) injecting the ArcFace embedding earc into the
coarse feature mapper Mc and the medium feature mapper Mm and no further into the fine
feature mapper M f . Experiments on strategies (a) and (b) show that our feature injection
approach matches its semantic level. Experiments on strategy (c) show that there are a
number of low-level semantic features in the ArcFace embedding earc, and it is necessary to
inject them into all three mappers.

Training dataset size: To investigate the influence of training set size on the model,
we reduced the size of the training set from 27 k to 18 k and 9 k. Testing was still conducted
on the initially selected testing set after training. The experimental results reveal that the
effectiveness of our model is reduced with a decrease in the number of training set images.
When the training set size is insufficient, the model exhibits signs of overfitting, particularly
with a noticeable decline in the transfer performance of texture information.

4.6. Controllable Face Swapping

Distinguished from conventional face swapping methods, our model stands out by
its exceptional capability to perform controllable face swapping, based upon the sufficient
disentanglement of structure and texture. This is a pioneering breakthrough in the field of
face swapping, as it empowers users with the freedom to choose their preferred identity
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transfer mode. When utilizing ControlFace for a face swapping project, users have the
flexibility to decide whether to transfer the structure or texture of source faces to the
target faces.

To enable a single face swapping model to seamlessly handle all of the four identity
feature transfer modes, including complete identity transfer, structure-only transfer, texture-
only transfer, and self-swapping, we designed a probabilistic framework that governs the
transfer of structural and textural information during each training step, with both prob-
abilities set at 0.7. Consequently, the probability distribution for each of the four transfer
modes during a training step is 0.49, 0.21, 0.21, and 0.09, respectively.

Qualitative results: We show the generation results of each identity transfer mode
in Figure 4, from which we can clearly make out the significant differences between the
different modes.

Source Target Self-swap. Str. Transfer Tex. Transfer Com. Transfer

Figure 4. Qualitative results of controllable face swapping using our method.

When structure-only transfer is performed, the skin color, lip color, beard, and other
texture information of the swapped face remain consistent with the target image, while the
structure has a high similarity to that of the source face. In the field of virtual character
creation, this mode plays a pivotal role in crafting lifelike virtual personas. It facilitates the
fusion of unique face structures with pre-existing character templates while retaining the
technologically synthesized skin and makeup. This is instrumental in generating diverse
characters for video games, augmented reality experiences, and virtual worlds, enhancing
the immersive quality of these digital environments.

While texture-only transfer is performed, the face structure of the swapped face is
basically the same as the target face, but the texture information changes considerably,
which is more consistent with the source face. In the field of beauty-themed applications,
such as Photoshop and beauty filters in mobile applications, texture-only transfer can be
utilized to enhance and refine individuals’ appearances in photos. Users can modify their
skin texture and complexion to achieve a more desired and aesthetically pleasing look while
retaining their original facial structure. This serves to meet the ever-evolving standards of
beauty in the digital age, providing individuals with a means to perfect their selfies and
photographs before sharing them on social media or elsewhere.
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Our future research will concentrate on the further disentanglement of face structure
and expression, as well as the separation of texture and lighting information. These plans
have the potential to elevate the precision and interpretability of face swapping and editing
techniques, which is able to give users a wider range of choices and higher-quality results.

4.7. Limitations

Despite the effectiveness of ControlFace, our method still has some limitations. Firstly,
since our method uses the StyleGAN model as a baseline, dealing with low-quality facial
images makes it challenging to obtain accurate latent codes in theW+ space, consequently
hindering the generation of high-quality face swapping results. Secondly, our method
requires training on a larger dataset to avoid overfitting issues. In future work, we aim to
optimize our approach by addressing these aspects.

4.8. Broader Impact

Any realistic and high-quality face swapping technology, while providing services
and experiences to users, may also give rise to certain societal and ethical implications, and
our work is undoubtedly not an exception. This technology has the potential to maliciously
exploit the facial features of ordinary individuals, leading to the leakage of personal privacy
and infringement upon the citizen’s portrait rights. Additionally, the technology could
be utilized for fraudulent activities, false advertising, political manipulation, and other
malicious purposes, thereby having adverse effects on society.

These potential negative impacts of these face swapping methods underscore the
necessity for facial forgery detection and facial privacy protection technologies. There is
also an urgent need to establish rules and regulations governing the use of face swapping
technology to ensure its corrective and responsible application in society. Rather than
focusing solely on the potential malicious uses of face swapping technology or imposing a
ban on research related to face swapping, our attention should be paid to applying face
swapping technology in legitimate and compliant domains. We should be committed to
enabling users to enjoy the benefits of this technology while helping them remain mindful
of its potential risks.

5. Conclusions

In this paper, we propose ControlFace, a novel framework for face swapping. This
method accurately disentangles the structure and texture of a source face and extracts them
in the form of identity embeddings. We inject them into the feature mapper according to
their semantic level and fully fuse them with the representation w of the target face in the
W+ space of StyleGAN to generate high-fidelity, high-quality swapped faces. We realize
controllable face swapping by extracting some of the identity embeddings from the source
face and others from the target face. Extensive experiments and qualitative and quantita-
tive comparisons with current mainstream methods demonstrate the superiority of our
method in identity information transfer, attribute information protection, and controllable
face swapping.
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