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Abstract: We investigate the impact of different data modalities for cattle weight estimation. For
this purpose, we collect and present our own cattle dataset representing the data modalities: RGB,
depth, combined RGB and depth, segmentation, and combined segmentation and depth information.
We explore a recent vision-transformer-based zero-shot model proposed by Meta AI Research for
producing the segmentation data modality and for extracting the cattle-only region from the images.
For experimental analysis, we consider three baseline deep learning models. The objective is to
assess how the integration of diverse data sources influences the accuracy and robustness of the
deep learning models considering four different performance metrics: mean absolute error (MAE),
root mean squared error (RMSE), mean absolute percentage error (MAPE), and R-squared (R2).
We explore the synergies and challenges associated with each modality and their combined use in
enhancing the precision of cattle weight prediction. Through comprehensive experimentation and
evaluation, we aim to provide insights into the effectiveness of different data modalities in improving
the performance of established deep learning models, facilitating informed decision-making for
precision livestock management systems.

Keywords: cattle weight estimation; data modalities; depth information; segmentation; deep
learning models

1. Introduction

Estimating the weight of cattle is essential for sustainable beef production and cattle
breeding since it helps the farmer track the growth of the cattle, [1]. Precise weight esti-
mation plays a crucial role in well-informed decision-making [2] regarding slaughtering,
safeguarding the welfare of cattle [3], and maximizing beef production. Weight estimation
has historically been done using manual methods [4] (as shown on the left side of Figure 1)
that do not have the accuracy needed for contemporary farming techniques [5]. Manual
methods are time-consuming and stressful because the cattle are physically handled and
fixated. Thus, they are not good for cattle welfare. The shortcomings of these manual
techniques highlight the need for an automated process that embraces the cutting-edge
capabilities provided by cutting-edge technologies [6], especially in the areas of artificial
intelligence and machine learning [7] (as shown on the right side of Figure 1).

In recent years, we have seen encouraging outcomes from the integration of deep
learning techniques in a number of fields, such as computer vision [8] and natural language
processing [9]. With the development of deep learning, there is now an opportunity to use
complicated deep models to predict weight more accurately and automatically. However,
this problem presents a challenge due to the complexity of predicting weights when
converting 3-D space to 2-D images. This conversion results in the loss of the cattle shape

J. Imaging 2024, 10, 72. https://doi.org/10.3390/jimaging10030072 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10030072
https://doi.org/10.3390/jimaging10030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-0222-6340
https://doi.org/10.3390/jimaging10030072
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10030072?type=check_update&version=2


J. Imaging 2024, 10, 72 2 of 19

information. In our work, we investigate 2-D RGB images and depth images, specifically
focusing on the effects of only-cattle regions and various data modalities [10] on prediction
accuracy. To further elaborate, the only-cattle region represents images where the RGB
values representing cattle are preserved but the rest of the values are set to 0. The purpose
is to see how the models trained on such images would perform. Our research highlights
how important it is to take advantage of different data modalities in order to improve the
functionality of current deep learning models for cattle weight estimation. For this purpose,
we collect RGB images (RGB) and depth images (DP) of cattle from different farms. We also
combine these two data sources to produce a third data modality, namely, the RGBD data
modality. We explore the recent vision-transformer-based zero-shot model [11] from Meta
AI Research to generate a fourth data modality called fully segmented images (FS). We also
combine the FS images with the DP images to generate a fifth data modality namely, fully
segmented images with depth information (FSD).

Figure 1. On the (left side), the weighing of cattle on a scale is shown, where a person is manually
noting the corresponding value on paper. On the (right side), the weight of the cattle is automatically
estimated via camera sensors.

The exploration of different data modalities is motivated by the need to understand
their individual and collective impact on the performance of different baseline deep learning
models including the Inception V3 (INC) model [12], the MobileNet (MOB) model [13], and
the EfficientNet B1 (EFF) model [14]. Our research contributes to the broader field of cattle
management, presenting important insights for practitioners seeking to use reliable cattle
weight estimation systems [5]. We specifically consider RGB imagery, depth information,
combined RGB and depth data, and segmented information as distinct modalities for
cattle weight estimation. Each modality presents distinctive insights into the physical
characteristics and spatial relationships of the cattle. By evaluating the performance of
three baseline deep learning models across these modalities, we focus on understanding the
impact of diverse data sources on the accuracy and robustness of cattle weight predictions.
The main contributions of this paper are:

• To the best of our knowledge, we are the first to explore the vision-transformer-based
zero-shot model for producing the only-cattle region and FS data modality. We analyze
five different data modalities for cattle weight estimation;

• We investigate the impact of using the only-cattle region from RGB images and five
different data modalities on the performances of three famous baseline DL models;

• We collect and present our own cattle dataset consisting of five different data modali-
ties for cattle weight estimation;

• We present comprehensive experiments to evaluate the impact of these data modalities
on the performances of the baseline DL models using four different performance
metrics: MAE, RMSE, MAPE, and R-squared (R2).

The rest of the paper is organized as follows. In Section 2, an overview of related
works is described. The exploration and usage of the baseline deep learning models are
outlined in Section 3. Experimental analysis on our collected cattle dataset is presented in
Section 4. We present the discussion in Section 5 and conclusions in Section 6.
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2. Related Works

This literature review is divided into two main categories. The first category encom-
passes studies related to conventional methods for cattle weight estimation, and the second
category focuses on research pertaining to deep learning methods.

In the first category, the study by Dang et al. [15] investigated the viability of employing
ten body measurements as input features to estimate the body live weight of Hanwoo
cows. For this purpose, the machine learning models FT-Transformer, TabNet, Light
Gradient Boosting Machine, Multilayer Perceptron, and k-Nearest Neighbour are used.
The link between the weights and body size measurements (features) of cows is investigated
through the use of machine-learning-based data analysis. Weber et al. [16] used regression
methods to automatically extract measures from images of the dorsal area of Nellore cattle
in order to determine the cattle’s weight. Euclidean distances from locations produced
by the active contour model were chosen for this purpose by the authors together with
characteristics gleaned from the dorsal Convex Hull. Na et al. [17] used the Bayesian ridge
algorithm on RGB-D images for automatic weight prediction of cattle. They performed
segmentation, extraction of features [18], and estimation of the weight of cattle using
depth and color information. They exploited three features: size, shape, and gradients.
Ruchay et al. [19] used the random forest algorithm for cattle weight estimation. They build
a relationship between the dependent variable, i.e., body weight, and independent variables
such as withers height, hip height, chest depth, and chest width. Alonso et al. [20] used a
function to predict the carcass weight of beef cattle by exploiting support vector machines
for regression. The function considered a few zoometric measurements of the animals.
For cattle weight estimation, Alonso et al. [21] exploited the geometrical relationships of
the trajectories of weights over time. They modeled a family of parallel functions that fit
the whole dataset of cattle using support vector machines. Gomes et al. [22] developed
formulations to predict body and carcass weight and body fat content of bulls using digital
images obtained through a Microsoft Kinect device. The Kinect sensor, installed on the
top of a cattle chute, was used to take infrared-light–based depth videos. A single frame
from the recorded videos was identified and used to check different body measurements,
including thorax width, abdomen width, body length, and dorsal area.

In the second category, Lee et al. [23] segmented the animal and background, and weights
were estimated using fully and weakly supervised methods [24]. The fully supervised seg-
mentation method used a Mask R-CNN model [25] that learns the ground truth mask
generated by labeling. He et al. [26] investigated a live weight estimation method based on
a Lightweight High-Resolution Network considering RGB-D images. Class activation map-
ping supported the development of efficient network heads embracing visual explanation
and applicability in practical natural livestock environments. Guvenog et al. [27] estimated
the weight of cattle by using stereo vision and semantic segmentation methods [28]. Im-
ages of animals were captured from various angles with a stereo setup. The distances of
the animals from the camera plane were measured by stereo distance calculation, and the
areas covered by the animals in the images were determined by semantic segmentation
methods. The work of Kwon et al. [29] estimated the weight of animals in real-time using
mesh reconstruction and deep learning. The authors’ approach had two phases. In the first
phase, they produced training data by mesh reconstruction from point clouds of animals
and modeled a deep neural network to calculate the weight by using the training data.
Hou et al. [30] introduced a non-contact body weight estimation with a 3D deep learning
model. The three-dimensional (3D) point cloud data of the whole contour surface of a beef
cattle are proximally obtained by light detection and a ranging (LiDAR) sensor. However,
it is worth noting that LiDAR is an expensive sensor that also needs maintenance over
time due to its mechanical movements. Ruchay et al. [31] stated that a promising way to
estimate live weight is by considering morphometric measurements of livestock and then
applying regression equations affiliated with such measurements. They introduced a model
for estimating live weight based on augmenting three-dimensional clouds through flat
projections and image regression with deep learning. Meckbach et al. [32] estimated weight
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based on convolutional neuronal networks. They used only depth images. They presented
their work as preliminary research to confirm the ability of using convolutional neural
networks for weight estimation. Gjergji et al. [33] studied deep learning models including
RNN networks [34], recurrent attention models [35], and recurrent attention models with
convolutional neural networks to assess their performances in predicting cattle weight. They
found that the convolutional neural networks obtained good results.

Our research involves the analysis of various data modalities for cattle weight estima-
tion through the utilization of baseline deep learning models. Therefore, our work aligns
with the second category delineated in the above review.

3. Proposed Methodology

We explore the model proposed by Kirrilov et al. [11] to extract the only-cattle region
from RGB images and to produce the fourth data modality representing fully segmented
images (FS). This model is a novel vision-transformer-based zero-shot model [11] devel-
oped by the researchers at Meta AI research. The model is based on the use of a data
collection loop to build the largest segmentation dataset to date, with over 1 billion masks
on 11 million licensed and privacy-respecting images. The model can transfer zero-shot
to new image distributions and tasks. The model is capable of segmenting any object on
a certain image. The model produces high quality object masks, which can be explored
to produce masks for all objects in an image. It has a strong zero-shot performance on a
variety of segmentation tasks.

For cattle weight estimation using different data modalities, we explore the Inception
V3 (INC) model [12], the MobileNet (MOB) model [13], and the EfficientNet B1 (EFF)
model [14], as depicted in Figure 2. We utilized the pre-trained architectures of all three
models, whereby we froze the initial 15 layers and retrained the rest of the layers with our
own collected data. All three models use mean absolute error (MAE) as a loss function
for training. It is a simple yet robust measure for evaluating the accuracy of models for
regression tasks, that is, in our case, cattle weight estimation. It is formulated as,

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

where n is the number of data points, yi represents the actual target value for data point i,
and ŷi represents the predicted value for data point i.

Figure 2. The MobileNet model (MOB), the EfficientNet B1 model (EFF), and the Inception model
(INC). The data in different modalities are fed to each model individually, which predict cattle weight
after the training process.
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The Inception V3 (INC) model is a deep convolutional neural network. The INC model
considers factorized 7 × 7 convolutions, which reduces the computational complexity
of the model by breaking down larger convolutions into smaller ones. This decline in
computational overhead allows the INC model to cope with a variety of data efficiently.
The INC model utilizes label smoothing, a technique to regularize the model by considering
the effect of label dropout during the training process. This hinders the model from
predicting a value too confidently in term of overfitting. This approach restricts the model
from making overly confident predictions, enhancing its capability to generalize to distinct
cattle weight patterns. The INC model considers batch normalization extensively. Batch
normalization provides support in improving the speed, performance, and stability of
the model. The model uses the RMSprop optimizer, which is known for its robustness in
handling non-stationary settings, and takes the form,

E[g2]t = 0.9E[g2]t−1 + 0.1g2
t

Wt+1 = Wt −
η√

E[g2]t + ϵ
gt

(2)

where E[g2]t is the running average of the squared gradient, gt is the gradient, and
Wt is the weight at time step t. η is the learning rate and ϵ is a small constant added
to improve numerical stability. This, therefore, makes the INC model suitable for cattle
weight estimation, a domain in which the data patterns may vary. The model accommo-
dates diverse data modalities for accurate cattle weight estimation. Through normalization
and resizing, RGB, depth, and combined data are seamlessly integrated into the model.
The INC model accommodates multiple input channels, allowing each modality to con-
tribute its unique information. The INC model efficiently combines features extracted
from distinct modalities and ensures alignment with the intricacies of the cattle weight
estimation task. The output layer is configured to provide regression outputs, culminating
in an effective framework for cattle weight prediction across varied data modalities.

The MobileNet (MOB) model is also a convolutional neural network. The model uses
depthwise separable convolutions, which include depthwise and pointwise convolutions,
to significantly reduce the number of parameters, resulting in a lightweight deep neural
network. The depthwise convolution and pointwise convolutions are formulated as,

Yi,j,k = ∑
m,n

Xi+m,j+n,k × Km,n,k

Zi,j,l = ∑
k

Yi,j,k × Lk,l
(3)

where Y is the output feature map, X is the input feature map, K is the depthwise kernel,
i and j are spatial indices, the variables m and n represent the spatial dimensions used for
convolution operations, k is the channel index, L is the pointwise kernel, and l is the output
channel index. The MOB model is a good architecture for cattle weight estimation due
to the proper encoding and learning of distinct patterns from diverse data modalities. Its
depthwise separable convolutions significantly reduce computational complexity, making it
well-suited for resource-constrained environments or real-time applications. In the context
of cattle weight estimation, where processing diverse data modalities like RGB, depth,
and combined data is essential, the adaptability of the MOB model for multi-channel inputs
ensures seamless integration. The model accommodates multi-channel inputs, enabling
each modality to contribute its unique information. Depthwise-separable convolutions and
feature concatenation ensure effective integration of information from different modalities.
The model learns to discern the nuances associated with each modality. The output layer
performs regression for the cattle weight estimation.
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The EfficientNet B1 (EFF) model is a convolutional neural network that uses a com-
pound scaling method. The model uniformly scales all dimensions of depth, width, and res-
olution, resulting in improved representation power to achieve better performance. In the
EFF model, the width multiplier controls the number of channels in each layer and the
depth multiplier regulates the number of layers in the network. The number of layers in
the network is scaled by the depth multiplier, denoted as d. If L is the original number of
layers, then the new number of layers L′ is given by:

L′ = L × d (4)

The number of channels in each layer is scaled by the width multiplier, denoted as w.
If C is the original number of channels, then the new number of channels C′ is given by:

C′ = C × w (5)

The resolution of the input image is scaled by the resolution multiplier, denoted as r.
If S is the original resolution, then the new resolution S′ is given by:

S′ = S × r (6)

The scalability of the EFF model enables it to effectively handle diverse data modalities,
including RGB, depth, and segmented information relevant to cattle weight estimation.
The strength of the model’s ability to adapt its architecture based on the characteristics of the
input data makes it particularly efficient in capturing intricate patterns from varied sources.
Therefore, the EFF model can handle complex patterns in images from RGB cameras, depth
information, and segmented data. The model aligns well with the multi-modal nature of
cattle weight estimation. The model learns and extracts meaningful features from different
sources, contributing to accurate cattle weight prediction. Therefore, in the context of
cattle weight estimation, the feature-rich architecture of the EFF model ensures seamless
integration and processing of cattle data, contributing to its versatility and effectiveness in
addressing the complexities of cattle weight prediction.

4. Experimental Results

We captured the cattle images used in this study using an Intel RealSense D415 camera.
The camera has a standard field of view well suited for capturing cattle images. We installed
customized software to capture the images of the cattle. The camera exploits rolling shutter
sensors, which present high depth quality per degree. The camera also includes an IR
pattern projector to illuminate environments with poor lighting. It is also worth noticing
that the RGB sensor on the D415 has a very good low-light sensitivity to reduce blurring
during fast motion indoors under most normal lighting conditions. Using the camera,
the images were captured from two different beef cattle farms. For the sake of simplicity,
we will refer to them as Farm 1 and Farm 2. The dataset from Farm 1 comprises a collection
of 613 RGB images (RGB) and the corresponding 613 depth images (DP). This dataset
predominantly features black cattle. The controlled environment in this farm maintains
consistency, limiting factors such as blurriness caused by animal movement. Meanwhile,
Farm 2 contributes 676 RGB images (RGB) and the corresponding 676 depth images (DP).
The dataset from Farm 2 showcases a diverse mix of cattle in both white and brown hues.
Unlike Farm 1, the weighing station in Farm 2 introduces variability due to the irregular
conditions of door open/close scenarios and fluctuating lighting conditions. We present
the distribution of images in Farm 1 and Farm 2 in Figure 3. In combination, these datasets
provide a comprehensive set of images capturing different aspects of cattle appearance
and environmental conditions for a holistic analysis. We provide sample images from both
Farm 1 and Farm 2 in Figure 4. We further processed the data from Farm 1 and Farm 2 to
merge the RGB images (RGB) with the corresponding depth images (DP). With this merging
process, we obtain the third modality of data, which we call (RGBD) data. To generate the
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fourth data modality, we explore the recent vision-transformer-based zero-shot model [11]
from Meta AI Research. We consider only the pre-trained model. The fourth data modality
represents the fully segmented images (FS), for which we provided only RGB images as
input to the model. We present sample FS images for both Farm 1 and Farm 2 in Figure 5.
We also combined the FS images with the depth images (DP) to generate the fifth data
modality. We call these fully segmented images with depth information (FSD). We also
explore the vision-transformer-based zero-shot model [11] to extract the only-cattle region
from the RGB images of Farm 1. The purpose of this is to analyze how the only-cattle
region contributes to the performances of the models for cattle weight estimation.

Figure 3. Distribution of data: the distribution of data in Farm 1 (left side) and Farm 2 (right side).

Figure 4. Dataset: Some sample images from both Farm 1 and Farm 2. The (first row) shows RGB
images, and the (second row) shows the corresponding depth images.

For experimental analysis, we consider the performance metrics mean absolute error
(MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and R-
squared (R2). MAE represents the average absolute difference between the predicted and
actual weights. It provides a straightforward measure of prediction accuracy, making it
easy to interpret. RMSE considers the square of the differences between predicted and
actual weights, providing more weight to larger errors. It is useful for penalizing significant
deviations, giving a sense of the overall model performance. MAPE expresses errors as a
percentage of the actual values, providing a relative measure of accuracy. It is particularly
valuable when assessing the model’s performance in the context of different cattle weights.
(R2) measures the proportion of the variance in the dependent variable (cattle weights) that
is predictable from the independent variables (features used in the model). A higher (R2)
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suggests that the model explains a larger proportion of the variability in cattle weights. It is
a key metric for evaluating the goodness of fit and overall effectiveness of the predictive
model. We used 80% data for training and 20% data for validation.

Figure 5. Results of segmentation: the results of segmentation for sample images from Farm 1 and
Farm 2.

We present the results for considering the only-cattle region from RGB images from
Farm 1 in Figure 6. The results are shown for all the three models INC, MOB, and EFF.
As can be seen, all the models become overfitted by considering only the cattle region. We
also report the performances of three deep learning models using the performance metrics
mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage
error (MAPE), and R-squared (R2) in Table 1. The values for these metrics are unsatisfactory
for all the models, representing poor performances. In fact, the region-specific analysis
related to cattle does not capture the comprehensive features necessary for accurate weight
prediction. Additionally, the context of the surrounding environment helps models better
encode the features related to weight estimation. Therefore, the analysis results in a limited
and biased representation of the data by overlooking these contextual cues. Based on this
analysis, we will not use the only-cattle region for further analysis. The focus of the analysis
will instead be on the five data modalities we mentioned earlier.

Figure 6. Results for the only-cattle region from RGB images from Farm1 using MAE: training and
validation results using mean absolute error (MAE) for all three models.

We present the results for all the five data modalities for Farm 1 in Figure 7, consider-
ing the three models INC, MOB, and EFF. In this analysis, three deep learning models, INC,
MOB, and EFF, are evaluated across five distinct data modalities to assess their performance
in cattle weight estimation. Through this analysis across the RGB, DP, RGBD, FS, and FSD
modalities, we aim to uncover how each model adapts to and leverages diverse data
characteristics for accurate cattle weight estimation. The INC and MOB models present
good performances considering the MAE performance metric. However, the EFF model,
characterized by uniform scaling of depth, width, and resolution, offers a scalable archi-
tecture for addressing different complexities in these data modalities and has even better
performance than INC and MOB. The model shows stable output considering the RGB,
RGBD, and FSD modalities. In Figure 8, we present the results for all five data modalities
for Farm 2, considering the three models INC, MOB, and EFF. Furthermore, in this case, we
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evaluate these models across these data modalities to analyze their performances using
the MAE metric. As can be seen, the situation remains the same as with Farm 1. Again,
the EFF model presents better results considering these data modalities. Furthermore,
in Figure 9, we present the results for all five data modalities by combining data from
both Farm 1 and Farm 2. In this analysis encompassing the RGB, DP, RGBD, FS, and FSD
modalities, our primary objective is to elucidate how each model adapts to and harnesses
diverse data characteristics for precise cattle weight estimation. Notably, all three models
demonstrate commendable performance levels. The robustness of their performance across
varied data modalities positions these models as promising candidates for accurate and
reliable cattle weight predictions. As can be seen, the variations in the MAE score are not
very pronounced in the case of the EFF model.

Table 1. Only-cattle region from Farm 1: Performance of three deep learning models considering only
the cattle region in images from Farm 1 using four different performance metrics, mean absolute error
(MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and R-squared
(R2). The MAE and RMSE errors can be interpreted as average errors in kilograms between the
predicted and actual cattle weights, while the MAPE and R-Squared metrics represent the accuracy
and goodness-of-fit of the models and do not have a direct interpretation in kilograms.

Models MAE (Kg) RMSE (Kg) MAPE (%) R-Squared (R2)

INC 35.54 43.42 9.35 0.73
MOB 32.78 40.86 8.87 0.76
EFF 26.53 34.63 7.12 0.82

Figure 7. Cont.
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Figure 7. Results from Farm1 using MAE: In the (top row), we present the training results using
mean absolute error (MAE) for all three models considering five data modalities. In the (middle row),
we present the validation results. In the (bottom row), we present the enlarged validation results for
better visualization.

Figure 8. Results from Farm 2 using MAE: (Top row): training results using mean absolute error
(MAE) for all three models considering all five data modalities. (Middle row): validation results.
(Bottom row): enlarged validation results for better visualization.
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Figure 9. Results from combined dataset (Farm 1 and Farm 2) using MAE: In the (top row), we
present the training results using mean absolute error (MAE) for all three models considering five
data modalities. In the (middle row), we present the validation results. In the (bottom row), we
present the enlarged validation results for better visualization.

Ablation Study

For further experimental analysis, we report the results for all data modalities for
Farm 1, in Table 2, considering the performance metrics MAE, RMSE, MAPE, and (R2).
The MAE metric results reveal that the RGB, RGBD, and FSD modalities demonstrate
commendable predictive accuracy, with consistently low absolute differences between
predicted and actual weights. The results for the RMSE metric further affirm the robustness
of these data modalities considering all three models. The MAPE metric results highlight
the proportional accuracy, showcasing the ability of the models to maintain precision across
varying weight scales. Additionally, the (R2) metric results elucidate the extent to which
each modality explains the variance in cattle weights, highlighting the modalities that
effectively captured the dataset’s variability. We also report the results of three models
using MAE in Figure 10. This also shows that RGB, RGBD, and FSD represent good
accuracies. This comprehensive approach to performance evaluation facilitates a nuanced
understanding of the strengths and weaknesses inherent in each data modality, contributing
to informed decision-making in the realm of cattle weight estimation.
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Table 2. Farm 1: Performance of three deep learning models considering all the data modalities using
four different performance metrics, mean absolute error (MAE), root mean squared error (RMSE),
mean absolute percentage error (MAPE), and R-squared (R2). The MAE and RMSE errors can be
interpreted as average errors in kilograms between the predicted and actual cattle weights, while
the MAPE and R-Squared metrics represent the accuracy and goodness-of-fit of the models and do
not have a direct interpretation in kilograms.

Model Data Modalities MAE (Kg) RMSE (Kg) MAPE (%) R-Squared (R2)

RGB 16.80 24.18 4.24 0.94

DP 25.35 32.96 6.18 0.88

INC RGBD 17.93 26.43 4.58 0.93

FS 20.00 29.23 5.12 0.91

FSD 17.91 24.39 4.58 0.90

RGB 16.24 22.74 4.38 0.95

DP 23.09 31.86 6.03 0.89

MOB RGBD 17.56 23.78 4.56 0.94

FS 20.54 29.47 5.08 0.91

FSD 17.20 24.12 4.31 0.90

RGB 14.35 19.53 3.99 0.96

DP 24.32 30.87 6.60 0.90

EFF RGBD 16.32 20.94 4.29 0.95

FS 16.67 24.09 4.43 0.94

FSD 16.48 20.59 4.58 0.93

Figure 10. Farm 1: average MAE for three deep learning models using five different data modalities.

In Table 3, we report the results for all data modalities for Farm 2. The MAE metric
results indicate that the RGB, RGBD, and FSD modalities exhibit significantly good predic-
tive accuracy, as evidenced by consistently small absolute differences between predicted
and actual weights. The robustness of these data modalities is further confirmed by the
RMSE metric results across all three models. The results for the MAPE metric underscore
the proportional accuracy, demonstrating the capacity of the models to maintain precision
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across different weight scales. The (R2) metric results shed light on the degree to which
each modality accounts for the variance in cattle weights, emphasizing the modalities
that effectively encapsulated the variability of the dataset. We also report the results of
three models using MAE in Figure 11. It also shows that RGB, RGBD, and FSD represent
good accuracies.

Table 3. Farm 2: Performance of three deep learning models considering all the data modalities using
four different performance metrics, including mean absolute error (MAE), root mean squared error
(RMSE), mean absolute percentage error (MAPE), and R-squared (R2). The MAE and RMSE errors
can be interpreted as average errors in kilograms between the predicted and actual cattle weights,
while the MAPE and R-Squared metrics represent the accuracy and goodness-of-fit of the models and
do not have a direct interpretation in kilograms.

Model Data Modalities MAE (Kg) RMSE (Kg) MAPE (%) R-Squared (R2)

RGB 17.17 22.66 3.31 0.94

DP 19.88 28.31 3.88 0.92

INC RGBD 18.97 34.51 3.59 0.87

FS 20.91 28.29 3.92 0.92

FSD 19.44 25.98 3.79 0.93

RGB 18.23 24.19 3.49 0.94

DP 25.57 33.35 4.89 0.89

MOB RGBD 18.64 32.73 3.54 0.88

FS 21.26 28.13 3.95 0.92

FSD 23.26 29.93 4.44 0.90

RGB 16.94 22.79 3.29 0.94

DP 20.97 26.48 4.07 0.93

EFF RGBD 18.17 31.92 3.59 0.89

FS 20.77 27.73 4.05 0.92

FSD 20.57 27.14 4.09 0.92

Figure 11. Farm 2: average MAE for three deep learning models using five different data modalities.
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Moreover, in Table 4, we present the results for the combined data from Farm 1 and
Farm 2. Here, the compelling analysis of cattle weight estimation across diverse data
modalities brings forth noteworthy findings. The MAE metric results unequivocally high-
light the superior predictive accuracy of the RGB, RGBD, and FSD modalities, showcasing
their consistent ability to yield minimal absolute differences between predicted and ac-
tual weights. This resilience is further underscored by the results for the RMSE metric,
reaffirming the robust nature of these modalities across all three models. Delving into pro-
portional accuracy, the MAPE metric results accentuate the precision upheld by the models,
demonstrating their adeptness at maintaining accuracy irrespective of varying weight
scales. Moreover, the (R2) metric results offer a profound insight into the capability of the
modalities to elucidate the variance in cattle weights, pinpointing those that effectively
capture the intricate dataset variability. We also report the results of three models using
MAE in Figure 12. This also shows that RGB, RGBD, and FSD represent good accuracies.
This holistic approach to performance evaluation has enabled a detailed understanding of
the inherent characteristics of each data modality.

Table 4. Combined data (Farm 1 and Farm 2): Performance of three deep learning models considering
all the data modalities using four different performance metrics, mean absolute error (MAE), root
mean squared error (RMSE), mean absolute percentage error (MAPE), and R-squared (R2). The MAE
and RMSE errors can be interpreted as average errors in kilograms between the predicted and actual
cattle weights, while the MAPE and R-Squared metrics represent the accuracy and goodness-of-fit of
the models and do not have a direct interpretation in kilograms.

Model Data Modalities MAE (Kg) RMSE (Kg) MAPE (%) R-Squared (R2)

RGB 15.06 20.01 3.57 0.97

DP 19.07 24.73 4.52 0.96

INC RGBD 15.89 21.52 3.50 0.97

FS 18.05 22.47 4.34 0.97

FSD 17.33 22.96 4.03 0.96

RGB 16.07 20.36 3.82 0.97

DP 19.15 25.79 4.67 0.96

MOB RGBD 16.04 20.64 3.52 0.97

FS 17.24 22.52 3.91 0.97

FSD 16.07 21.92 3.69 0.97

RGB 15.88 21.21 3.79 0.97

DP 17.95 24.0 4.26 0.96

EFF RGBD 19.43 38.14 4.24 0.92

FS 16.85 22.07 4.25 0.97

FSD 16.13 22.37 3.90 0.97

We also consider 5-fold cross-validation where the dataset is partitioned into five folds,
ensuring an equal distribution of samples across folds. We used the average MAE to report
the results for three deep learning models. We consider only RGB and FSD data modalities
for the combined data (Farm 1 and Farm 2) since they show good results. The results are
presented in Figure 13 for only the RGB data modality. The EFF model performs better
comparatively; however, there are no significant variations across different folds. For 5-fold
cross validation, we also consider the FSD data modality for the combined data (Farm 1
and Farm 2). The results are presented in Figure 14. Here, the EFF model performs better
comparatively; however, there are no significant variations across different folds.
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We also perform a comparison with a recent method [23] based on Mask R-CNN.
We created fully segmented images (FS) with the compared method [23]. We used only
combined data (Farm 1 and Farm 2) for the purpose of comparison. We then used the three
deep learning models for cattle weight estimation using the FS modality of the compared
method [23], and then our explored method [11]. The results are presented in Figure 15.
As can be seen, the performance of our explored method [11] is better in all the three cases.

Figure 12. Combined data (Farm 1 and Farm 2): average MAE for three deep learning models using
five different data modalities.

Figure 13. Cross validation for combined data (Farm 1 and Farm 2): average MAE for three deep
learning models using the RGB modality.
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Figure 14. Cross validation for combined data (Farm 1 and Farm 2): average MAE for three deep
learning models using the FSD modality.

Figure 15. Comparison considering the combined data (Farm 1 and Farm 2): comparison with the
reference method using the average MAE for three deep learning models using the FSD modality.

5. Discussion

Initially, we considered the only-cattle region from RGB images from Farm 1. All three
baseline models became overfitted with poor performances in terms of other performance
metrics. Our research revealed that the region-specific analysis related to cattle does not
capture the comprehensive features necessary for proper weight estimation. The context of
the surrounding environment also supports the models, allowing them to encode the layout
of the physical scene for cattle weight estimation. Subsequently, we considered multiple
data modalities, such as RGB, depth, RGBD, segmentation data, and the combination of
segmentation and depth data in the complex field of cattle weight estimation. Through
experimental analysis, we investigated data patterns to show the complex dynamics of
data modalities and how they affect the performances of deep learning models when it
comes to estimating the weight of cattle. The models considering only the RGB data present
good performance, highlighting the value of color-based data in collecting crucial aspects
for weight prediction. The models also present good performances by considering the
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RGBD data modality, where depth-sensing provides additional spatial information for
better weight estimation.

However, the models relying only on depth information for cattle weight estimation
fall short of delivering optimal performance due to the inherent limitations of depth data
alone. Depth information provides a representation of the spatial distances between objects
in a scene, offering a valuable three-dimensional perspective. However, in our context,
where we have images only from the top view, this modality encounters challenges that
impede its standalone efficacy. The intrinsic variety in cattle appearance and pose is one
of the main limitations. Cattle can have a wide range of sizes, shapes, and positions in
the image, which can result in intricate and erratic depth patterns. The ability of the
depth modality to differentiate between various cow features is further limited by the
absence of color information. Additionally, noise and inconsistencies in depth data can
cause uncertainties, particularly in situations when lighting is poor, or cattle are in close
proximity. These considerations lead to the limited discriminative capability of depth
information alone.

On the other hand, the models could perform better if the depth information is
combined with other modalities like RGB or segmentation. The performance of each
model is improved when depth is combined with colour information or spatial context
from segmentation, producing a distinct representation for weight prediction. The borders
and spatial distribution of the cattle in the images are taken into consideration by these
modalities, adding some level of context. Some of these modalities could lead to more
accurate weight estimation if a very large amount of data is available. Considering the
segmentation data without depth, on the other hand, does not yield the same level of
performance. This suggests that the depth modality is crucial for improving weight
estimation since it provides depth signals that aid in determining the structure of the cattle.
However, this small indication, in our case, creates opportunities for future advancements
in the use of diverse data modalities for precision agriculture applications.

6. Conclusions

In this work, we investigated different data modalities for cattle weight estimation
using three baseline deep learning models. We also collected and presented our own cattle
dataset with four different modalities. We generated an additional data modality through
the vision-transformer-based zero-shot model. We performed experimental analysis using
the performance metrics MAE, RMSE, MAPE, and R-Squared, to analyze how the com-
bination of diverse data sources impacts the accuracy of the models. Our work showed
that both RGB and RGBD models perform well. However, a more robust cattle weight
estimation can be obtained by merging segmentation and depth depending on the amount
of data and the variations in the data.

In our future work, we would like to collect more data and analyze how depth
information, in combination with other data modalities, would impact the performance of
the models. Moreover, a comprehensive examination of the potential integration of depth
information with the binary mask produced by segmentation to enhance weight estimation
remains unfinished. This is especially crucial because using the cattle area modality alone
has resulted in overfitting problems.
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