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Abstract: Endoscopies are helpful for examining internal organs, including the gastrointestinal tract.
The endoscope device consists of a flexible tube to which a camera and light source are attached.
The diagnostic process heavily depends on the quality of the endoscopic images. That is why
the visual quality of endoscopic images has a significant effect on patient care, medical decision-
making, and the efficiency of endoscopic treatments. In this study, we propose an endoscopic image
enhancement technique based on image fusion. Our method aims to improve the visual quality of
endoscopic images by first generating multiple sub images from the single input image which are
complementary to one another in terms of local and global contrast. Then, each sub layer is subjected
to a novel wavelet transform and guided filter-based decomposition technique. To generate the final
improved image, appropriate fusion rules are utilized at the end. A set of upper gastrointestinal
tract endoscopic images were put to the test in studies to confirm the efficacy of our strategy. Both
qualitative and quantitative analyses show that the proposed framework performs better than some
of the state-of-the-art algorithms.

Keywords: endoscopic images; image enhancement; image fusion; biomedical image processing

1. Introduction

Endoscopy is a nonsurgical medical procedure for inspecting the structure of tissue
and lesions of human digestive tracts with high accuracy [1]. Physicians use endoscopy
techniques in different parts of the body such as esophagus, stomach, and colon to diagnose
gastrointestinal bleeding, inflammatory diseases, and polyps [2]. Endoscopy is performed
with a flexible tube that has a LED light source and camera connected to it [3]. On a
monitor, the doctor has access to images of the gastrointestinal system. In an upper
endoscopy, an endoscope is smoothly inserted through the mouth into the esophagus.
Likewise, endoscopes can also go through the rectum into the colon to examine the lower
gastrointestinal (GI) tract.

Endoscopic image visual quality is an important aspect in early lesion detection and
surgical treatments. This approach, however, has some limitations that may adversely
affect the examination and diagnosing process. Inadequate brightness and contrast and
blurred details might result from poor camera quality and inconsistent lighting from the
single illumination source [4,5]. Furthermore, endoscopic images may sometimes have
bright reflections on a mucus layer. This may cause the imaging performance to drastically
decline [6]. The situation deteriorates with capsule endoscopy, primarily due to constraints
in power and the capsule’s volume [7]. Thus, some image processing techniques must be
used to endoscopic images in order to highlight the details and important features for ease
of study in clinical settings [8,9].

To enhance the quality of medical images, numerous image enhancement techniques
have been proposed. One popular approach is image fusion, which is described as the

J. Imaging 2024, 10, 28. https://doi.org/10.3390/jimaging10010028 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10010028
https://doi.org/10.3390/jimaging10010028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-0125-9789
https://doi.org/10.3390/jimaging10010028
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10010028?type=check_update&version=1


J. Imaging 2024, 10, 28 2 of 15

process of improving an image’s resolution by combining numerous copies of the image
with previously recorded data that are notably distinct from one another [10]. In the do-
mains of image processing and computer vision, multi-exposure image fusion is becoming
a prominent area of study because it can merge images with different exposure levels into a
high-quality full exposure image [11]. From several images with various exposure settings,
multi-exposure image fusion seeks to create an image with the most beneficial visual in-
formation. These approaches usually called HDR (high dynamic range) techniques which
involve capturing multiple images of the same scene at different exposure levels. Typically,
HDR techniques include taking at least three photos: one underexposed (capturing details
in bright areas), one overexposed (capturing details in dark areas), and one properly ex-
posed. These images are then merged or combined using specialized software or techniques
to create a single high-quality image that contains a broader range of tones, colors, and
details [12]. Xu et al. presented a new technique for fusing multiple exposure images
based on the tensor product and tensor singular value decomposition [13]. Tensor products
and t-Svd are used to create a new fusion technique. In [14], the enhanced weighted,
guided filtering algorithm is utilized to enhance tissue visualization in endoscopic images.
Endoscopic images of vessels were improved by enhancing vessel features and contours
using an unsharp mask algorithm and an improved weighted guided filter. Furthermore,
Tan et al. suggested an algorithm for improving endoscopic images that decomposes the
input image into a detail layer and a base layer based on noise reduction [15]. In the detail
layer, the blood vessel data are channel-extended, and in the base layer, adaptive bright-
ness correction is used. Finally, fusion is performed to obtain the improved endoscopic
image. Wang and colleagues [16] suggest a technique for enhancing image’s uniformity
and luminance while reducing their overexposure. The suggested technique generates
an adaptable brightness weighting that can be applied to improve the luminance of the
endoscopic image. In a 2018 study, Xia et al. proposed an image-enhancing technique for
endoscopic images with effective noise suppression capability [17]. The illumination and
detail layers are each treated individually by the algorithm after it has initially identified
the various illumination zones.

The endoscopic image enhancement method based on histogram equalization and
unsharp masking in the wavelet domain has been reported [18]. It can disclose details of
endoscopic images with poor light. The method is a logarithm-based histogram equaliza-
tion approach that adjusts the low-frequency wavelet components to improve contrast and
prevent artifacts.

In this work, our goal is to improve the endoscopic image quality for ease of study
in clinical applications. To do so, three image correction methods are used to split source
images into several sub images. Finally, the fusion technique aids in the manipulation of
image contrast, which improves image visual quality.

The primary contributions of this paper are outlined as follows:

• We propose an approach to improve the visual quality of endoscopic images by taking
advantage of artificially generated sub images and image fusion techniques. We
combine three key enhancement methods: detail enhancing, CLAHE, and image
brightening.

• Multi-layer wavelet transform and guided filter-based decomposition schemes, which
decompose each intensity layer into four coefficients, have been introduced.

• A weighted fusion rule based on local contrast and local entropy is proposed to fuse
high-frequency components.

The paper is organized as follows: Our algorithm’s design is presented in Section 2
of the paper; the experimental findings are shown in Section 3 along with a discussion of
how well the suggested method works in Section 4. Future works is reported in Section 5.
Section 6 describes the conclusion.
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2. Materials and Methods

This work proposes an endoscopic image enhancement technique based on artificially
generated sub-images and fusion schemes. It is worth mentioning that we took advantage
of the HIS color space in our work. The HSI (hue, saturation, and intensity) color space,
a three-dimensional model that represents colors based on their hue, saturation, and
intensity components, has been used. This technique uniquely separates color information
from brightness, allowing independent adjustment of color and intensity, which proves
beneficial in image processing tasks. This color space’s ability to maintain the original color
information while enhancing image features makes it a preferred choice for preserving
color fidelity in various applications, aligning well with human visual perception and
aiding accurate analysis in fields such as endoscopic imaging [19].

A framework of the proposed model is illustrated in Figure 1. Three image correction
methods are used to split source images into several sub-images. Finally, the fusion
technique aids in the manipulation of image contrast, which improves the visual quality of
the image. This section covers the proposed method’s comprehensive description.
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Figure 1. Framework of the proposed image enhancing model.

2.1. Generating Sub Images

Limited contrast, limited visibility, low dynamic range, and low signal-to-noise ratio
are all characteristics of low-light images. Additionally, the true color of the target cannot
be captured because the entire image is underexposed [20]. By first creating three sub
images with different characteristics, we attempted to begin the image enhancing process.
Sub images are different versions of the original input image which are generated using
three image enhancement methods.

Among all multi exposure image fusion methods that have been developed in recent
years [11,21], a common technique is to use gamma correction to create the multi exposure
derived images as the generated sub images.

Gamma correction is a nonlinear operation on the input image that results in an expo-
nential relationship between the gray values of the output image and the input image [22].
In other words, Gamma correction is used to modify the overall image intensity.

Gamma correction alters the overall image intensity by transforming the power func-
tion indicated as G. As can be seen in Figure 2, when G< 1, brighter intensities are compressed
and the details in highlights are highlighted while G> 1 highlights the details in shadows.
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Figure 2. Three generated sub images by gamma correction.

That is why researchers show interest in low-light image improvement using gamma
corrections and adjusting the reflected light on the object surface [23]. However, Gamma
corrections may cause some problems as well. For example, as the light increases, some un-
derexposed areas become visible, but areas that were previously well-exposed/overexposed
deteriorate because of global exposure adjustments [20]. To solve this issue, we perform
three image enhancement methods on the original image to generate three different ver-
sions of our input image. By utilizing these methods, we aim to improve the contrast and
enhance all the details in the dark and bright regions. This is mainly performed to have an
even illumination at the end of the enhancement process.

To improve quality, we tried to generate three sub images which are complementary to
one another. We used detail enhancement, contrast-limited adaptive histogram equalization
algorithm (CLAHE) and the brightened image to generate sub images from a single input
image. These three sub images are illustrated in Figure 3. We have also included the
histogram demonstration of these sub images to help compare the general contrast and
pixel distribution of the images.
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Figure 3. (a) The intensity layer of three generated sub images by CLAHE [24], brightened im-
age [25–27] and detail enhanced image [28]. (b) Their corresponding histogram.
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To perform adaptive histogram equalization, CLAHE is used to generate the first
sub image. CLAHE is based on breaking down the image into several almost equal-sized,
non-overlapping areas and performing histogram equalization on each patch [24]. This
algorithm improved the local contrast of bright spots. To enhance the features of the
dark areas, we have used image brightening to improve the contrast in darker areas and
generally enhance the image’s contrast as our second sub image for this work. This is
mainly performed based on an objective function which consists of image entropy [25–27].
The third sub image is retrieved using local Laplacian filtering. It uses straightforward
processing to alter the image in an edge-aware manner [28].

Unlike HDR techniques, our approach does not rely on capturing multiple exposures
of the same scene; instead, it works with the single input image using a combination
of techniques.

2.2. Image Decomposition Based on Multi Level Wavelet Transform and Guided Image
Filtering (MLWTGF)

The source image is divided into multiple sub images. The following step is to
decompose these three images into explanatory layers. One mathematical technique that
has gained growing prominence for efficiently extracting image’s information is the wavelet
transform [29]. By applying image decomposition based on wavelet transform theory, it is
possible to extract an image’s information relating to the horizontal, vertical, and diagonal
directions. The coefficients resulted from the wavelet transform are LL, LH, HL, and HH.
The source image’s approximation coefficient is represented by LL while others are detail
coefficients [30].

We then use the coefficients as the guidance image for guided filter to enhance the
edges and structural information. The block diagram of the proposed decomposition
scheme is demonstrated in Figure 4. The intensity layer of each input image is enhanced
through guided filter.

J. Imaging 2024, 10, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 3. (a)The intensity layer of three generated sub images by CLAHE [24], brightened image 
[25–27] and detail enhanced image [28]. (b) Their corresponding histogram. 

To perform adaptive histogram equalization, CLAHE is used to generate the first sub 
image. CLAHE is based on breaking down the image into several almost equal-sized, non-
overlapping areas and performing histogram equalization on each patch [24]. This algo-
rithm improved the local contrast of bright spots. To enhance the features of the dark ar-
eas, we have used image brightening to improve the contrast in darker areas and generally 
enhance the image’s contrast as our second sub image for this work. This is mainly per-
formed based on an objective function which consists of image entropy [25–27]. The third 
sub image is retrieved using local Laplacian filtering. It uses straightforward processing 
to alter the image in an edge-aware manner [28]. 

Unlike HDR techniques, our approach does not rely on capturing multiple exposures 
of the same scene; instead, it works with the single input image using a combination of 
techniques. 

2.2. Image Decomposition Based on Multi Level Wavelet Transform and Guided Image Filtering 
(MLWTGF) 

The source image is divided into multiple sub images. The following step is to de-
compose these three images into explanatory layers. One mathematical technique that has 
gained growing prominence for efficiently extracting image’s information is the wavelet 
transform [29]. By applying image decomposition based on wavelet transform theory, it 
is possible to extract an image’s information relating to the horizontal, vertical, and diag-
onal directions. The coefficients resulted from the wavelet transform are LL, LH, HL, and 
HH. The source image’s approximation coefficient is represented by LL while others are 
detail coefficients [30]. 

We then use the coefficients as the guidance image for guided filter to enhance the 
edges and structural information. The block diagram of the proposed decomposition 
scheme is demonstrated in Figure 4. The intensity layer of each input image is enhanced 
through guided filter. 

 
Figure 4. Block diagram of the proposed decomposition scheme. 

An example output image of the guided filter using our proposed decomposition 
scheme is shown in Figure 5. We have used the detail coefficients as the guidance image. 
The detail coefficient is resulted from the wavelet transform. The goal is to efficiently 
transfer the structure details to the resulted filtered image. It can be seen in the intensity 
layer and filtered sub images that significant horizontal, vertical, and diagonal features 
are effectively transferred from the corresponding guidance filter (cHn). 
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An example output image of the guided filter using our proposed decomposition
scheme is shown in Figure 5. We have used the detail coefficients as the guidance image.
The detail coefficient is resulted from the wavelet transform. The goal is to efficiently
transfer the structure details to the resulted filtered image. It can be seen in the intensity
layer and filtered sub images that significant horizontal, vertical, and diagonal features are
effectively transferred from the corresponding guidance filter (cHn).
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2.3. Image Fusion

Employing the above-mentioned decomposition approach, the sub layer containing
rich structural details (LH, HL, and HH) and background information (LL) are generated.
The proper fusion rules should be applied on the captured components from three input
images. Based on the component’s characteristics, fusion strategy should be selected. Most
of the approximation information (the background) from the input images is presented in
the LL components, which is captured from the low frequency layers. Thus, the maximum-
value fusion approach is applied to make sure that more texture-related features are
preserved (Equation (1)).

AFused = Max(A1, A2, A3) (1)

Detail components contain the edge, corner, and structure information of the input
source images. A weighted fusion rule is chosen to fuse high frequency components.
In weighted fusion methods, the coefficients of different local areas are given varying
weights [31]. Weights denoting the relative significance of each combined image.

The choice of weight is fundamental since it directly affects the fused image. Selecting
an unsuitable weight will result in unstable algorithm performance [32]. We have consid-
ered two parameters for weighing function: local contrast and local entropy. In a 3 × 3
neighborhood, local contrast calculations will be made between the centered cell and the
surrounding cells to determine the local contrast information [33]. In other words, local
contrast measures that the pixel is variable form the surrounding pixels. On the other hand,
local entropy is a metric for information density [34]. The input image’s texture can be
described using entropy, a statistical indicator of randomness [35].

For each 3 × 3 neighborhood in the fusion input images, we obtained the local contrast
and local entropy. The regional characteristics provide a quantitative analysis of pixel
intensity swings in an image. At this point, we allocate weights to the fusion’s input images.
In general, a larger weight should be given to the patch with more details and better
contrast. The weights are assigned based on prioritized local contrast and local entropy.
We can control the trade-off between contrast and entropy by modifying the weighting
parameters, resulting in the fused image having the desired level of detail preservation and
contrast enhancement. To prioritize detail preservation, we have given higher weights to
local entropy.

The weighing criteria for fusing two detail components based on local contrast and
local entropy are formulated as follows:

WIA = γ1.CA + γ2.EA (2)
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WIB = γ1.CB + γ2.EB (3)

where γ_1 and γ_2 indicate the weighting parameters. The fused sub image is obtained by
the weighted fusion approach:

IFused =
n

∑
i
(WIA(IA)+WIB(IB)) (4)

After extracting the four fused components, we perform the inverse wavelet transform
to generate the final enhanced image.

3. Results

We examined our architecture using a readily available endoscopic image collection of
the gastrointestinal tract. The open-access Kvasir dataset contains images of the GI tract
that highlight anatomical landmarks and pathological findings [36].

We evaluated how effective our suggested framework performed in this section. Our
methodology has been compared to four other image enhancement techniques. Comparison
strategies include enhancing method for weakly illuminated images [37], endoscopic
image luminance enhancement [16], enhancement method for correcting low-illumination
images [38], and LIME [39]. All these papers use the same approach to use different sub
images of the input image.

All other related enhanced images of four different approaches are developed by
publicly available codes. All the experiments are run in MATLAB (R2023a) on an 11th Gen
Intel(R) Core(TM) i7, 3.00 GHz and 16.0 GB RAM computer.

To assess the method’s efficiency, we conduct subjective and objective assessments
in our experiments. Furthermore, to evaluate how applicable our method is, we have
designed a scoring system. The doctors were asked to grade the images on a scale of 1 to 5
(1: Poor/2: Average/3: Good/4: Very good/5: Excellent).

3.1. Qualitative Analysis

Physicians mostly use endoscopic images to analyze and interpret images of artery
walls and organ tissues gathered from patients [15]. That is why visual comparison of
improved images is essential. This section reports the image enhancement results when
compared to other methods. In Figure 6, the input image demonstrates the Z line between
the esophagus and the stomach. We have tried to enhance the input image’s visualization
with 5 different methods.
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As can be seen, there appears to be lack of contrast in Figure 6b–d and an improvement
in the brightness and clarity in general, but some information is lost especially in brighter
areas. It can be verified that our suggested strategy is more effective than the previous
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publications in terms of improving visual quality and highlighting details. The proposed
enhancing strategy improves image contrast in the normal brightness area, while the details
are highlighted in the dark section as well. Also, the output images show no signs of noise,
over enhancing or color distortion. This demonstrates that our recommended algorithm is
appropriate for low-light image enhancing applications.

In Figure 7, the input image contains a polyp and blood vessels. The enhanced image
must improve the general contrast while emphasizing the vessels details to fit the observer’s
normal perceptive spectrum. The outputs in Figure 7b,e clearly have a better demonstration
in darker areas. On the other hand, over enhancement happened with Figure 7c,d. The
brightness of lighter regions is improved in a way that blood vessel information is lost.
In Figure 7f, our proposed method’s output increased the visibility in darker areas and
enhanced details in all regions.
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Figure 8 also illustrates improved image visualization in Figure 8f with enhanced
detail and overall contrast.
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In order to enhance our evaluation, we contacted two skilled medical professionals
who regularly perform endoscopy procedures. The physicians were given a collection
of images, including those produced by our proposed method as well as algorithms
from other researchers. The doctors were asked to grade the images on a scale of 1 to
5 (1: Poor/2: Average/3: Good/4: Very good/5: Excellent). The average ratings given by
human observers are related to ten test images and are shown in Table 1. All output
images are provided in Supplementary File. Our method’s outputs gain higher scores
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in comparison with the other four methods. In general, our suggested enhancement
strategy improved the visual contrast and earned a favorable subjective evaluation by
the professional observers. This is consistent with the claim that our provided enhancing
algorithm can improve the general contrast and enhancing the details.

Table 1. The average ratings given by observers.

Input Image [37] [16] [38] [39] Proposed

Image 1 2 3 3.5 4.5 4.5
Image 2 2.5 3 4.5 4.5 5
Image 3 2 3 3.5 5 3.5
Image 4 2.5 3 4 4 4.5
Image 5 2 3.5 4 4 4.5
Image 6 2.5 3 3 3.5 4.5
Image 7 2 2.5 3 4.5 4.5
Image 8 2.5 3 3 4 4.5
Image 9 2 2 3 4 4.5
Image 10 2.5 2.5 2.5 4 4.5

3.2. Quantitative Analysis

In the following section, we will compare the effects of the proposed strategy to
existing ways using evaluation metrics. There are two primary methods for providing
an objective evaluation of an image enhancement approach: First is the full-referenced
image quality metric which considers information from both the modified image and a
reference image. The second is no-referenced image quality metrics. These indexes attempt
to estimate perceptual quality only based on the output image [40]. However, due to lack
of a perfect reference image, it is a challenging task for many computer vision scenar-
ios [41]. To illustrate the effectiveness of our method, six indexes have been selected from
both categories.

Entropy: determines the fused image’s texture information.
CII (contrast improvement index): measures the extent of enhancement of contrast

before and after image processing [5].
PIQE (perception-based image quality evaluator): the no-reference image quality

metric, which has an inverse relationship with an image’s perceived quality [42].
PCQI (patch-based contrast quality): estimates the image’s overall contrast quality

while simultaneously constructing a quality map that has the local changes [43].
PSNR (peak signal-to-noise ratio): a byte-by-byte comparison of the two images

without considering what they actually represent, hence it can only approximate the image
quality as perceived by human observers [44]. The difference between the image before
and after processing is reflected in the PSNR. The difference becomes smaller as the PSNR
value increases.

SSIM (structural similarity index): with SSIM, two image’s similarity can be calculated
based on brightness and the contrast [45].

In this section, the tables display the results of an objective evaluation of ten images
that were enhanced using various techniques. The top two results are highlighted in
bold. Table 2 reports that our suggested algorithm and [39] have relatively higher entropy
than other methods. This confirms that these two methods can enhance visual contrasts
and provide information about the distribution of pixel intensities. In Table 3, we have
compared the CII to measure the extent of enhancement of contrast before and after image
processing. As can be seen our proposed method shows significant contrast improvement
that can compensate the effects of poor camera quality and inconsistent lighting from the
single illumination source.
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Table 2. The entropy outcomes from various methods.

Input Image [37] [16] [38] [39] Proposed

Image 1 7.1833 7.4410 7.4825 7.7052 7.8653
Image 2 7.3407 7.6590 7.5401 7.6233 7.7428
Image 3 7.1878 7.6534 7.4041 7.4818 7.7089
Image 4 6.9265 7.1816 6.9851 7.2838 7.7392
Image 5 7.0741 7.6059 7.4964 7.6235 7.7031
Image 6 7.6242 7.5985 7.7606 7.7377 7.7544
Image 7 7.2864 7.0792 7.2658 7.5430 7.5234
Image 8 7.2788 6.8253 7.4715 7.7203 7.7822
Image 9 6.9022 6.9431 7.1045 7.3771 7.6132
Image 10 7.1645 7.1092 7.3451 7.6629 7.6463

Table 3. The CII outcomes from various methods.

Input Image [37] [16] [38] [39] Proposed

Image 1 0.9878 2.0399 5.4268 4.2233 6.9864
Image 2 0.8584 3.0497 4.3574 5.6060 4.0511
Image 3 0.6856 5.3032 10.6064 8.60289 3.2836
Image 4 0.9326 5.1778 5.0201 8.0599 10.0784
Image 5 0.5990 2.5144 4.7873 4.9990 5.1079
Image 6 0.8387 2.4099 1.4605 1.9431 5.0698
Image 7 0.9727 1.4867 3.9971 2.7027 7.9269
Image 8 0.9443 2.7898 2.5004 2.7900 5.7693
Image 9 0.76643 2.4535 10.857 8.5560 4.3330
Image 10 0.8912 2.7751 3.7644 4.6609 11.8316

Table 4 represents another no-reference image quality metric PIQE, which places an
emphasis on perceptual quality evaluation. Our method and [37] have the top two results
among the 10 test images. This supports these two method’s abilities to produce improved
visual experiences. Also, PCQI, a strong patch-based index, demonstrating the method’s
capability for perceptually transforming the image’s information is demonstrated in Table 5.

We have also reported the comparison results for two full-reference image quality
measurements. For Tables 6 and 7, we have considered the input image as the reference
image. However, this may not be the best effort to evaluate the enhancement efficiency, but
it is a common practice since reference image is not available. The outputs generated with
our method have higher PSNR which means better visuality of the reconstructed image.
SSIM is also presented as the original image and the enhanced images similarity based on
brightness and contrast. Methods [16,37] and ours have relatively better SSIM values.

Table 4. The PIQE outcomes from various methods.

Input Image [37] [16] [38] [39] Proposed

Image 1 42.1150 25.2324 40.8786 51.2644 37.4767
Image 2 19.4745 17.2627 18.9662 24.2900 29.8537
Image 3 14.9021 11.7482 13.7531 17.5451 16.3434
Image 4 14.2059 24.7821 15.3968 14.6998 31.4279
Image 5 13.6932 26.7682 15.9563 15.5255 18.3837
Image 6 19.8028 29.0356 23.9177 24.0370 18.5096
Image 7 30.2362 39.1689 29.7034 34.5068 25.7705
Image 8 20.1907 34.4065 24.9211 25.7896 24.0150
Image 9 6.9389 20.1736 8.18611 8.1098 19.7488
Image 10 17.9276 25.3987 16.7112 25.8942 24.7609
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Table 5. The PCQI outcomes from various methods.

Input Image [37] [16] [38] [39] Proposed

Image 1 0.9945 0.9992 0.9997 0.9994 0.9991
Image 2 0.9943 0.9988 0.9996 0.9989 0.9985
Image 3 0.9948 0.9990 0.9991 0.9996 0.9990
Image 4 0.9953 0.9993 0.9988 0.9994 0.9996
Image 5 0.9954 0.9992 0.9994 0.9997 0.9986
Image 6 0.9936 0.9981 0.9988 0.9986 0.9987
Image 7 0.9950 0.9983 0.9986 0.9992 0.9989
Image 8 0.9946 0.9989 0.9994 0.9993 0.9993
Image 9 0.9953 0.9991 0.9994 0.9998 0.9989
Image 10 0.9958 0.9987 0.9948 0.9973 0.9994

Table 6. The PSNR outcomes from various methods.

Input Image [37] [16] [38] [39] Proposed

Image 1 22.27 18.97 19.94 24.06 22.78
Image 2 20.19 17.47 19.75 19.22 23.72
Image 3 19.51 17.73 20.03 23.72 24.00
Image 4 26.84 18.09 17.68 26.06 22.15
Image 5 19.17 19.63 22.49 23.05 25.44
Image 6 17.41 14.09 18.22 17.75 22.59
Image 7 19.29 14.27 16.44 21.75 19.87
Image 8 21.11 17.44 21.54 21.86 23.12
Image 9 22.82 19.56 23.04 27.60 25.19
Image 10 20.98 21.36 19.21 25.09 21.79

Table 7. The SSIM outcomes from various methods.

Input Image [37] [16] [38] [39] Proposed

Image 1 0.9809 0.9541 0.9479 0.9271 0.9848
Image 2 0.9258 0.9327 0.9219 0.8803 0.9083
Image 3 0.9304 0.9431 0.9329 0.9281 0.9136
Image 4 0.9848 0.9511 0.9398 0.9402 0.9072
Image 5 0.9348 0.9663 0.9561 0.9036 0.9391
Image 6 0.8403 0.7902 0.8359 0.8010 0.8967
Image 7 0.9071 0.8648 0.8552 0.8709 0.9032
Image 8 0.9522 0.9155 0.9358 0.8730 0.9042
Image 9 0.9508 0.9605 0.9540 0.9603 0.9525
Image 10 0.9489 0.9732 0.9418 0.9319 0.9273

4. Discussion

To summarize, in this section, we have reported the comparison results between our
proposed methods and other image enhancing approaches. While other image enhance-
ment methods have shown promising results in image enhancement techniques, there are
still some limitations in terms of local contrast, detail preservation, and applicability for
medical practitioners. To address these issues, this article suggests an alternative approach
which consists of three sections: The first part is image decomposition based on wavelet
transform and guided filter that decomposes the input image while maintaining the details
of the input image.

Second is image fusion that combines different characteristics of image’s sub layers
and finally the image reconstruction that includes inverse wavelet transform. Figure 9
reports the average value a specific metric of 10 images to have a better understanding of
the results. The outputs generated with our method have relatively better performance.
Overall, the findings demonstrate that our suggested methodology performs better than
the other papers. The suggested method has an acceptable enhancement effect that raises



J. Imaging 2024, 10, 28 12 of 15

the brightness of dark objects, improving the clarity and color, and making the images
more congruent with human vision which is advantageous to the diagnosing procedure.
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It is worth mentioning that the inherent subjectivity in the process of image enhance-
ment should be acknowledged. Factors such as endoscopy’s device illumination and
imaging technology play important roles in the original endoscopic image’s quality. We
recognize that the interpretation of ‘best images’ can be subjective and influenced by in-
dividual expertise. However, we tried to report a detailed description of our work. The
paper’s focus is on increasing the visual quality of endoscopic images by taking advantage
of artificially generated sub images using three key well known enhancement methods and
performing image fusion techniques. Our suggested method consists of three main stages
that have been explained with detailed description that facilitates the reproducibility of our
results, aiming to enhance the applicability of our method across different clinical settings.

5. Future Work

As a future work, we can utilize the improved images generated by our algorithm
for the detection and segmentation of various abnormalities, such as polyps, in gastroin-
testinal (GI) tract endoscopic images. Since medical images often suffer from low contrast
and blurred details, it is always challenging to distinguish between different structures.
Techniques like ours can perform image enhancement as a preprocessing step by tackling
common problems related to endoscopic images. Preprocessing is a pivotal step in medical
image processing applications, such as image segmentation and classification. For example,
segmentation techniques seek to precisely distinguish the border of the polyp from the
surrounding tissue in addition to detecting polyps. Monitoring the resulting polyp segmen-
tations validates that the least favorable segmentation outcomes are linked to lower quality
input images or relatively harder-to-identify polyps [46,47]. In such cases, our reported
algorithm can ensure that the input raw data are optimized for subsequent analysis. It
may lead to more accurate and reliable results in the identification of regions of interest
or abnormalities.

6. Conclusions

In this study, we introduce a method for enhancing endoscopic images. The first
step is to generate three derived sub images from the single input image which are com-
plementary to one another in terms of local and global contrast. By utilizing CLAHE,
image brightening, and detail enhancing methods, we tried to generate complementary
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sub images. We then used a novel multi-level wavelet transform and guided filter-based
decomposition technique to decompose each sub layer. The necessary weighted fusion
rules are then applied at the end to produce the final improved image. The suggested
technique increases the brightness of dark objects while enhancing their clarity and color,
which is an acceptable enhancement effect. The proposed enhancing strategy improves
image’s contrast in the normal brightness area, while the details are highlighted in the dark
section as well. Also, the output images show no signs of noise, over enhancing, or color
distortion. This demonstrates that our proposed strategy is appropriate for low-light image
enhancing applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jimaging10010028/s1. Figure S1. Comparison of enhanced images
from Kvasir dataset; Figure S2. Comparison of enhanced images from Kvasir dataset; Figure S3.
Comparison of enhanced images from Kvasir dataset; Figure S4. Comparison of enhanced images
from Kvasir dataset; Figure S5. Comparison of enhanced images from Kvasir dataset; Figure S6.
Comparison of enhanced images from Kvasir dataset; Figure S7. Comparison of enhanced images
from Kvasir dataset; Figure S8. Comparison of enhanced images from Kvasir dataset; Figure S9.
Comparison of enhanced images from Kvasir dataset; Figure S10. Comparison of enhanced images
from Kvasir dataset.
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