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Abstract: Centerline tracking is useful in performing segmental analysis of vessel tortuosity in
angiography data. However, a highly tortuous) artery can produce multiple centerlines due to
over-segmentation of the artery, resulting in inaccurate path-finding results when using the shortest
path-finding algorithm. In this study, the internal carotid arteries (ICAs) from three-dimensional
(3D) time-of-flight magnetic resonance angiography (TOF MRA) data were used to demonstrate the
effectiveness of a new path-finding method. The method is based on a series of depth-first searches
(DFSs) with randomly different orders of neighborhood searches and produces an appropriate path
connecting the two endpoints in the ICAs. It was compared with three existing methods which
were (a) DFS with a sequential order of neighborhood search, (b) Dijkstra algorithm, and (c) A*
algorithm. The path-finding accuracy was evaluated by counting the number of successful paths. The
method resulted in an accuracy of 95.8%, outperforming the three existing methods. In conclusion,
the proposed method has been shown to be more suitable as a path-finding procedure than the
existing methods, particularly in cases where there is more than one centerline resulting from over-
segmentation of a highly tortuous artery.

Keywords: cerebral arteries; path finding; image segmentation; intracranial arteries; magnetic
resonance angiography; blood vessel

1. Introduction

Cerebrovascular imaging such as X-ray, computed tomography (CT), and magnetic
resonance imaging (MRI) can non-invasively provide morphometric information on cere-
bral vessels. The detection of arteries’ centerlines is essential for the extraction of geometric
information of the cerebral arteries [1–3], such as their tortuosity, thickness, and spatial
variations [4–6]. It is related to the detection of bifurcations of interest for the labeling
of the intracranial arteries [7–9]. Recently, the centerlines have been used as input to a
topology-aware graph network model to perform vessel labeling in head and neck CT
angiography [10]. Numerous research studies have associated the morphometric charac-
teristics of the cerebral arteries with cerebrovascular diseases such as atherosclerosis and
aneurysm [11–15].

Path-finding algorithms have been used to automatically extract the centerlines of
arteries [16–19]. The Dijkstra and A* algorithms are well known for their effectiveness in
finding the shortest path between two endpoints of an artery’s centerline [16]. A recent
experimental study has indicated that these two algorithms are accurate in most arterial
segments in the circle of Willis, except for the internal carotid arteries (ICAs) [17]. ICAs
are inherently tortuous at the level of C4–C7 [20]. Due to the high level of tortuosity in
the ICAs, they can be over-segmented. A similar study with CT angiography pointed out
the presence of artificially created vessels or artificial loops resulting from segmentation
errors [21]. They were referred to as shortcuts, which cause problems with the shortest
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path-finding algorithms. After a skeletonization process, more than one centerline can
occur in an ICA segment. Hence, when the shortest path-finding process is performed
given two endpoints where one lies in the C4 and the other lies in the C7, it can result in an
erroneous path, and often a path whose length is shorter than the length of the correct path.
Figure 1 illustrates a case where the shortest path-finding algorithm can lead to correct
and incorrect path-finding results (compare Figures 1b and 1d). The results depend on the
absence or presence of a spurious centerline. A spurious centerline is indicated by the black
hollow arrow in Figure 1d.
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method to correctly identify the path along the ICA in (d). 

In this study, we propose a new method to address the issue of inaccurate path-find-
ing results for the labeling of the ICA segment. The proposed method consists of a series 
of depth-first search (DFS) algorithms, where a DFS-based path finding is performed after 
changing the order of visiting of the 26-neighborhood voxels. The order was randomized 
via random shuffling. The repetition of random shuffling would produce a variety of pos-
sible paths connecting the two endpoints. As the next step, the proposed method finds the 
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Figure 1. Examples of path-finding results in the ICA. (a) Subject A’s segmented artery. (b) Subject
A’s skeleton and a path found using Dijkstra algorithm. The found path is indicated by the light blue
line in (b) and is correct. (c) Subject B’s segmented artery. The segmented ICA is over-segmented
such that the two segmented arterial portions are joined (see the yellow hollow arrow). (d) Subjects
B’s skeleton and a path found using Dijkstra algorithm. The found path is indicated by the light blue
line in (d) and is incorrect. Two centerlines are formed as indicated by the black hollow arrow in
(d) after the skeletonization of the artery in (c). Hence, it was necessary to develop a new method to
correctly identify the path along the ICA in (d).

In this study, we propose a new method to address the issue of inaccurate path-finding
results for the labeling of the ICA segment. The proposed method consists of a series of
depth-first search (DFS) algorithms, where a DFS-based path finding is performed after
changing the order of visiting of the 26-neighborhood voxels. The order was randomized
via random shuffling. The repetition of random shuffling would produce a variety of
possible paths connecting the two endpoints. As the next step, the proposed method
finds the most appropriate ICA paths out of all the possible realizations of the paths. The
proposed path-finding algorithm is compared to three existing path-finding methods in
ICAs with regard to accuracy.
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2. Materials and Methods
2.1. Data and Preprocessing

The publicly available time-of-flight magnetic resonance angiography (TOF MRA)
image data from the IXI dataset (https://brain-development.org/ixi-dataset, accessed on
27 February 2024) were used for this study. Sixty subjects’ data were considered to evaluate
the performance of path-finding algorithms in the ICA segments. Quite a few subjects’
data had the problem of incorrect path findings in the ICAs when the Dijkstra and A*
algorithms were used [17]. This motivated us to develop a new method in order to improve
the accuracy of the path-finding procedure in the ICA segments. A bicubic interpolation
along the slice dimension was performed to generate isotropic resolution image data with
the same voxel spacing of 0.6 mm in all three dimensions. A three-dimensional (3D)
seeded region-growing algorithm was used to segment the arteries [22]. The segmented
binary mask of the arteries underwent a skeletonization procedure [23] in order to obtain
centerlines of the arteries.

2.2. Proposed Method

The pseudocode of the proposed path-finding algorithm is shown in Figure 2. After a
random shuffling process, the neighborhood search order can vary, as shown in Figure 3.
The proposed method repeats random shuffling to generate a variety of path-finding results.
In this study, we set the number of iterations to 10. First, the method discards cases with
any overlap between the path found from the left ICA and the path found from the right
ICA. The overlap can occur when a left (or right) ICA’s path is detoured such that it meets
a right (or left) ICA’s path (Figure 4a–e). Second, the method selects an appropriate path
based on the analysis of histograms of the right and left ICA path lengths. A flowchart for
finding appropriate paths is illustrated in Figure 5. The path-finding process first identifies
one of the three cases and then applies an appropriate path selection procedure according
to the rule described in Figure 5.
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ces of the directions. Each row has its own order for the neighboring voxel search in the 26-con-
nected neighborhood when the depth-first search (DFS) algorithm is used to find a path in 3D. The 
z at the top indicates a slice offset relative to the current voxel of interest, which has no number in 
the center at the z = 0 level. The number in each cell represents the order of visiting neighboring 
voxels. The random shuffling results in a randomized ordering in the 26-connected neighborhood. 
(a) Conventional sequential search order used in a typical DFS algorithm in 3D. (b–d) The first three 
random shuffling results. The selection of the voxel-visiting order affects the path-finding result. 

Figure 3. Variation in the order of visiting of neighboring voxels after random shuffling of the indices
of the directions. Each row has its own order for the neighboring voxel search in the 26-connected
neighborhood when the depth-first search (DFS) algorithm is used to find a path in 3D. The z at
the top indicates a slice offset relative to the current voxel of interest, which has no number in
the center at the z = 0 level. The number in each cell represents the order of visiting neighboring
voxels. The random shuffling results in a randomized ordering in the 26-connected neighborhood.
(a) Conventional sequential search order used in a typical DFS algorithm in 3D. (b–d) The first three
random shuffling results. The selection of the voxel-visiting order affects the path-finding result.
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Figure 4. A variety of paths found when using the DFS-based path-finding algorithm with different
orders of visiting of the neighborhood voxels due to random shuffling of the order. (a–e) Incorrect
path-finding results with detoured paths. The R-ICA path overlaps with the L-ICA path in (a–e).
These overlapped cases are discarded when selecting the correct paths. (f) Paths that do not overlap
with respect to each other.



J. Imaging 2024, 10, 58 5 of 15

J. Imaging 2024, 10, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. A variety of paths found when using the DFS-based path-finding algorithm with different 
orders of visiting of the neighborhood voxels due to random shuffling of the order. (a–e) Incorrect 
path-finding results with detoured paths. The R-ICA path overlaps with the L-ICA path in (a–e). 
These overlapped cases are discarded when selecting the correct paths. (f) Paths that do not overlap 
with respect to each other. 

 
Figure 5. A flowchart for selecting an appropriate path among all possible paths in the left and right 
ICA centerlines. r_R (or r_L) refers to the range of the path lengths in the right ICA (or the left ICA). 
rr_R (or rr_L) refers to the relative range of the path lengths in the right ICA (or the left ICA). 

Figure 5. A flowchart for selecting an appropriate path among all possible paths in the left and right
ICA centerlines. r_R (or r_L) refers to the range of the path lengths in the right ICA (or the left ICA).
rr_R (or rr_L) refers to the relative range of the path lengths in the right ICA (or the left ICA).

2.2.1. Case 1—Detection of a Case Where There Are Two ICA Segments with More than
One Centerline

Because there are two ICA segments with more than one centerline, the range of path
lengths is larger than in the other two cases, which have at most one ICA segment with
more than one centerline. We developed a selection rule for Case 1, as shown in Figure 5.
We selected Case 1 if the sum of ranges of the left and right ICA path lengths was greater
than a threshold value. In our study, we empirically chose the threshold value of 40. The
histograms of left and right ICAs tend to produce distributions that are similar to each
other (Figure 6). Since there are shortcuts that have short path lengths, it is appropriate to
find a path whose path length is in the third quartile.
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Figure 6. An example of Case 1, where there are two ICA segments with more than one centerline.
(a) A histogram of path lengths. A path length is defined as the number of voxel locations along the
path when using the DFS path-finding algorithm. The histogram represents a distribution of path
lengths separately for the left ICA (green) and right ICA (cyan). (b) The final paths chosen by the
proposed method. These paths have been correctly chosen. Note that the numbers of points belonged
to the third quartiles in the left and right ICAs. The shortest path-finding algorithm would select
paths that include the spurious centerlines indicated by the red arrows.

2.2.2. Case 2—Detection of a Case Where There Is Only One ICA Segment with More than
One Centerline

The histograms of left and right ICAs tend to produce distributions which are very
different from each other (Figure 7). We selected Case 2 if the sum of ranges of left and
right ICA path lengths was less than the range threshold value of 40, and the difference
between the relative ranges of left and right ICA path lengths was greater than the relative
range threshold value (Figure 5). In our study, we empirically chose the threshold value of
0.015. We defined the relative range, as shown in Equation (1).

Relativerange(rr) =
max(path_len)−min(path_len)

median(path_len)
, (1)

where path_len is the path lengths, each of which was calculated from a path found by
the DFS path-finding algorithm with an order of visiting neighboring voxels via random
shuffling. For simplicity, the path length was defined as the number of voxel locations that
form the path as a result of the output of the DFS algorithm. Since one ICA has shortcuts
that have short path lengths resulting from a series of DFSs with random shuffling, it is
appropriate to find a path whose path length is in the third quartile. Since the other ICA
has no shortcut, it is appropriate to find a path using the shortest path-finding algorithm
(i.e., Dijkstra algorithm).
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2.2.3. Case 3—Detection of a Case Where There Is No ICA Segment with More than One 
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Like Case 1, the histograms of left and right ICAs tend to produce distributions that 
are similar to each other (Figure 8). However, the distributions would be concentrated 
around a certain peak and yield less variations than Case 1. Hence, the differentiation 
between Case 2 and Case 3 can be made based on the difference between the relative 
ranges of left and right ICA path lengths. Since both have no shortcuts resulting from 

Figure 7. An example of Case 2, where there is only one ICA segment with more than one centerline.
(a) A histogram of path lengths. A path length is defined as the number of voxel locations along
the path when using the DFS path-finding algorithm. The histogram represents a distribution of
path lengths separately for the left ICA (green) and right ICA (cyan). Note that the different shades
(purple arrows) of green and cyan indicate overlap of the histograms of the left and right ICAs.
(b) The final paths chosen by the proposed method. These paths have been correctly chosen. Note
that the median path length was chosen for the right ICA and the third quartile path length was
chosen for the left ICA. The shortest path-finding algorithm would select a path that includes the
spurious centerlines indicated by the red arrow.

2.2.3. Case 3—Detection of a Case Where There Is No ICA Segment with More than
One Centerline

Like Case 1, the histograms of left and right ICAs tend to produce distributions that
are similar to each other (Figure 8). However, the distributions would be concentrated
around a certain peak and yield less variations than Case 1. Hence, the differentiation
between Case 2 and Case 3 can be made based on the difference between the relative ranges
of left and right ICA path lengths. Since both have no shortcuts resulting from spurious
centerlines, it is appropriate to find paths using the shortest path-finding algorithm (i.e.,
the Dijkstra algorithm).
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Figure 8. An example of Case 3, where there is no ICA segment with more than one centerline.
(a) A histogram of path lengths. A path length is defined as the number of voxel locations along the
path when using the DFS path-finding algorithm. The histogram represents a distribution of path
lengths separately for the left ICA (green) and right ICA (cyan). Note that the purple arrow indicates
overlap of the histograms of the left and right ICAs. (b) The final paths chosen by the proposed
method. These paths have been correctly chosen.

2.3. Evaluation

We evaluated four path-finding methods in terms of path-finding accuracy: (Method 1)
DFS algorithm, (Method 2) Dijkstra algorithm, (Method 3) A* algorithm, and (Method 4)
the proposed algorithm. The pseudocode of Method 1 is shown in Appendix A. In this
study, all the methods were implemented in Python. Method 1 is a simple path-finding
algorithm that is based on a pre-determined order of neighborhood searches and uses a
stack to perform back-tracking until it finds a path between two endpoints. Method 2 works
on a graph structure which is generated from a skeleton of the artery. We used the Skan
Python library [24] to extract a graph from the artery’s skeleton image. It attempts to find
the shortest path from a starting node to any other node, and the shortest path between the
two endpoints is found. Method 3 works on a graph structure like Method 2. It attempts to
find the shortest path from a starting node to an end node via a heuristic search, which is
referred to as the A* algorithm. Method 4 is the proposed method, which is described in
the pseudocode of Figure 2. We counted the numbers of successful path-finding results in
the left and right ICAs, respectively.

For the visual evaluation of path-finding results, we implemented a 3D visualization
method that allowed for the path-finding result to be overlaid onto the segmented artery.
We used the marching cubes algorithm [25] provided by the Scikit-Image Python library [26]
to calculate the surface meshes of the binary arteries. For visualization, we used the Mayavi
Python library (http://docs.enthought.com/mayavi/mayavi/, accessed on 27 February
2023) and created a video that plays the rotation of the 3D arterial structure along with the
centerlines of the left and right ICAs.

A chi-square test was performed to find any differences between the path-finding
methods in detecting the correct paths of the arterial segments. A p-value of <0.05 was
considered statistically significant.

http://docs.enthought.com/mayavi/mayavi/
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3. Results

Random shuffling of the neighbor-visiting order resulted in many possible paths being
found when using the DFS algorithm. When the number of iterations was 10 in our study,
there were 10 × 10 = 100 pairs of the left and right ICA paths, and the random shuffling
of the neighborhood-visiting order enabled different realizations of path-finding results.
It was noted that the presence of a centerline of the left or right posterior communicating
artery (PComm) produced paths with significantly longer path lengths. Our experiments
indicated that the overlapping paths between the left and right paths occurred only when
the left and right PComm artery centerlines connected the anterior and posterior circulation
arteries. This was easily handled by thresholding the path length. We empirically chose
a path length of 150, which is considered to be unusually high, as the threshold. In the
presence of a PComm centerline, we discarded paths whose path lengths were greater than
the threshold and sought to detect a correct path among the remaining paths.

Among the 60 subjects’ data, there were 6 subjects’ data which corresponded to Case 1,
7 subject’s data corresponding to Case 2, and 47 subjects’ data corresponding to Case 3. This
means that 78.3% of the data corresponded to Case 3, while 10.0% and 11.7% corresponded
to Case 1 and Case 2, respectively. The proposed method identified the cases with an accu-
racy of 96.7%. Only two subjects’ data were misclassified. One subject’s data corresponded
to Case 2 but were misclassified as Case 1. The other subjects’ data corresponded to Case 3
but were misclassified as Case 2.

The comparative accuracy results of the four path-finding methods are illustrated in
Table 1. Method 4 resulted in the highest accuracy value of 95.8%, which is greater than
85.0% of Methods 1–3. As shown in Table 1, the chi-square test showed that the proposed
method resulted in significantly different path-finding accuracy results when compared
to the other three methods (p < 0.01 for the proposed method vs. DFS algorithm, p < 0.01
for the proposed method vs. Dijkstra algorithm, p < 0.01 for the proposed method vs.
A* algorithm).

Table 1. Evaluation of path-finding accuracy.

ICA

R L Total

Method 1:
DFS algorithm

No. of correct paths 51 51 102
No. of incorrect paths 9 9 18

Method 2:
Dijkstra algorithm

No. of correct paths 50 52 102
No. of incorrect paths 10 8 18

Method 3:
A* algorithm

No. of correct paths 50 52 102
No. of incorrect paths 10 8 18

Method 4:
Proposed algorithm

No. of correct paths 58 57 115
No. of incorrect paths 2 3 5

p-value 1 - - 0.0085
p-value 2 - - 0.0085
p-value 3 - - 0.0085

1 Comparison between Method 1 (DFS algorithm) and Method 4 (proposed algorithm). 2 Comparison be-
tween Method 2 (Dijkstra algorithm) and Method 4 (proposed algorithm). 3 Comparison between Method 3
(A* algorithm) and Method 4 (proposed algorithm).

Figure 9 shows three screenshots of the movies that play a rotated 3D visualization
of the intracranial arteries, with found paths in the ICAs indicated in red. The movies are
provided in the Supplementary Materials. The yellow hollow arrows indicate erroneous
path-finding results with the shortest paths. Method 2 (i.e., the Dijkstra algorithm) produced
incorrect paths, while Method 4 (i.e., the proposed method) produced correct paths.
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Figure 9. Examples of path-finding results in the ICAs of (a) subject A, (b) subject B, and (c) subject C.
Method 2 (i.e., Dijkstra algorithm) produced incorrect path-finding results as indicated by the yellow
hollow arrows, whereas Method 4 (i.e., the proposed method) produced correct path-finding results.
See the videos in the Supplementary Materials.

Figure 10 shows four examples of incorrect path-finding results when using the
proposed method. The regions corresponding to incorrect paths are indicated by the red
hollow arrows. The ICA with an incorrect path in Figure 10a shows a small, detoured
round path. Figure 10b–d show noisy non-straight paths. Notably, the incorrect paths are
localized in certain regions with spurious small centerlines.

To assess the computational time of Method 4, we calculated the computational time
for iterations of 10 and 20 on a Windows PC (AMD Ryzen 55,500U with Radeon Graphics
6-Core Processor Central Processing Unit). For the iteration of 10, it took approximately
1.4 s to complete the path-finding process in the ICAs. For the iteration of 20, it took
approximately 2.9 s to complete the path-finding process in the ICAs.
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Figure 10. Examples of incorrect path-finding when using Method 4 (i.e., the proposed method). The
red hollow arrows in (a–d) indicate regions corresponding to incorrect paths. The paths for the left
ICA and right ICA are indicated by green and cyan colors, respectively.

4. Discussion

We demonstrated an improved path-finding algorithm for automatically identifying
an artery’s centerline when two endpoints are given. The conventional Dijkstra or A*
algorithms are effective in finding the shortest paths, but they may produce incorrect paths
when the segmented arteries are highly tortuous such that a skeletonization process results
in more than one centerline in an ICA segment. In this study, we focused on the ICA’s
C4–C7 segment, which typically contains highly tortuous arterial geometry. After the
skeletonization process, the segmented ICA can produce spurious centerlines, which result
in erroneous paths in certain cases when using the shortest path-finding algorithms [17].

The reason why there are multiple centerlines in the tortuous ICA segment is that
the 3D region growing algorithm produces over-segmented results, leading to multiple
centerlines after the skeletonization process. Hence, a better segmentation method may
overcome the issue of over-segmentation and avoid the situation of multiple centerlines
when only one centerline contains the correct path. Simple morphological image processing
such as erosion may help reduce over-segmentation, but it can remove thin arteries as a
side effect. Encoder–decoder deep convolutional neural networks may have the potential
to improve the segmentation results in highly tortuous arteries such as the ICA [27–29], and
the evaluation of the centerlines after deep learning-based artery segmentation requires
further investigation.

We note that the randomization of the neighbor search order is key to the generation
of a variety of paths in the left and right ICAs when using the DFS-based path finding. This
indeed produced almost all possible pairs of the left and right ICA paths. One can instead
design predetermined neighborhood search orders, but this is not easy to implement
when compared to the use of random shuffling. Notably, a recursive method that counts
all available paths given the source point and the destination point also exists, but a
drawback is that theoretically the recursive method has the exponential time complexity
of O

(
2V), where V is the number of vertices. With the various realizations of the left and

right ICA paths, we developed a method that automatically chooses the correct paths by
relying on the assumption that there are three possible cases of centerline compositions



J. Imaging 2024, 10, 58 12 of 15

and by handling each case separately using the two histograms of the left and right ICAs’
path lengths.

An underlying assumption of the proposed method is that the left and right ICA
segments have similar path lengths. However, in some subjects, the length of the left ICA
may differ significantly from the length of the right ICA. The difference in the lengths may
be related to the difference in the ranges of the lengths and could affect the choice among
the three cases.

Our path-finding method is a rule-based method, and relies on the selection of the
thresholds in the sum of the left and right ICA path lengths’ ranges as well as on the
absolute difference in relative ranges between the left and right ICA path lengths. It may be
sensitive to the choice of the thresholds. Therefore, it is worth developing a learning-based
method, which would involve the development of a machine learning prediction model
that takes the histogram distributions of path lengths as input and produces annotated
correct paths as output.

Since the proposed method relies on a series of DFS path-finding processes with
multiple realizations of neighborhood-visiting orders, it is inherently more time-consuming
than the other three available methods we have considered. However, the computational
time of the proposed method was not significantly longer, taking only 1.4 s per subject
on a PC.

In our study, the number of ICA segments was 120 obtained from 60 subjects, which is
not very large in general. Also, the majority (78.3%) of the ICAs’ centerlines corresponded
to Case 3, and thus the number of incorrect paths (18) was relatively small compared
to the number of all paths (120), even when using the shortest path-finding algorithms.
Nonetheless, the proposed method demonstrated statistical significance in path-finding
accuracy when compared with the shortest path-finding algorithms.

5. Conclusions

We proposed a new method that can find a path along the ICA centerline with higher
accuracy than existing methods. The proposed method is based on a series of DFS algo-
rithms where a DFS is performed after randomization of the order of visiting of neighboring
voxels. Out of multiple candidate paths, appropriate paths in both left and right ICAs were
identified by discarding the paths where the right ICA’s path and the left ICA’s path are
overlapped and then selecting paths based on the path length distributions in the left and
right ICAs. The evaluation of 60 subjects’ ICAs with the four path-finding methods shows
that the proposed method outperformed the other three existing methods in path-finding
accuracy. The proposed method can be useful in highly tortuous arteries such as the ICAs,
in which shortest path-finding algorithms such as the Dijkstra or A* algorithms may fail to
find correct paths.

Supplementary Materials: The supplementary videos, which compare the path-finding results
between Dijkstra algorithm and the proposed method in three-dimensional rotated view, is available
at: https://sites.google.com/yonsei.ac.kr/yoonckim/research/supplemental-materials (accessed on
27 February 2024).
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Appendix A

The pseudocode for the Method 1′s depth-first search (DFS) algorithm is shown in
Figure A1. This is known as a solution to the maze solving problem.
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