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Abstract: Rapid and precise identification of Coronavirus Disease 2019 (COVID-19) is pivotal for
effective patient care, comprehending the pandemic’s trajectory, and enhancing long-term patient
survival rates. Despite numerous recent endeavors in medical imaging, many convolutional neural
network-based models grapple with the expressiveness problem and overfitting, and the training
process of these models is always resource-intensive. This paper presents an innovative approach
employing Xception, augmented with cutting-edge transfer learning techniques to forecast COVID-
19 from X-ray thorax images. Our experimental findings demonstrate that the proposed model
surpasses the predictive accuracy of established models in the domain, including Xception, VGG-16,
and ResNet. This research marks a significant stride toward enhancing COVID-19 detection through
a sophisticated and high-performing imaging model.

Keywords: COVID-19; Xception; X-ray images; neural network; medical imaging; transfer learning

1. Introduction

The relentless global impact of the COVID-19 pandemic has underscored the criti-
cal importance of early and accurate detection in safeguarding public health, mitigating
economic repercussions, and ensuring the long-term well-being of communities world-
wide [1–3]. Early detection allows diseases to be diagnosed at a stage when they are more
likely to respond to treatment, reduces morbidity and mortality, prevents complications
and consequences, and lowers healthcare costs. Timely detection not only informs effective
patient care but also serves as a linchpin in elevating long-term survival rates, emphasizing
the pressing need for innovative diagnostic methodologies. It, therefore, seems important
to think about setting up systems capable of facilitating the early detection of disease to
contribute to public healthcare management.

Over the years, medical imaging has emerged as an indispensable tool for the early
detection, monitoring, and post-treatment follow-up of diseases. From the inception of
computer-aided diagnostic systems in the early 1980s to the contemporary era of advanced
artificial intelligence (AI) applications, the trajectory of medical image analysis has evolved
significantly. While early approaches focused on sequential processing and mathematical
modeling, the advent of AI, inspired by the human brain’s learning mechanisms, has
ushered in a new era of sophisticated diagnostic systems [4,5].
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Machine learning, a cornerstone of this transformative paradigm, empowers software
applications to enhance predictive accuracy without explicit programming. At the forefront
of global health concerns, the ongoing COVID-19 pandemic, caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), demands innovative solutions for
effective patient screening. Despite the widespread adoption of the reverse transcription
polymerase chain reaction test, its limited positivity rate and inability to differentiate
SARS-CoV-2 from other respiratory infections underscore the urgent need for alternative
screening methods [6–8].

Artificial intelligence models for rapid disease detection are systems that employ
machine learning, image analysis, or natural language processing techniques to identify
individuals infected with SARS-CoV-2, the virus responsible for COVID-19. These models
can rely on various types of data, such as radiological images, antigen tests, reported
symptoms, or genomic data, offering speed, accuracy, user-friendliness, and cost reduction.
They play a crucial role in screening suspected cases, guiding patients to appropriate care,
monitoring disease progression, and controlling virus spread.

However, detecting and accurately distinguishing between different strains of SARS-
CoV-2 poses a formidable challenge in the landscape of disease detection. The evolving
nature of the virus, coupled with its propensity for genetic mutations, introduces complexi-
ties that demand innovative solutions. One crucial hurdle lies in the scarcity of sufficient,
reliable, and representative data for training and validating models, especially for emerging
virus variants. These variants may necessitate adaptations or updates to existing models,
highlighting the need for continuous vigilance and adjustment. Additionally, the variability
in model performance across diverse contexts, populations, environments, and usage proto-
cols further accentuates the intricacy of the task. The ethical, legal, and social dimensions of
deploying these models also contribute to the multifaceted challenges, encompassing issues
of privacy, data protection, responsibility, transparency, explainability, security, reliability,
and trust. The gravity of these challenges necessitates a comprehensive and principled
approach to model development and usage, emphasizing the urgency of addressing these
intricacies for the advancement of disease detection strategies.

To tackle these challenges, adherence to principles and best practices for the devel-
opment and use of artificial intelligence models for rapid disease detection is crucial.
Guidelines proposed by organizations like the World Health Organization (WHO) [9], the
Organisation for Economic Co-operation and Development (OECD), and the European
Commission provide valuable insights.

Furthermore, fostering collaboration and data, knowledge, and experience sharing
among stakeholders involved in the fight against COVID-19, including researchers, health-
care professionals, policymakers, industry professionals, and citizens, is essential. This
collaborative approach can significantly contribute to overcoming the challenges posed
by the rapidly evolving viral threat and enhancing the effectiveness of AI models in
disease detection.

The key contributions of this paper include the proposition and validation of an
innovative model, synthesized from the strengths of existing architectures and enriched
through transfer learning. Experimental results demonstrate superior predictive accuracy
compared to benchmark models. By advancing the state of the art in COVID-19 detection,
this research significantly contributes to global efforts to revolutionize patient care pathways
and bolster long-term survival rates. In the next section, an introduction to transfer learning
is provided to facilitate a smooth transition into the discussion on its relevance to the
proposed deep learning model.

The remainder of this paper is organized as follows. Section 2, “Materials and Meth-
ods”, presents the methodology used for our innovative deep learning model for automated
COVID-19 detection, and the dataset and experimental setup are also outlined. Section 3,
“Results”, presents the detailed findings from the validation experiments. In Section 4,
“Discussion”, the implications, challenges, and limitations of the results are comprehen-
sively discussed, along with a comparison with related works. Section 5, “Conclusions”,
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concludes the paper with a synthesis of the key insights and future directions for the
proposed model.

2. Materials and Methods
2.1. Xception Model

Xception, short for “Extreme Inception”, is a state-of-the-art deep learning architecture
proposed by François Chollet in 2017 [10]. It represents a significant advancement in
convolutional neural network (CNN) design, particularly tailored for image classification
tasks [11]. At its core, Xception embodies a fundamental departure from conventional CNN
architectures, introducing a novel approach to convolution operations.

Traditional CNNs rely on standard convolutional layers to extract features from
input images. These layers apply a set of learnable filters across the entire input volume,
producing feature maps that capture spatial patterns. However, this approach often leads to
an excessive number of parameters, resulting in computational inefficiency and increased
risk of overfitting.

In contrast, Xception introduces depth-wise separable convolutions, a concept bor-
rowed from the Inception family of architectures [12]. Depth-wise separable convolutions
decompose the standard convolution operation into two distinct stages: depth-wise convo-
lution and point-wise convolution.

Let F represent the input feature map, K denote the kernel (or filter), and S signify the
stride length. The depth-wise convolution operation is defined as:

F′
ij = ∑

m,n
F(i·S+m)(j·S+n) × Kmn (1)

where F′
ij represents the output feature map and Kmn denotes the corresponding element of

the kernel. By performing convolutions independently across each channel of the input
feature map, depth-wise convolutions significantly reduce computational complexity while
preserving spatial information.

Following the depth-wise convolution, point-wise convolutions are applied to inte-
grate information across channels. This operation is expressed as:

F′
ij = ∑

k
Fij × Kk (2)

where Kk represents the k-th element of the point-wise kernel. By incorporating both
depth-wise and point-wise convolutions, Xception achieves a remarkable balance between
computational efficiency and expressive power.

In addition to its architectural innovations, Xception employs other techniques, such
as batch normalization and ReLU activations, to enhance model stability and convergence
speed [13]. These elements collectively contribute to Xception’s exceptional performance in
image classification tasks, making it a preferred choice for various applications, including
medical image analysis.

In the subsequent sections, we delve deeper into the integration of Xception within
our proposed deep learning paradigm, elucidating its role in revolutionizing automated
disease detection from medical imaging data.

2.2. Transfer Learning

Transfer learning is a powerful concept in machine learning that leverages knowledge
gained from one task to improve performance on a different but related task [14]. In
the context of deep learning and neural networks, transfer learning involves using pre-
trained models on large datasets and fine-tuning them for specific tasks. This approach is
particularly beneficial when the target task has limited labeled data.
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Transfer learning can be conceptualized as follows: let S denote the source domain, T
denote the target domain, P(S) denote the probability distribution of the source domain,
P(T) denote the probability distribution of the target domain, X denote the input space,
and Y denote the output space. The model’s objective is to learn a mapping f : X → Y that
performs well on T based on the knowledge acquired from S.

Transfer learning encompasses various strategies, such as feature extraction and fine-
tuning. Feature extraction involves using the pre-trained model’s early layers as generic
feature extractors and appending task-specific layers for the target task. Fine-tuning, on
the other hand, refines the entire model on the target task by adjusting the weights of all
layers while retaining the knowledge gained from the source task.

2.3. Transfer Learning Framework: Feature Extraction, Encoding, Decoding, and
Feature Generation

In the transfer learning phase, we introduce various layers, including a feature extrac-
tion module that enables us to address the expressiveness issue resulting from different
locations and times of image capture. This module precedes encoding and decision making
for effective preprocessing. The methodology encompasses a feature-encoding module, a
decoding module, and a feature-generation segment. This approach is both sequential and
parallel, enhancing the overall efficiency of the process.

In our proposed model for COVID-19 detection, transfer learning plays a pivotal role
in overcoming the challenges associated with the evolving nature of the SARS-CoV-2 virus.
By leveraging pre-existing knowledge from a large dataset, the model can effectively learn
relevant features for distinguishing between different strains, enhancing its accuracy and
robustness in the face of emerging variants. The subsequent sections delve into the specifics
of our novel model and the experimental validation conducted to demonstrate its superior
predictive accuracy compared to established models.

In the quest for a groundbreaking solution to the crucial problem at hand, we intro-
duce a novel deep learning paradigm meticulously designed to redefine the landscape of
automated COVID-19 detection from X-ray thorax images. Our proposed model seamlessly
integrates the robust Xception architecture for pattern recognition, offering a transformative
approach to enhance diagnostic accuracy in the realm of healthcare.

2.4. Model Architecture

The architectural prowess of our proposed model is illustrated in Figure 1, encap-
sulating the fusion of cutting-edge techniques for feature extraction, transfer learning,
and classification. In the spirit of innovation, we have strategically organized the model
into distinctive blocks, each contributing to the overall efficacy. Our model’s architecture,
meticulously crafted to train on existing data and predict outcomes for new individuals,
stands as a testament to the sophistication required in the healthcare domain.

Our model is subdivided into three blocks. The first contains the basic Xception model.
The second contains a “GloabalAveragePooling2D” layer followed by four “BatchNormal-
ization” layers, which provide data belonging to the same scale. This makes the neural
network easier to train. Normalization, therefore, consists of formatting the input data
to facilitate the machine learning process. These layers are separated by a dropout layer,
with a rate of 0.5 to minimize the risk of overlearning, and a dense layer with 256 units
linking all the layers of the network. The third and final block consists of a dense layer with
a “softmax” activation function.
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Figure 1. Architecture of the proposed Xception-Enhanced Transfer Learning Model. In blue is
the feature extraction block, in yellow is the transfer learning block, and in orange is the classifica-
tion block.

2.5. Layer Model

Considering the combination of two functions ϖ and φ to produce a new function
ϖ × φ, we define the convolution model in Equation (3)

(ϖ × φ)(x) =
∫ ∞

−∞
ϖ(t)φ(x − t)dt (3)

To this, we add its decomposition into two distinct stages: a depth convolution,
applying a spatial filter of size J × J to each input channel, and a point convolution, then
applying a 1 × 1 filter to all output channels, allowing for the reduction or increase in
the number of channels, ensuring depth-separable convolution. An Xception block is
necessary in our approach, as it constitutes a basic unit of the Xception approach. To this
end, we consider a succession of depth-separable convolution layers, followed by a batch
normalization layer and an activation function, as illustrated by the layered model shown
in Figure 2.

To add transfer learning, let us consider any task denoted by T as an image classifica-
tion function defined by Equation (4), as follows:

T = (V ,W) (4)

where V is the input space and W is the output space.
To predict the images, we then define f , a function that associates a numerical value

with each element of V or W . To have a function that approximates the function to be
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learned, using adjustable parameters, we denote M as an image classification model such
that M(v) defines the model prediction for image v ∈ V .

Considering that the source and target tasks share certain common features, which
can be captured by the model, we then define two subsets as follows:

The features are given by f1, f2, ..., fn ∈ F and the parameters by p1, p2, ..., pm ∈ P.
We have ∃F ⊂ f : VS ∪ VC → R, ∃P ⊂ R, ∀ f ∈ F, ∀p ∈ P, MS(vS) = f (vS, p)

and MC(vC) = f (vC, p), where MS is the source model associated with the source task
TS = (VS, WS) and MC is the target model used by the target task TC = (VC, WC).

Figure 2 illustrates our proposed layer model, showcasing the intricate composition
that underlies the model’s ability to navigate the complexities of X-ray thorax images. The
layer model emphasizes the interplay between feature extraction, transfer learning, and
classification layers, providing a comprehensive insight into the neural architecture’s depth
and sophistication.

Figure 2. Layer model of our proposed Xception-Enhanced Transfer Learning Model.

2.6. Integration of Xception Model: Rationale and Advantages

The decision to incorporate the Xception network into our model stems from its
multifaceted advantages. Xception, evolving from Inception modules within convolutional
neural networks, strategically positions itself as an intermediate step between conventional
convolution and the depth-separable convolution operation. This distinctive characteristic
empowers our model with unparalleled adaptability and expressive capacity, crucial for
intricate nuances in COVID-19 pattern recognition within X-ray thorax images.

Our proposed Xception-Enhanced Transfer Learning Model represents a pioneering
stride toward revolutionizing the diagnostic landscape in healthcare. By harnessing the
strengths of Xception and seamlessly integrating them into our deep learning paradigm, we
anticipate a paradigm shift in the accuracy and efficiency of automated COVID-19 detection.
The subsequent sections delve into the experimental validation, results, and discussions,
providing a comprehensive narrative of the model’s performance and its potential impact
on the broader healthcare domain.

Furthermore, while numerous image analysis methods, such as the YOLO model,
demonstrate high performance in computer vision, our specific study opts for the Xception
model due to its exceptional performance in the medical domain. Unlike other models,
Xception introduces depth-wise separable convolutions, enhancing its capabilities.
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Xception transforms the original Inception-V3 block by expanding it and replacing
various convolution operations (1 × 1, 5 × 5, 3 × 3) with a single 3 × 3 convolution fol-
lowed by a 1 × 1 convolution. This modification aims to effectively regulate computational
complexity. Additionally, unlike Inception, which applies ReLU non-linearities after convo-
lution operations, depth-wise separable convolutions are generally implemented without
non-linearities.

The choice of Xception for our methodology is grounded in its prowess in medi-
cal applications and its innovative architectural modifications, contributing to improved
computational efficiency without compromising performance.

2.7. Tools and Technologies Used

The realization of our work leveraged cutting-edge tools and technologies. On the
hardware front, an HP Probook computer with a Windows 10 operating system, 64-bit
architecture, Intel(R) Core i7-9700F CPU @ 3.00GHz, and 16 GB of RAM played a pivotal
role. The software toolkit used in the experiment included TensorFlow 1.5.3, Keras 2.15.0,
Scikit-learn 1.2.2, Scikit-image 0.19.3, Python 3.11.6, and Flask 3.0.2.

2.8. Dataset

To evaluate our model, we utilized X-ray images from COVID-19 patients sourced
from multiple datasets, including hospital data related to the COVID-19 outbreak [15,16]
and Kaggle data [16]. We considered two datasets. The first one comprised 4050 images,
with 3000 images for training and 1050 images for testing. The second one comprised
6378 images, with 4878 images for training and 1500 images for testing. These datasets
included images from confirmed COVID-19 patients, normal individuals, and pneumonia
patients. Figure 3 showcases a sample of X-ray images from these datasets.

Figure 3. Sample of images from the dataset used [16].

Table 1 displays the distribution by class of the first dataset with 3000 images (training),
including 2400 images for training and 600 images for validation.

Table 1. Data distribution used for training (training images: 80%; validation images: 20%).

COVID-19 Pneumonia Normal Total

Training 823 763 814 2400
Validation 177 237 186 600

Total 3000

Table 2 presents the class distribution of the second dataset with 4878 images (train),
including 3902 training images and 976 images for validation.
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Table 2. Second data distribution used for training (training images: 80%; validation images: 20%).

COVID-19 Pneumonia Normal Total

Training 1308 1303 1291 3902
Validation 335 323 318 976

Total 4878

3. Results
3.1. Xception-Enhanced Transfer Learning Model

Figure 4 displays the performance results obtained by the Xception model using the
same dataset (Table 1) over 10 epochs during training.

The proposed model, with 21,412,395 parameters, was first trained for 10 epochs
utilizing the Adam optimizer (learning rate: 0.0001) and categorical cross-entropy for
error computation. The key optimization techniques included LearningRateSchedule and
ReduceLROnPlateau to dynamically adjust the learning rates. The model achieved an
impressive accuracy of 96% in training and 97% in validation, with error rates of 0.07% and
0.06%, respectively. The classification report of our proposed model, as shown in Table 3,
highlights exceptional performance across all classes (COVID-19, normal, and pneumonia),
with precision and recall scores consistently exceeding 92.9%. The overall F1-score of 97.6%
underscores the model’s robustness in accurately classifying X-ray images, marking a
significant advancement in the field of COVID-19 detection.

Table 3. Classification report of our proposed model over 10 epochs based on the data presented in
Table 1. COVID-19 is class 0, normal is class 1, and pneumonia is class 2.

Class Precision Recall F1-Score Support

0 1.000 1.000 1.000 350
1 0.933 1.000 0.966 350
2 1.000 0.929 0.963 350

Accuracy 0.976 1050
Macro Avg 0.978 0.976 0.976 1050

Weighted Avg 0.978 0.976 0.976 1050

(a) (b)

Figure 4. (a) Accuracy and (b) loss for the Xception model using the X-ray images dataset (10 epochs).

Figure 5 presents the confusion matrix of the Xception model, showcasing its robust
performance. Figure 6 summarizes the relationship between accuracy and loss for our
proposed model during training and validation. These results were obtained using the
dataset summarized in Table 1 over 10 epochs during training.
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Figure 5. Confusion matrix of the Xception model.

(a) (b)

Figure 6. (a) Accuracy and (b) loss for the Xception-Enhanced Transfer Learning Model using the
X-ray images dataset (10 epochs).

We trained our model using a dataset comprising 3902 images distributed across
three classes (COVID, normal, and pneumonia) for training data and 1500 for testing,
necessitating a methodical approach (Table 2). Firstly, it was crucial to preprocess the images
by resizing them to (224, 224, 3), normalizing the pixel values, and splitting them into
distinct sets for training and validation. Subsequently, we compiled the model by defining
the appropriate loss function (such as cross-entropy) and optimizer (Adam) to guide
network learning. While we acknowledge that the typical input size for Xception models
is 299 × 299 × 3, we resized our X-ray images to 224 × 224 × 3 during preprocessing
for compatibility with our dataset. This resizing was conducted while considering the
balance between computational efficiency and preserving essential diagnostic information.
Despite the dimension reduction, standard resizing techniques were employed to maintain
the integrity of the images. The model was trained on the training data over multiple
iterations (epochs), totaling 21 epochs, where it adjusted its weights to minimize loss and
enhance performance. Following training, it was crucial to evaluate the model on test data
to assess its ability to generalize to new, unseen data. By analyzing metrics such as accuracy,
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precision, and recall for each class, we can assess the model’s performance and identify
areas for improvement. Finally, adjustments can be made to the model, such as tuning
hyperparameters or augmenting data, to enhance its performance (Figure 7).

Figure 7. Confusion matrix of the Xception-Enhanced Transfer Learning Model (10 epochs).

Figure 8a,b depict the training and validation accuracy, respectively, after training
our model with 80% of the data used, along with the error rates for 80% of the training
data. The corresponding confusion matrix, as illustrated in Figure 9, visualizes the model’s
performance, displaying the number of correct and incorrect predictions made by the
model for each class compared to the true labels of the data. This matrix is useful for
evaluating accuracy, recall, specificity, and other model performance metrics, helping in
the identification of classification errors and areas where the model can be improved. As
shown in Table 4, by increasing the size of the dataset and the number of epochs, our model
demonstrates even higher performance.

(a) (b)

Figure 8. (a) Accuracy and (b) loss for the Xception-Enhanced Transfer Learning Model using the
X-ray images dataset (21 epochs).

In addition, an analysis of Figure 8a,b reveals deviations starting from the ninth epoch.
To address this, we extended the training duration from 21 to 50 epochs. As depicted in
Figure 10a,b, while occasional deviations persisted at certain epochs, the overall trend
stabilized as training progressed toward the 50th epoch. These observations underscore
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the robustness and reliability of our findings, offering a deeper insight into the behavior
and performance characteristics of the model.

Figure 9. Confusion matrix of the Xception-Enhanced Transfer Learning Model (21 epochs).

(a) (b)

Figure 10. (a) Accuracy and (b) loss for the Xception-Enhanced Transfer Learning Model using the
X-ray images dataset (50 epochs).

Table 4. Classification report of our proposed model over 21 epochs based on the data presented in
Table 2. COVID-19 is class 0, normal is class 1, and pneumonia is class 2.

Class Precision Recall F1-Score Support

0 1.000 0.986 0.993 500
1 0.973 1.000 0.986 500
2 1.000 0.986 0.993 500

Accuracy 0.991 1500
Macro Avg 0.991 0.991 0.991 1500

Weighted Avg 0.991 0.991 0.991 1500
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3.2. Benchmark Models

To benchmark our model, we selected ResNet50, VGG-16, and Xception, presenting a
comparative summary in Table 5.

Table 5. Comparative table of the results obtained for different models.

Model ResNet50 VGG-16 Xception Our Model

Epoch 10 10 10 10
Training accuracy 51.66% 64.54% 73.51% 96%
Validation accuracy 47.83% 71.83% 73.68% 97%
Training loss 0.9142 0.4405 0.1217 0.0705
Validation loss 0.8384 0.4594 0.3272 0.0621
Test accuracy 66.66% 90.33% 78% 97.7%
Test loss 0.7486 0.128 0.4672 0.0575
Recall 59% 91% 78% 97%
Precision 60% 92% 86.74% 98.8%

4. Discussion
4.1. Evolution of Neural Network Architectures

In contemporary computer vision applications, convolutional neural networks (CNNs)
stand as a cornerstone, offering a versatile architecture characterized by alternating convo-
lution and subsampling layers. The structural arrangement of these layers, complemented
by innovations such as batch normalization [13] and dropout [17], significantly impacts
the network’s performance. Tailoring the layout of CNN layers plays a pivotal role in
architectural design, influencing the overall efficacy of the model [18,19].

A myriad of pattern recognition models has emerged in the recent literature, each
leveraging distinct neural network architectures. Pioneering models like LeNet [20],
AlexNet [21], GoogleNet [22], ResNet [23,24], DenseNet [5], and Xception have demon-
strated the evolution of neural network design. In the quest for enhanced performance,
researchers have explored innovative strategies, combining data and prior knowledge
in hybrid models [25]. Noteworthy examples include VGG, which analyzes the impact
of depth on accuracy through a network with up to 19 layers [26]. Despite its success,
VGG’s computational complexity, with 138 million parameters, hinders deployment on
resource-constrained systems.

In addressing this limitation, GoogleNet, also known as Inception-V1, introduced
a block concept, leveraging convolutional transformations at multiple scales while min-
imizing computational cost [27]. This approach replaces conventional layers with small
blocks, reducing the parameter count from 138 million to 4 million. The model’s hetero-
geneity, however, necessitates customization for each network. ResNet, proposed in [13],
pioneered residual learning, featuring an architecture of up to 152 layers organized into
residual blocks. ResNet exhibits reduced computational complexity and lower error rates
in classification tasks.

The evolution of neural network architectures continued with Xception, introduced
in [10] to enhance Inception-V3 modules through depth-separable convolutions. Departing
from the original Inception-V3 block, Xception expands and replaces diverse convolution
operations with a single 3 × 3 convolution followed by a 1 × 1 convolution, effectively
regulating computational complexity. Notably, Xception has outperformed benchmarks
such as VGG-16, ResNet, and Inception-V3 in traditional classification challenges, offering
a resource-efficient alternative for clinical model development due to its commendable
trade-off between resource consumption and accuracy [10]. We provide an insightful
overview of key models, namely ResNet50, VGG-16, and Xception, encompassing their
architectural intricacies, intended purposes, performance metrics, and inherent limitations.
The summarized information is presented in Table 6, offering a comprehensive comparison
to contextualize our proposed model’s advancements.
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Table 6. Overview of selected models (ResNet50, VGG-16, Xception, and our proposed model),
including the models’ architectures, purposes, performance, and limitations.

Model Architecture Purpose Performance Limitations Refs.

ResNet50 A deep CNN model
that uses a residual
architecture. It uses
residual blocks to
enable deep learning
without a significant
reduction in
performance.

Often used for image
classification, object
detection, and
semantic
segmentation tasks.
Also used in image
recognition, fraud
detection, medical
research, and video
surveillance.

Renowned for its
exceptional
performance in
solving image
classification
problems. It has won
numerous computer
vision challenges
thanks to its ability to
learn highly
discriminating
representations.

Can be more complex
to train and require
more computing
power because of its
depth.

[23]

VGG-16 A CNN model that
consists of 16
convolution and
pooling layers. It uses
convolutions of size
3 × 3 with strides of 1
and pooling of size
2 × 2 to extract image
features.

Used for image
classification, object
detection, and
automatic generation
of image descriptions
and artistic research.

A powerful model for
image classification.
Relatively heavier in
terms of the number
of parameters.

Has a simpler
architecture compared
to ResNet50 and
Xception but can
suffer from overfitting
when used with
smaller datasets.

[26]

Xception A CNN model that
uses an architecture
based on depth-wise
convolutions to
reduce the number of
parameters and
improve
computational
efficiency.

Used for image
classification, object
detection, and
semantic
segmentation tasks, as
well as emotion
recognition, medical
image classification,
and anomaly
detection.

Improves the
performance of
models based on
depth convolutions
but may require more
computational
resources.

Efficient in terms of
the number of
parameters, but it can
be slower to train due
to the complexity of
its architecture.

[10]

Our
Model

Subdivided into three
blocks. The first
contains the basic
Xception model. The
second contains a
global average
pooling 2D layer,
followed by four batch
normalization layers.
The third consists of a
dense layer with a
softmax activation
function.

Our model can be
used for image
classification, object
detection and
semantic
segmentation tasks,
pattern recognition,
and medical image
classification.

Xception improves the
performance of
models based on
depth convolutions.
Therefore, we added a
transfer learning block
to train the model and
further improve
Xception’s basic
performance.

Our model is subject
to some of Xception’s
limitations. However,
thanks to its third
block, it improves the
high-training-time
problem suffered by
Xception.

-

4.2. Performance Evaluation and Benchmarking

In the evaluation and benchmarking results presented in Table 5, our innovative
model, the Xception-Enhanced Transfer Learning Model, demonstrated superior accu-
racy compared to its counterparts. To further strengthen the credibility of our findings,
we calculated the confidence intervals for key performance metrics including accuracy,
precision, recall, and F1-score. These intervals offer valuable insights into the variability
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of our model’s performance, enhancing the robustness of our results. With a confidence
level of 95%, the calculated 95% confidence interval for the accuracy of our model was
approximately 0.991 ± 0.00477, indicating a range from 0.98623 to 0.99577. The inclusion
of these confidence intervals alongside our results provides a comprehensive assessment
of the stability and reliability of our model’s performance. Notably surpassing the highly
acclaimed Xception model, our innovation has set a new standard in the field. Figures 4, 6
and 8 vividly depict the superior accuracy of our model compared to Xception.

Utilizing the dataset showcased in Figure 3, our model achieved an exceptional
precision of over 98.8%, surpassing that of ResNet50 (60%), Xception (86.74%), and VGG-16
(92%), as highlighted in Table 5. The confusion matrices presented in Figures 5, 7 and 9
further underscore the superior performance of our model compared to Xception.

This stellar performance can be attributed to the strategic incorporation of transfer
learning, specifically the synergy between Xception and our proposed model. The inte-
gration of transfer learning enhances the accuracy and overall efficacy of our model. The
resource-efficient nature of our model, coupled with its ability to achieve robust perfor-
mance with a modest amount of labeled training data, distinguishes it as the pinnacle of
current machine learning models.

5. Conclusions

In this study, we introduced the Xception-Enhanced Transfer Learning Model as a
novel approach for precise COVID-19 detection from X-ray images. Leveraging the power
of transfer learning, our model has demonstrated exceptional performance across various
metrics, surpassing established benchmarks and setting a new standard in diagnostic accuracy.

Our model’s success is evidenced by its outstanding performance compared to other
models, as summarized in Table 5. With a training accuracy of 96% and a validation
accuracy of 97%, our model consistently outperforms ResNet50, VGG-16, and even the
baseline Xception model. Furthermore, our model exhibits impressive recall and precision
rates of 97% and 98.8%, respectively, highlighting its robustness in correctly identifying
COVID-19 cases while minimizing false positives.

By harnessing transfer learning, our approach not only achieves superior accuracy but
also addresses key challenges in model development. The utilization of pre-trained models,
such as Xception, significantly reduces the need for extensive labeled data, making our model
both resource-efficient and scalable for deployment in real-world settings. Moreover, the
integration of transfer learning enhances our model’s adaptability to diverse datasets and
medical imaging tasks, paving the way for future advancements in diagnostic methodologies.

Our findings underscore the transformative potential of advanced machine learning
techniques in combating global health crises. The Xception-Enhanced Transfer Learning
Model represents a paradigm shift in COVID-19 detection, offering enhanced diagnostic
capabilities that can significantly impact patient care pathways. Beyond its immediate
implications for COVID-19 diagnosis, our model lays the foundation for the development
of innovative diagnostic tools in healthcare, promising improved outcomes and better
management of infectious diseases.
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