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Abstract: In this paper, we propose a method to refine the depth maps obtained by Multi-View Stereo
(MVS) through iterative optimization of the Neural Radiance Field (NeRF). MVS accurately estimates
the depths on object surfaces, and NeRF accurately estimates the depths at object boundaries. The
key ideas of the proposed method are to combine MVS and NeRF to utilize the advantages of both in
depth map estimation and to use NeRF for depth map refinement. We also introduce a Huber loss
into the NeRF optimization to improve the accuracy of the depth map refinement, where the Huber
loss reduces the estimation error in the radiance fields by placing constraints on errors larger than a
threshold. Through a set of experiments using the Redwood-3dscan dataset and the DTU dataset,
which are public datasets consisting of multi-view images, we demonstrate the effectiveness of the
proposed method compared to conventional methods: COLMAP, NeRF, and DS-NeRF.

Keywords: multi-view stereo; neural radiance fields; depth map estimation; 3D reconstruction

1. Introduction

Multi-View Stereo (MVS) is a technique for acquiring 3D data from target objects or
scenes from multiple images captured by a camera [1–3]. Since MVS requires only camera
images, it is not restricted to the capturing environment, reduces the effort required for
capturing images, and can more easily acquire 3D data compared to active scanners.

MVS estimates depth maps from images taken from different viewpoints and inte-
grates them to reconstruct 3D data [2–7]. A depth map is an image in which the pixel values
represent the distance, i.e., the depth, from the camera to the object. To estimate the depth
map for each viewpoint, MVS performs image matching between multi-view images. One
of the typical methods is plain sweeping [4,8]. In plain sweeping, the most optimal depth
is searched for in each pixel of the input image based on the similarity of textures in the
local region of the image while varying the depth from the camera to the object, where
Normalized Cross-Correlation (NCC) or Zero-mean Normalized Cross-Correlation (ZNCC)
between local regions is generally used as the similarity [3,8]. Although the optimal depth
can be estimated by taking into account the geometric consistency among multi-view
images, the number of image-matching operations becomes large since a full depth search
is required for each pixel [7]. To reduce the number of image matching operations in MVS,
efficient methods using PatchMatch [9,10] have been proposed [3,7,11,12]. Among them,
COLMAP [3,13] has been proposed as a pipeline for 3D reconstruction using PatchMatch
and is used as a de facto standard method for MVS. PatchMatch-based methods assign
depth and normal as parameters to each pixel. For example, the initial value of the depth
is a random number within the acceptable range of depth estimation obtained from the
epipolar constraints between cameras, and the initial value of the normal is a random
number within ±π/3 for the angles of the X and Y axes [7]. Then, the parameters are
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optimized by matching corresponding pixels in different viewpoints according to these
parameters. The depth map can be estimated with fewer matching operations than a full
search by using random numbers as the initial values of the parameters. Since the parame-
ters are optimized using image matching, the accuracy of depth estimation is degraded in
poor-texture regions and at object boundaries, and occlusion prevents depth estimation.
Recently, depth map estimation methods using deep learning have been proposed [14–17].
In this paper, “texture” refers to the spatial distribution of colors and their intensities in an
image. “Rich texture” indicates that there is a large difference in intensity values between
pixels and that the texture has a complex pattern, while a “poor texture” indicates that
there is almost no difference in intensity values between pixels and that the texture is uni-
form. “Object boundary” indicates the boundary between the foreground and background
in the image, where the pixels have significantly different depths. A typical method,
namely MVSNet [15], projects feature maps extracted by a Convolutional Neural Network
(CNN) [18] to another viewpoint based on plain sweeping, and estimates the depth of each
pixel based on the similarity of the features. Depth map estimation with training is more
accurate than that without training since CNN-based methods can use features considering
the shape and positions of the neighboring regions of the pixel of interest as well as textures.
On the other hand, even with deep learning, depth estimation is difficult in poor-texture
regions and object boundaries. Thus, the depth map estimation in MVS can accurately
estimate the depth on object surfaces with rich texture, while the estimation accuracy is
degraded in poor-texture regions and at object boundaries.

Neural Radiance Fields (NeRFs) [6] have been proposed as another method for depth
map estimation from multi-view images. NeRF represents a 3D space as a radiance field,
which is parametrized with a Multi Layer Perceptron (MLP). The MLP is trained so as to
estimate a volume density and view-dependent emitted radiance given the spatial location
and view direction of the camera from multi-view images. The use of the trained MLP
makes it possible to synthesize images from novel viewpoints based on the radiance field
on the ray connecting the camera and the object. NeRF can not only generate novel view
images from the radiance field, but can also generate depth maps. Depth can be synthesized
pixel by pixel using the radiance field, even for poor-texture regions and object boundaries.
On the other hand, it is not always possible to accurately estimate the depth on the surface
of an object using NeRF compared with MVS.

As described above, MVS estimates depths based on image matching and thus can
accurately estimate depths on object surfaces with rich texture, while the accuracy of depth
estimation is degraded in poor-texture regions and at object boundaries. On the other
hand, NeRF estimates the radiance field of a scene from multi-view images and estimates
depth for each pixel from the radiance field, and thus can estimate depth for poor-texture
regions and object boundaries, while the accuracy is not always high for object surfaces.
In this paper, we propose a method to refine the depth maps obtained by MVS through
the iterative optimization of NeRF. The standard NeRF trains an MLP to generate novel
view images, while the proposed method refines the depth map by iteratively optimizing
an MLP, so that the MLP can render the input image and the depth map obtained by MVS.
Therefore, the proposed method only performs iterative optimization of the radiance field
and does not require any training. Through a set of experiments using the Redwood-
3dscan dataset [19] and the DTU dataset [20], which are public datasets consisting of
multi-view images, we demonstrate the effectiveness of the proposed method compared
to conventional methods. In the experiments, we employ an evaluation metric that is
invariant to the depth scale [21], in addition to the widely used evaluation metrics for depth
map estimation.
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2. Related Work

This section summarizes the depth map estimation methods using MVS and NeRF
that are related to this study.

2.1. MVS-Based Approaches

Here, we give an overview of COLMAP [3,13] using PatchMatch and MVSNet [15]
using deep learning as MVS-based depth map estimation methods.

2.1.1. COLMAP

COLMAP is a pipeline for 3D reconstruction from multi-view images that consists
of Structure from Motion (SfM) [13] and MVS [3]. SfM is a method for 3D reconstruction
and camera parameter estimation by sequentially adding images using the principle of
triangulation used in stereo vision [1]. Correspondence point pairs are obtained based on
the similarity between feature points, 3D points are reconstructed using the correspondence
point pairs and camera parameters based on the principle of triangulation, and camera
parameters are optimized by minimizing reprojection errors. SfM estimates camera param-
eters and reconstructs sparse 3D point clouds from multi-view images. SfM in COLMAP
is a de facto standard method among many MVS methods for estimating the camera pa-
rameters of multi-view images. MVS estimates the depth map of each viewpoint using
the results of SfM and reconstructs dense 3D point clouds. MVS in COLMAP, similar to
PatchMatch, assigns depth and normal to each pixel as parameters initialized with random
numbers, and then iteratively performs image matching and parameter propagation among
multi-view images to optimize the depth and normal. To improve the accuracy of depth
map estimation using PatchMatch, MVS in COLMAP utilizes the following ideas: (i) propa-
gates parameters taking into account the geometry by selecting the pixel of interest and the
corresponding view for each pixel based on the camera rotation, occlusion obstructing the
view, and image resolution, (ii) employs NCC with bilateral weights for image matching
in local regions, (iii) improves the accuracy of depth estimation by maximizing the photo-
metric consistency and minimizing the geometric consistency based on reprojection errors
between viewpoints, and (iv) removes outliers according to the confidence value calculated
by the photometric consistency and the geometric consistency. COLMAP also has problems
with low depth estimation accuracy in poor-texture regions and at object boundaries.

2.1.2. Deep Learning

Recently, a number of depth map estimation methods using deep learning have
been developed [14–17,22]. Here, we describe one of the typical methods, MVSNet [15].
MVSNet estimates a depth map for each viewpoint through three steps: feature extraction
from multi-view images, the creation of a cost volume, and depth map estimation. Let
the image for which the depth map is to be obtained be the reference image, and the
images in the neighborhood of the reference image be the neighboring images. Feature
maps are extracted from both the reference image and the neighboring images using a 2D
CNN. A virtual plane is assumed in the depth direction of the camera for the reference
image, the feature maps of the neighboring images are projected onto the virtual plane by
homography transformation, a feature volume at each viewpoint is created, and a scene
cost volume is created by aggregating the feature volumes of the reference image and the
neighboring images. The cost volume is used to determine the existence probability of
object surfaces in the depth direction, and the depth of each pixel is estimated from its
expected value.

As described above, MVS estimates the depth map using image matching based on
the texture in the images and the features extracted by CNN. Because of the use of image
matching, the depth map can be estimated with high accuracy in rich-texture regions,
while the estimation accuracy degrades in poor-texture regions and at object boundaries.
In addition, MVS is difficult to estimate the depth in regions containing occlusions even
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though the deformation between images is normalized using a homography transformation
to improve the accuracy of image matching.

2.2. NeRF-Based Approaches

We describe a novel view synthesis method, i.e., NeRF [6] and depth map estimation us-
ing NeRF. We also describe Depth-Supervised NeRF (DS-NeRF) [23], which utilizes sparse
3D point clouds reconstructed by SfM, as a depth map estimation method using NeRF.

2.2.1. NeRF

NeRF estimates the radiance field of a 3D scene from multi-view images and camera
parameters using an MLP, and synthesizes a novel view by volume rendering [24] the
radiance field [6]. The MLP takes the coordinates x = (x, y, z) of a 3D point in its direction
(θ, ϕ) as the input and the RGB value c = (r, g, b) of the 3D point and the density σ
representing the opacity of the 3D point as the output. The ray ri from the camera center
o in the camera image I through the pixel i in the camera image I and the 3D point xi
corresponding to the pixel i ∈ I is defined by

ri(t) = o+ tdi, (1)

where t is the position on the ray and di is its direction (θi, ϕi) which observes the 3D point
x. From the RGB value c(ri(t), di) of a 3D point on the ray and the density σ(ri(t)) of 3D
points, the pixel value Ci at pixel i is calculated by

Ci =
∫ tfar

tnear
Ti(t)σ(ri(t))c(ri(t), di) dt, (2)

where tnear and t f ar indicate the range of volume rendering and Ti(t) is an accumulated
transmittance function, which describes the phenomenon that the brightness of rays is
attenuated by objects, and is defined by

Ti(t) = exp
(
−
∫ t

tnear
σ(ri(s)) ds

)
. (3)

In practice, since N 3D points on the sampled rays r̂ are used, Equation (2) can be
rewritten as

Ĉ(r̂) =
N

∑
j=1

Tj(1 − exp
(
−σjδj)

)
cj, (4)

where δj = tj+1 − tj denotes the distance between adjacent 3D points located on the ray
and Tj is given by

Tj = exp

(
−

j−1

∑
k=1

σkδk

)
. (5)

The MLP is trained with the loss function L between the pixel values Ĉ(r̂) of the image
synthesized by volume rendering and Cgt(r̂) of the camera image, which is defined by

L = ∑
r̂∈R

||Ĉ(r̂)− Cgt(r̂)||2, (6)

where R is a set of rays passing through each pixel. In NeRF, the depth D(r̂) is calcu-
lated by using the density σ of sampled 3D points on the ray r̂ and Ti obtained from the
density [25–28] as follows:

D(r̂) =
N

∑
j=1

Tj
{

1 − exp
(
−σjδj

)}
tj. (7)
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A depth map for each viewpoint can be obtained by calculating the depth for all the
pixels. NeRF does not use image matching for local regions, and therefore can estimate
depth maps with high accuracy in poor-texture regions and at object boundaries.

2.2.2. DS-NeRF

Here, we describe Depth-Supervised NeRF (DS-NeRF) [23], which combines NeRF
and SfM in COLMAP as a method to improve the performance of NeRF. As mentioned
above, NeRF trains an MLP using the color reconstruction loss between the synthesized
image and the camera image. In addition to the color reconstruction loss, DS-NeRF uses the
depth loss between the depth obtained by volume rendering and the depth obtained from
the sparse 3D point cloud in SfM. DS-NeRF can train an MLP more efficiently than NeRF
and can synthesize novel views from a small number of images. The depth loss LDepth
used in DS-NeRF is calculated based on KL divergence as follows:

LDepth ≈ Exi∈Xj ∑
k

log hk exp

{
−
(
tk − Dij

)2

2σ̂2
i

}
∆tk, (8)

where Xj indicates a set of feature points visible from camera j, xi indicates the i-th feature
point, hk indicates the existence probability of the object surface at the k-th sampling point
on the ray, σ̂i indicates the reprojection error at the i-th feature point xi, and Dij indicates
the distance from camera j to the feature point i. The larger the reprojection error of the
feature points, the weaker the loss constraint is to take into account the estimation error
of the 3D points by SfM. Although depth maps can be estimated from a small number of
images, sparse depth maps have to be used for training in DS-NeRF. Therefore, it is not
always possible to synthesize a highly accurate depth map by volume rendering using the
radiance field.

Recently, RC-MVSNet [17] has been proposed, which combines CasMVSNet [22] and
NeRF to train CasMVSNet by unsupervised learning. Although unsupervised learning
reduces the limitation on the amount of training data, the depth map cannot always be
estimated with high accuracy since NeRF is estimated based on the depth map generated
by CasMVSNet.

3. NeRF-Inspired Depth Map Refienment

As mentioned above, the depth map estimated by MVS does not obtain depth in
poor-texture regions, occlusions, and at object boundaries. We propose a depth map
estimation method multi-view images with NeRF-inspired depth map refinement. The
proposed method differs from general NeRF in that it iteratively optimizes the MLP to
synthesize the input image and the depth map estimated by MVS, rather than training the
MLP to synthesize novel view images. NeRF trains the radiance field of the scene using
the input multi-view images and uses it to synthesize novel view images. On the other
hand, the proposed method refines the depth map by optimizing the radiance field of the
scene so that the input multi-view images and the dense depth map can be synthesized.
The proposed method corresponds to overfitting the training data from the viewpoint of
NeRF. Since NeRF aims to synthesize novel view images, while the proposed method aims
to refine the input depth maps, the proposed method can achieve its objective even by
overfitting the training data in NeRF. In the following, we refer to “optimize” as overfitting
the MLP to the training data to estimate a depth map from the same viewpoint as the
training data. We also refer to “train” as synthesizing a novel view by training the MLP
with the training data, i.e., normal NeRF. We describe an overview of the proposed method,
the network architecture of the MLP used in the proposed method, and the objective
functions for optimization in the following.
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3.1. Overview

The proposed method consists of camera parameter estimation by SfM, depth map
estimation by MVS, and depth map refinement by NeRF optimization, taking multi-view
images as the input. The framework of the proposed method is shown in Figure 1, which is
inspired by DS-NeRF [23]. DS-NeRF uses sparse 3D point clouds obtained by SfM to train
the MLP so as to synthesize novel views using NeRF. On the other hand, the proposed
method refines the depth map obtained by MVS through the optimization of an MLP,
which is different to DS-NeRF. The proposed method uses COLMAP to estimate the camera
parameters [13] and depth maps [3] to compare the performance of the proposed method
with that of DS-NeRF. Therefore, it should be noted that the COLMAP process can be
replaced by other SfM and/or MVS methods in the proposed method. The proposed
method iteratively optimizes the MLP representing the radiance field using the dense
depth map estimated by MVS. We optimize the MLP so that the depth map is synthesized
by volume rendering to be close to the depth map estimated by MVS, and so that the image
from the same viewpoint as the input image is synthesized. As a result, it is possible to
estimate the depth in poor-texture regions and at object boundaries that cannot be estimated
by MVS. We obtain a depth map that is more accurate than MVS by volume rendering the
depth map using the optimized MLP.

RGB images

SfM

MVS

COLMAP Camera Params. MVS depth maps
Optimized depth maps

NeRF-Based Refinement Module (No training)

MLP

Rendered depth MVS depth

Rendered RGB RGB

Volume
Rendering

Figure 1. Overview of the proposed method (SfM: Structure from Motion, MVS: Multi-View Stereo).

3.2. Network Architecture of an MLP

An MLP, which refines the depth maps obtained by MVS, consists of the network
architecture as shown in Figure 2. This network architecture is designed based on DS-
NeRF [23]. A 3D point x = (x, y, z) and its direction d = (ϕ, θ) are inputs, and RGB values
c and the density σ of x are outputs. Three-dimensional points x and view direction d
are applied during positional encoding [6] to create higher dimensional vectors γ(x) and
γ(d), which are input to the MLP. We generate 256-dimensional feature vectors passing
γ(x) through eight fully-connected layers with the ReLU activation function. The output
of the fifth layer is concatenated with γ(x) using skip connection. Then, the 3D point
density σ and 256-dimensional feature vectors are obtained by passing them through a
fully-connected layer. The output feature vector is then concatenated with the feature vector
γ(d), and the RGB values of the 3D points are output through a fully connected layer.
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3.3. Objective Functions

We describe the objective functions that are required in the optimization of the MLP to
refine the depth maps obtained by MVS. Note that we use the term “loss” in the following
since the only differences between the loss function used in training the MLP and the
objective function used in MLP optimization are the expressions “loss” and “error”. The
proposed method employs the color reconstruction loss LColor [6] as the objective function
for color reconstruction and the depth loss LDepth based on Huber loss [29] as the objective
function for depth reconstruction.

+

+

+

: Fully-connected layer + ReLU : Positional encoding

: Fully-connected layer w/o activation

63

63 1

3

262

3 2
5

6

x γ(x)

d γ(d)

γ(x) σ

c

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

1
2

8

2
5

6

: Input vector

: Positional encoded vector

: Output vector of Fully-connected layer

: Output vector of MLP

Figure 2. The network architecture of the MLP used in the proposed method, where the number
inside the boxes indicates the dimension of each feature vector.

3.3.1. Color Reconstruction

The color reconstruction loss, LColor, is the mean squared error loss between the pixel
values estimated by volume rendering using Equation (4) and the pixel values of the same
pixel in the input image and is defined by

LColor = ∑
j∈J

||Cj − Cgt
j ||2, (9)

where J indicates a set of pixels in the input image, Cj indicates pixel values synthesized by

volume rendering at pixel j, and Cgt
j indicates pixel values of the same pixel in the input image.

3.3.2. Depth Reconstruction

We propose a new loss function based on Huber loss [29] for depth reconstruction that
is robust against outliers. We consider that it is important to have robustness against outliers
since the depth maps obtained by MVS in COLMAP contain many outliers. Huber loss is a
loss function that combines L1 loss and L2 loss. Using the idea of Huber loss, the proposed
method uses the mean squared error loss, i.e., L2 loss, when the error between the depth
obtained by volume rendering and the depth obtained by MVS in COLMAP is smaller than
a threshold ϵ, and the absolute error loss, i.e., L1 loss, when the error is larger than ϵ. The
term H(Dk, Dmvs

k ) based on Huber loss used in the depth loss LDepth is defined by
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H(Dk, Dmvs
k ) =

{
a2

2 |a| ≤ ϵ
ϵ
(
|a| − ϵ

2
)

otherwise
, (10)

where Dk indicates the depth at pixel k obtained by volume rendering, Dmvs
k indicates

the depth at pixel k in the depth map estimated by MVS in COLMAP, a = Dk − Dmvs
k ,

and ϵ =
t f ar−tnear
Ncoarse−1 . As mentioned above, the depth is obtained by accumulating the densities

of 3D points on the rays in volume rendering. The error between the depth obtained by
volume rendering and the depth obtained by MVS in COLMAP should be smaller than the
distance between adjacent 3D points. Therefore, we use the number of sampling points
Ncoarse used for coarse sampling in hierarchical volume sampling as the threshold ϵ. Then,
the depth loss LDepth used in the proposed method is defined by

LDepth =
1
K ∑

k∈K
H(Dk, Dmvs

k ), (11)

where K indicates a set of pixels in the input image whose depth Dmvs
k is obtained by

MVS in COLMAP. Note that the depth loss LDepth is calculated only for pixels with depth
obtained by MVS in COLMAP.

The iterative optimization of the MLP used in the proposed method employs an
objective function that combines the color reconstruction loss and depth loss described
above, which is given by

L = LColor + λDLDepth, (12)

where λD indicates a hyper parameter.

4. Experiments and Discussion

This section describes experiments to evaluate the accuracy of the proposed method
using public datasets of multi-view images. We describe the dataset used in the experiments,
the experimental conditions, evaluation metrics, ablation study of depth loss, accuracy
comparison with conventional methods, and 3D reconstruction in the following.

4.1. Dataset

We describe two multi-view image datasets, i.e., the Redwood-3d scan dataset (https:
//redwood-data.org/3dscan/index.html (accessed on 7 February 2024)) [19] and the DTU
dataset (https://roboimagedata.compute.dtu.dk/?page_id=36 (accessed on 7 February
2024)) [20], which are used in the experiments.

4.1.1. Redwood-3d Scan Dataset (Redwood)

Redwood consists of 10,933 RGB-D video images taken in a variety of scenes and
441 3D mesh models. There are 44 different categories of scenes, such as chairs, tables,
sculptures, and plants. The RGB-D video images were taken by non-experts in computer
vision, and many of them contain low-quality frames and poor-texture regions. Therefore,
it is difficult to reconstruct 3D shapes from the multi-view images in Redwood using
MVS due to external factors such as motion blur, noise, poor-textured objects, and illu-
mination changes. In our experiments, we use 12 scenes: “amp#05668”, “chair#04786”,
“chair#05119”, “childseat#04134”, “garden#02161”, “mischardware#05645”, “radio#09655”,
“sculpture#06287”, “table#02169”, “telephone#06133”, “travelingbag#01991”, and “trash-
container#07226” as shown in Figure 3. We extract 11 frames from the RGB-D video image
of each scene, and use the RGB image with 640 × 480 pixels of each frame as the input
and the depth map as the ground truth for accuracy evaluation. The camera parameters
for each viewpoint used in all the depth map estimation methods are estimated by SfM in
COLMAP [13].

https://redwood-data.org/3dscan/index.html
https://redwood-data.org/3dscan/index.html
https://roboimagedata.compute.dtu.dk/?page_id=36
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amp
#05668

chair
#04786

chair
#05119

childseat
#04134

garden
#02161

mischardware
#05645

radio
#09655

sculpture
#06287

table
#02169

telephone
#06133

trashcontainer
#07226

travelingbag
#01991

Figure 3. Example of images from Redwood used in the experiments, where images are extracted
from the RGB-D video.

4.1.2. DTU Dataset (DTU)

DTU consists of multi-view images of a variety of objects, a 3D point cloud measured
by a laser scanner, and the camera parameters. The multi-view images consist of a set of
images with 1600 × 1200 pixels, which are taken of each object from 49 or 64 viewpoints.
Multi-view images in DTU are acquired under the controlled environment. Therefore, we can
evaluate the potential performance of MVS methods themselves since there are few external
factors using DTU. There are 124 types of objects, such as building models, animal figurines,
plants, and vegetables. We use the “scan9”, “scan33”, and “scan118” as shown in Figure 4.
Due to the processing time, we resize the images to 800 × 600 pixels and use them as input
images. Since the images in DTU were taken under seven different lighting conditions, we
use the multi-view image taken under one of the seven lighting conditions. The camera
parameters for each view used in all the depth map estimation methods are estimated by SfM
in COLMAP [13]. Since DTU does not have the ground truth for evaluating the accuracy of
the depth map estimation, we use the depth maps created by Yao et al. [5,15].

scan9 scan33 scan118

Figure 4. Example of images from DTU used in the experiments.

4.2. Experimental Condition

In our experiments, we compare the accuracy of depth map estimation among
COLMAP [3], NeRF [6], DS-NeRF [23], RC-MVSNet [17], and the proposed method to
demonstrate the effectiveness of the proposed method. NeRF and DS-NeRF train an MLP
that represents the radiance field using multi-view images so that novel view images can
be synthesized. By inputting a novel view direction to the trained MLP, the image and
depth map of that view can be synthesized. NeRF and DS-NeRF need to train an MLP
using training data and evaluate it on test data. On the other hand, the proposed method
optimizes an MLP that represents the radiance field so that the input images and depth
maps can be synthesized. In this experiment, we estimate depth maps for the input known
viewpoints. To evaluate the accuracy under the same conditions as the proposed method,
NeRF and DS-NeRF trained an MLP using the input multi-view images and use the trained
MLP to synthesize depth maps for the input multi-view images. Therefore, we trained
NeRF and DS-NeRF a certain number of times as in the proposed method. Table 1 shows
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the hyper parameters used in the experiments. The number of training or optimization
iterations was set to 15,000 for Redwood and 100,000 for DTU, since the number of images
and the number of pixels are different for each dataset. The batch size, which represents
the number of rays in each iteration, was set to 5120. DS-NeRF and the proposed method,
which require the depth map loss to be calculated, have a parameter λD that controls the
ratio of depth rays used to calculate the depth loss within the batch size and the weights
of the loss function. The ratio of depth rays used in DS-NeRF and the proposed method
are set to 0.5 and 0.2, respectively, and λD is set to 0.1 for both methods. NeRF, DS-NeRF,
and the proposed method use hierarchical volume sampling [6] as a sampling method
based on the density of points on a ray. Hierarchical volume sampling first produces the
color and density of Ncoarse 3D points in a coarse network, and then produces the color
and density of N f ine 3D points belonging to high-density regions in a fine network. We
set Ncoarse = 64 and N f ine = Ncoarse + 128 for all the methods in the experiments. In the
experiments, Adam [30] is used as the optimizer. The learning rate begins at 5.0 × 10−4

and decays exponentially to 5.0 × 10−5 during the optimization process. For RC-MVSNet,
we use the trained model and evaluation code available in the official GitHub reposi-
tory (https://github.com/Boese0601/RC-MVSNet (accessed on 26 Feburary 2024)). The
threshold for the reprojection error used in depth map filtering is set to 0.5 pixels.

Table 1. A set of hyper parameters used in the experiments.

Method
# of Iterations Batch Size Ratio of Depth Rays

λDRedwood [19] DTU [20]
[Times] [Times] [Rays] [Rays/Batch Size]

COLMAP [3] – – – – –
NeRF [6] 15,000 100,000 5120 – –

DS-NeRF [23] 15,000 100,000 5120 0.5 0.1
Proposed 15,000 100,000 5120 0.2 0.1

4.3. Evaluation Metrics

We evaluate the accuracy of depth map estimation using the following five evaluation
metrics. In the following, yi denotes the depth of the pixel i in the estimated depth map, y∗i
denotes the depth of pixel i in the ground-truth depth map, and T denotes a set of pixels
for evaluation.

The first metric is the scale invariant logarithmic error (SILog) [21], which is defined by

SILog :
1

2∥T∥ ∑
i∈T

(
log

yi
y∗i

+
1

∥T∥ ∑
i∈T

log
y∗i
yi

)2

. (13)

This is a metric that evaluates the scale-independent error between the ground truth
and estimated depths, where lower values indicate that the estimated depths are correct.
For example, in Redwood, the depth map estimated by COLMAP is scale-independent,
while the ground truth is millimeter-scale. In our experiments, the scale between the
ground truth and the estimated depth map is estimated by the least-squares algorithm and
adjusted to the millimeter scale for a fair evaluation. If the estimated depths contain outliers,
the scale estimation has errors. SILog evaluates scale-invariant errors and is therefore less
sensitive to errors in scale fitting.

The second metric is the Absolute Relative Difference (AbsRel), which is defined by

AbsRel :
1

∥T∥ ∑
i∈T

∥yi − y∗i ∥/y∗. (14)

This is a metric that evaluates the absolute relative error between the ground truth and
the estimated depths, where lower values indicate that the estimated depths are correct.

https://github.com/Boese0601/RC-MVSNet
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The third metric is the Squared Relative Difference (SqRel), which is defined by

SqRel :
1

∥T∥ ∑
i∈T

∥yi − y∗i ∥2/y∗i . (15)

This is a metric that evaluates the squared relative error between the ground truth and
the estimated depths, where lower values indicate that the estimated depths are correct.
SqRel is sensitive to outliers since the larger the error in the estimated value, the larger the
evaluated value.

The fourth metric is Root Mean Squared Error (RMSE(log)) on a logarithmic scale,
which is defined by

RMSE (log) :

√
1

∥T∥ ∑
i∈T

∥ log yi − log y∗i ∥2. (16)

This is a metric that evaluates the root mean square error between the ground truth and
estimated depths, where lower values indicate that the estimated depths are correct.

The fifth metric evaluates the ratio between the ground truth and the estimated depths
that is less than the threshold, which is given by

δ < threshold : % of yi s.t. max
i

(yi/y∗i , y∗i /yi) = δ < threshold. (17)

This indicates that, the larger the value, the more accurate the estimated depth.
The first to fourth metrics evaluate the error between the ground truth and the estimated

depths, and the fifth evaluates the accuracy of the estimated depths. As mentioned in the first
metric, the depth maps estimated by the conventional and proposed methods are different in
scale from the ground truth measured in millimeters. Therefore, except for SILog, the scale of
the depth maps has to be aligned when evaluating accuracy. In our experiments, the scale is
obtained using the least-squares algorithm so that the error between the sparse depth at each
view created from the sparse 3D point cloud estimated by SfM and the corresponding ground
truth is small. Using the obtained scale, we evaluate the estimation accuracy by converting
the depth maps estimated by each method to the millimeter scale.

4.4. Ablation Study of Depth Loss

In this subsection, we describe an ablation study on the depth loss of the proposed
method to confirm the dependence of the proposed method on the parameters. In this
experiment, we use amp#05668 in Redwood.

4.4.1. Threshold of Huber Loss

The depth loss used in the proposed method is designed based on the Huber loss as
described in Section 3.3.2. Huber loss uses L2 loss if the difference between the estimated
depth and the true value is less than or equal to the threshold ϵ, otherwise L1 loss is used.
Therefore, ϵ has an impact on the accuracy of the depth map estimation. Table 2 shows
the accuracy of depth map estimation using the proposed method when Huber loss ϵ is
multiplied by the scale factor s, where the numbers in bold and underlined indicate the
best and second best in each evaluation metric, respectively. In the case of ϵ multiplied
by 0.5, i.e., s = 0.5, AbsRel, SqRel, and RMSE, the accuracy of the depth estimation is the
best, while SILog and δ < 1.25 are the third most accurate. In the case of ϵ multiplied by
0.1 and 2, i.e., s = 0.1, 2.0, the accuracy of the depth estimation is degraded for most of
the evaluation metrics. On the other hand, when ϵ is used, i.e., s = 1.0, the accuracy of
depth estimation is within the top two across all of the evaluation metrics. From the above,
the proposed method employs s = 1.0 as a scale factor for the threshold ϵ for depth loss.
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Table 2. Experimental results of depth map estimation using the proposed method when ϵ of the
Huber loss is multiplied by the scale factor s. The numbers in bold and underlined indicate the
best and the second best in each evaluation metric, respectively. The up arrow indicates that higher
values represent better results, while the down arrow indicates that lower values represent better
results, respectively.

s

Error↓ Accuracy ↑

SILog AbsRel SqRel RMSE
δ < 1.25(log)

[log(mm) × 100] [%] [%] [log(mm)] [%]

0.1 0.5626 0.0804 3.135 0.1097 97.61
0.5 0.5787 0.0786 2.990 0.1094 98.51
1.0 0.5759 0.0786 2.992 0.1095 98.53
2.0 0.5970 0.0779 2.988 0.1099 98.55

4.4.2. Hyper Parameter of Objective Function

The objective function used in the proposed method has a hyperparameter λD that
adjusts the balance between the color reconstruction loss LColor and the depth loss LDepth.
In this experiment, we perform an ablation study on λD. Table 3 shows the accuracy of the
depth map estimation of the proposed method when λD is changed. The accuracy of the
depth map estimation of the proposed method is the highest when λD = 0.1. Therefore,
λD = 0.1 is used in the following experiments.

Table 3. Experimental results of depth map estimation using the proposed method when λD of the
objective function is changed. The numbers in bold indicate the best in each evaluation metric. The
up arrow indicates that higher values represent better results, while the down arrow indicates that
lower values represent better results, respectively.

λD

Error↓ Accuracy ↑

SILog AbsRel SqRel RMSE
δ < 1.25(log)

[log(mm) × 100] [%] [%] [log(mm)] [%]

0.05 0.5822 0.0789 3.008 0.1099 98.45
0.1 0.5759 0.0786 2.992 0.1095 98.53
0.2 0.6086 0.0791 3.032 0.1115 98.44
0.5 0.6180 0.0786 3.040 0.1115 98.41

4.4.3. Difference between Other Depth Loss

In this experiment, we conducted the ablation study for the proposed method using
MSE (L2 loss), MAE (L1 loss), and the proposed depth loss based on Huber loss as the depth
loss LDepth of the proposed method. We used “amp#05668” from Redwood as input images
in this experiment. Table 4 shows the results of the ablation study. As for MSE, the accuracy
of depth map estimation is high for AbsRel and RMSE(log), which is comparable to that
using the proposed depth loss. As for the proposed depth loss, the accuracy of depth map
estimation is high for SILog, SqRel, and δ < 1.25. Since the SILog of the proposed depth loss
is the highest, the use of the proposed depth loss makes it possible to estimate a smooth and
highly accurate depth map. As mentioned above, the evaluation metrics other than SILog
are sensitive to the scale between the estimated depth map and the ground truth. The high
value of SILog indicates that the estimation accuracy of the depth map is high independent
of the scale fitting error. Figure 5 shows the depth maps obtained by each method. In the
case of MSE, the object boundary is smooth, although there are some missing areas on the
surface of the amplifier. This is because MSE is sensitive to outliers, and the MLP was
optimized to be close to the outlier of the depth map estimated by MVS in COLMAP. In
the case of using MAE, there is no missing area on the object surface, although the object
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boundary is not smooth. In the case of the proposed depth loss, there is no missing area on
the object’s surface and the object boundary is sharp. As a result, the depth map can be
estimated with the highest accuracy using the proposed depth loss.

Table 4. Summary of qualitative experimental results in the ablation study for the proposed methods
with a variety of depth loss functions. The numbers in bold indicate the best in each evaluation
metric. The up arrow indicates that higher values represent better results, while the down arrow
indicates that lower values represent better results, respectively.

Depth Loss

Error↓ Accuracy ↑

SILog AbsRel SqRel RMSE
δ < 1.25(log)

[log(mm) × 100] [%] [%] [log(mm)] [%]

MSE 0.6413 0.0773 3.025 0.1097 98.05
MAE 0.6623 0.0790 3.107 0.1139 98.24

Huber (Proposed) 0.5765 0.0791 3.015 0.1099 98.47

RGB image GT depth COLMAP

Proposed (Huber)Proposed (MAE)Proposed (MSE)

Figure 5. Depth maps estimated by COLMAP and the proposed method with a variety of depth
loss functions, where blue in the depth map indicates close to the camera and red indicates far from
the camera.

4.5. Comparison with Conventional Methods

This section demonstrates the effectiveness of the proposed method by comparing the
accuracy of depth map estimation using the conventional and proposed methods using
Redwood and DTU.

Tables 5 and 6 show the quantitative results for Redwood. COLMAP and NeRF
have larger errors and lower accuracy than the other methods, indicating that the depths
contain large errors. RC-MVSNet and the proposed method exhibit better results than
other methods in most evaluation metrics. In particular, the SILog for the proposed
method is smaller than that for COLMAP, NeRF, DS-NeRF, and RC-MVSNet in most cases.
This result indicates that the depth map refined by the proposed method contains fewer
errors. Figure 6 shows the depth maps estimated by each method. RC-MVSNet shows
comparable results to the proposed method in the quantitative evaluation; however, it has
more missing regions in the depth map compared to the other methods. The reason for this
is that RC-MVSNet uses filtering of the depth map based on reprojection errors. Therefore,
the estimated depths are highly accurate, while the depth maps include missing regions.
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The proposed method estimates the depth map more smoothly than the conventional
methods. For example, the proposed method can estimate accurate and smooth depths
of flat surfaces such as the floor and the ground in “amp#05668” and “childseat#04134”.
This is because the proposed method optimizes the radiance field based on the depth
map estimated by COLMAP, unlike NeRF and DS-NeRF. These results indicate that the
depth map estimated by COLMAP can be refined through the iterative optimization of an
MLP representing the radiance field since the proposed method has fewer missing regions
than the depth map estimated by COLMAP. On the other hand, neither COLMAP nor the
proposed method could estimate the depth of the surface of the trashcan with poor texture
in “trashcontainer#07226”. In “travelingbag#01991”, COLMAP has missing depths for the
surface of the traveling bag, while the proposed method smoothly estimated their depths.
The difference between “trashcontainer#07226” and “travelingbag#01991” is the size of the
missing region in the depth map estimated by COLMAP. If the missing regions in the input
depth map are large, the proposed method cannot interpolate the depth map.

Table 5. Summary of qualitative experimental results in Redwood. The numbers in bold indicate the
best in each evaluation metric. The up arrow indicates that higher values represent better results,
while the down arrow indicates that lower values represent better results, respectively.

Datasets Method

Error↓ Accuracy ↑

SILog AbsRel SqRel RMSE
δ < 1.25(log)

[log(mm) × 100] [%] [%] [log(mm)] [%]

amp
#05668

COLMAP [3] 6.533 0.0906 4.248 0.2711 97.64
NeRF [6] 8.313 0.2087 9.784 0.3913 84.64

DS-NeRF [23] 0.7120 0.0794 3.289 0.1146 99.40
RC-MVSNet [17] 4.637 0.0857 3.175 0.1678 98.64

Proposed 0.5759 0.0786 2.992 0.1095 99.18

chair
#04786

COLMAP [3] 12.86 0.1745 8.686 0.3982 95.94
NeRF [6] 27.22 0.5636 24.51 1.252 40.91

DS-NeRF [23] 2.895 0.1795 8.638 0.2523 97.22
RC-MVSNet [17] 0.9583 0.1595 6.554 0.1974 98.81

Proposed 1.315 0.1556 6.785 0.1982 98.62

chair
#05119

COLMAP [3] 17.45 0.1016 8.400 0.4359 95.28
NeRF [6] 16.41 0.3130 19.53 0.5966 71.09

DS-NeRF [23] 1.098 0.0754 5.089 0.1167 99.51
RC-MVSNet [17] 0.8361 0.0656 4.396 0.1054 99.35

Proposed 1.026 0.0663 4.507 0.1130 99.21

childseat
#04134

COLMAP [3] 4.151 0.0539 2.674 0.2009 99.25
NeRF [6] 3.328 0.1345 5.598 0.1900 99.99

DS-NeRF [23] 0.1874 0.0527 1.890 0.0624 100.0
RC-MVSNet [17] 0.1023 0.0481 1.692 0.0554 100.0

Proposed 0.1280 0.0488 1.670 0.0563 100.0

garden
#02161

COLMAP [3] 3.916 0.0928 5.647 0.2174 98.47
NeRF [6] 9.752 0.2282 14.92 0.4288 83.19

DS-NeRF [23] 0.8502 0.0892 5.165 0.1272 99.33
RC-MVSNet [17] 0.4220 0.0824 4.139 0.1032 99.73

Proposed 0.8336 0.0883 4.969 0.1269 99.09

mischardware
#05645

COLMAP [3] 16.25 0.1213 14.77 0.4189 95.09
NeRF [6] 7.251 0.2172 12.80 0.3726 90.79

DS-NeRF [23] 1.913 0.1001 5.966 0.1700 99.73
RC-MVSNet [17] 2.886 0.0656 3.837 0.1327 99.37

Proposed 0.8973 0.0664 4.030 0.1137 99.74
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Table 6. Summary of qualitative experimental results in Redwood (continued). The numbers in bold
indicate the best in each evaluation metric. The up arrow indicates that higher values represent better
results, while the down arrow indicates that lower values represent better results, respectively.

Datasets Method

Error↓ Accuracy ↑

SILog AbsRel SqRel RMSE
δ < 1.25(log)

[log(mm) × 100] [%] [%] [log(mm)] [%]

radio
#09655

COLMAP [3] 7.308 0.0606 14.98 0.2666 98.07
NeRF [6] 3.968 0.1430 6.854 0.2345 98.497

DS-NeRF [23] 1.501 0.0596 4.134 0.1233 99.81
RC-MVSNet [17] 7.078 0.0350 2.521 0.1702 98.25

Proposed 0.2654 0.0235 1.730 0.0520 99.99

sculpture
#06287

COLMAP [3] 31.79 0.3789 10.38 0.7903 86.08
NeRF [6] 6.3333 0.5077 13.431 0.7880 44.12

DS-NeRF [23] 1.136 0.3292 8.511 0.4179 97.58
RC-MVSNet [17] 5.573 0.3340 8.103 0.4584 96.64

Proposed 0.8592 0.3230 8.280 0.4037 98.08

table
#02169

COLMAP [3] 5.456 0.1145 8.168 0.2391 97.53
NeRF [6] 23.94 0.1973 20.15 0.5058 87.62

DS-NeRF [23] 5.005 0.1320 10.358 0.2251 95.90
RC-MVSNet [17] 2.106 0.1091 5.761 0.1517 99.03

Proposed 1.920 0.1091 6.927 0.1572 98.50

telephone
#06133

COLMAP [3] 13.98 0.1245 7.174 0.3890 94.29
NeRF [6] 16.52 0.2938 13.25 0.5518 75.79

DS-NeRF [23] 2.935 0.1196 5.848 0.1949 97.87
RC-MVSNet [17] 7.957 0.0962 4.651 0.2602 97.07

Proposed 2.412 0.0915 4.909 0.1676 98.19

trashcontainer
#07226

COLMAP [3] 22.14 0.1117 6.877 0.4908 94.15
NeRF [6] 2.085 0.1083 6.027 0.1874 99.03

DS-NeRF [23] 0.2313 0.0563 2.481 0.0716 99.99
RC-MVSNet [17] 0.0332 0.0566 1.930 0.0611 99.99

Proposed 0.1365 0.0564 2.159 0.0672 99.98

travelingbag
#01991

COLMAP [3] 12.18 0.0800 7.401 0.347 95.85
NeRF [6] 1.401 0.0760 5.071 0.1231 98.86

DS-NeRF [23] 0.9334 0.0540 3.691 0.090 99.06
RC-MVSNet [17] 29.25 0.1075 7.537 0.4499 92.53

Proposed 0.9091 0.0487 3.497 0.087 99.06

Table 7 shows the quantitative results for DTU. The proposed method exhibits better
results than the conventional methods in most evaluation metrics. In particular, the SILog
for the proposed method is smaller or equal to that for COLMAP, NeRF, DS-NeRF, and RC-
MVSNet. The proposed method has few large outliers in the depths since the errors are
small and the accuracy is high, as shown in Table 7. Figure 7 shows the depth maps
estimated by each method. All of the methods estimated depth maps with high accuracy
in DTU. As mentioned in the experimental results for Redwood, RC-MVSNet stands out
as having missing regions compared to the other methods. NeRF, DS-NeRF, and the
proposed method estimated accurate depth maps even for poor-texture regions compared
to COLMAP since the depth maps are synthesized from the radiance field.

In “scan118”, NeRF has small missing regions on the object surface, while DS-NeRF
and the proposed method do not have such regions. Since the proposed method has less
noise near the object boundaries than DS-NeRF, the complementarity between MVS and
NeRF can be utilized to estimate the depth map. On the other hand, the proposed method
did not significantly improve the accuracy of depth map estimation for DTU compared to
Redwood. This is because the size and number of input images differ between DTU and
Redwood. Redwood uses 11 images with 640 × 480 pixels, while DTU uses 49 images with
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800 × 600 pixels. The multi-view images in DTU have a sufficient number of viewpoints
for depth map estimation and are rich enough in object texture to allow the depth map to
be estimated with high accuracy even with conventional methods.

RGB image Ground truth COLMAP NeRF DS-NeRF
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Figure 6. Estimated depth maps for each method in Redwood, where blue in the depth map indicates
close to the camera and red indicates far from the camera.

Table 7. Summary of qualitative experimental results in DTU. The numbers in bold indicate the best
in each evaluation metric. The up arrow indicates that higher values represent better results, while
the down arrow indicates that lower values represent better results, respectively.

Scene Method

Error↓ Accuracy ↑

SILog AbsRel SqRel RMSE
δ < 1.25(log)

[log(mm) × 100] [%] [%] [log(mm)] [%]

scan9

COLMAP [3] 6.039 0.3602 9.059 0.5097 98.10
NeRF [6] 0.8856 0.3528 8.793 0.4324 99.72

DS-NeRF [23] 0.7815 0.3529 8.784 0.4327 99.74
RC-MVSNet [17] 13.83 0.3785 9.6952 0.6160 93.40

Proposed 0.7280 0.3530 8.783 0.4330 99.74

scan33

COLMAP [3] 14.68 0.1064 4.428 0.3971 96.76
NeRF [6] 1.115 0.0840 3.230 0.1251 99.70

DS-NeRF [23] 1.034 0.0837 3.093 0.1231 99.71
RC-MVSNet [17] 7.376 0.0935 3.646 0.2886 97.71

Proposed 0.9809 0.0837 3.002 0.1219 99.72

scan118

COLMAP [3] 6.932 0.0372 2.968 0.2629 98.61
NeRF [6] 0.9723 0.0342 3.004 0.0984 99.38

DS-NeRF [23] 0.7852 0.0302 2.490 0.0888 99.43
RC-MVSNet [17] 7.091 0.0421 2.996 0.2476 97.69

Proposed 0.7282 0.0296 2.318 0.0855 99.45
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Figure 7. Estimated depth maps for each method in DTU, where blue in the depth map indicates
close to the camera and red indicates far from the camera.

4.6. 3D Reconstruction

We reconstructed the 3D point clouds by applying depth map fusion [7,12,31] to the
depth maps estimated by COLMAP and the proposed method. In this experiment, we used
“Scan9”, “Scan33”, and “Scan118” from the DTU dataset, and multi-view images taken
outdoors by the authors.

Figure 8 shows the reconstructed 3D point clouds for COLMAP and the proposed
method. Note that the background regions are detected by image segmentation using
SAM [32] and are masked in the depth maps to reconstruct the 3D point clouds for better
visibility. In “scan 9”, the proposed method has fewer missing regions on the roofs of
building, and fewer outliers around chimneys and walls than COLMAP. In “scan33”,
COLMAP cannot reconstruct 3D points in the region with poor texture on the headset,
while the proposed method can reconstruct 3D points even in such a region. In “scan118”,
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the proposed method can reconstruct the 3D points in the region where COLMAP cannot.
In particular, in “scan118”, the proposed method has a wider reconstruction range than
COLMAP. These results indicate that the proposed method can reconstruct regions that
cannot be reconstructed by COLMAP by refining the depth map estimated by COLMAP.

Ground Truth COLMAP Proposed
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1
8

Figure 8. 3D point clouds reconstructed from estimated depth maps by COLMAP and the proposed
method in DTU.

We evaluate the applicability of the proposed method by performing 3D reconstruction
from multi-view images taken outdoors using an ordinary camera. The dataset consists
of 35 RGB images of “Shore to Shore”, which is a 14-foot bronze-cast sculpture located
in Vancouver’s Stanley Park, Canada, taken by the authors in June 2023. Figure 9 shows
examples of images used in this experiment. It is a difficult situation to apply multi-
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view stereo and NeRF to since not only the sculpture but also dynamic objects such as
tourists are in the image. Figure 10 shows the results of 3D reconstruction from multi-view
images using COLMAP and the proposed method. COLMAP reconstructs the details of the
sculpture, while there are many outliers on the object’s surface and at the object boundaries.
The proposed method reconstructs the sculpture with high accuracy due to there being few
outliers on the object’s surface. From the above, the proposed method can refine the depth
maps estimated by COLMAP in real-world environments.

Figure 9. Examples of images of ”Shore to Shore”, which is a 14-foot bronze-cast sculpture located in
Vancouver’s Stanley Park, Canada, taken by the authors in June 2023.

ProposedCOLMAP

Figure 10. Three-dimensional point clouds reconstructed from depth maps estimated by COLMAP
and the proposed method in our dataset.

5. Conclusions

In this paper, we proposed a method to refine the depth maps obtained by MVS
through the iterative optimization of an MLP in NeRF. We focused on the fact that MVS can
accurately estimate depths in rich-texture regions and NeRF can accurately estimate depths
in poor-texture regions and object boundaries, and exploited the complementarity between
them. From the viewpoint of NeRF, this approach corresponds to overfitting the MLP with
training data, while we conceived of optimizing the MLPs using input images to refine their
depth maps. Through a set of experiments using the Redwood-3dscan dataset [19] and
the DTU dataset [20], we clearly demonstrated the effectiveness of the proposed method
compared to conventional methods. One of the challenging tasks in MVS is to reconstruct
the 3D shapes of transparent and translucent objects [33]. The method described in this
paper cannot reconstruct the 3D shapes of transparent and translucent objects since the
depth map estimated by COLMAP is used. The 3D shapes of transparent and translucent
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objects can be reconstructed by using photometric stereo, which estimates surface normals
from images taken by a camera under varying lighting [34]. NeRF can also consider the
degree of transparency on the rays to take into account transparent and translucent objects.
We expect that the combination of photometric stereo and the proposed method will be
effective in addressing this task. Thus, we will consider refining the depth maps obtained
by other MVS using the proposed method and also optimizing the camera parameters by
NeRF in our framework.
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