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Abstract: This paper presents a novel approach to mind-wandering prediction in the context of
webcam-based online learning. We implemented a Singular Value Decomposition (SVD)-based 1D
temporal eye-signal extraction method, which relies solely on eye landmark detection and eliminates
the need for gaze tracking or specialized hardware, then extract suitable features from the signals
to train the prediction model. Our thorough experimental framework facilitates the evaluation
of our approach alongside baseline models, particularly in the analysis of temporal eye signals
and the prediction of attentional states. Notably, our SVD-based signal captures both subtle and
major eye movements, including changes in the eye boundary and pupil, surpassing the limited
capabilities of eye aspect ratio (EAR)-based signals. Our proposed model exhibits a 2% improvement
in the overall Area Under the Receiver Operating Characteristics curve (AUROC) metric and 7%
in the F1-score metric for ‘not-focus’ prediction, compared to the combination of EAR-based and
computationally intensive gaze-based models used in the baseline study These contributions have
potential implications for enhancing the field of attentional state prediction in online learning, offering
a practical and effective solution to benefit educational experiences.

Keywords: mind wandering; online learning; temporal eye signal; singular value eecomposition

1. Introduction

Mind-wandering refers to the phenomenon where attention drifts away from the
current task at hand, shifting to internally generated thoughts rather than being prompted
by the external environment. This mental content is often described as unrelated to the
ongoing task or independent of external stimuli, highlighting its detachment from per-
ception and immediate actions [1,2]. Researchers have noted that mind-wandering has
significant implications for education, as it is most noticeable when individuals are engaged
in studying [3]. However, it is generally believed that mind-wandering mainly has negative
effects on education, as it disrupts learners’ ability to concentrate.

With the increasing popularity of online education, learners now have access to a wide
range of courses and programs, benefiting from the convenience, flexibility, affordability,
self-paced learning, dynamic and engaging learning environments, and a global learning
community. Nevertheless, online learning environments are more susceptible to mind-
wandering compared to traditional classrooms [4], and this can be attributed to various
factors such as reduced social interaction, increased cognitive load, higher potential for
distractions, diminished problem-solving and critical thinking, challenges in time manage-
ment, and the lack of physicality [5]. Consequently, it becomes crucial to capture attentional
states and detect mind-wandering in the context of online learning.

Recent studies have utilized hardware-based methods to predict attentional states
using various sensors [6]. These sensors include eye trackers, electroencephalography

J. Imaging 2024, 10, 97. https://doi.org/10.3390/jimaging10050097 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10050097
https://doi.org/10.3390/jimaging10050097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-1825-3845
https://orcid.org/0000-0003-2155-4507
https://orcid.org/0000-0002-9592-0226
https://doi.org/10.3390/jimaging10050097
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10050097?type=check_update&version=2


J. Imaging 2024, 10, 97 2 of 19

(EEG) sensors, electrodermal activity (EDA) sensors, and functional magnetic resonance
imaging (fMRI) machines. For instance, the GazeTutor system [7], which utilizes eye
trackers, has been able to identify students’ attentional states and provide dialogue to re-
engage them and enhance learning outcomes. Another approach, called Attention-Aware
Learning Technology (AALT) [8], uses eye trackers to predict mind-wandering and offer
interventions such as asking questions, revisiting content, and calling students’ names.

However, these methods have some limitations. First, they require the use of spe-
cialized hardware. Second, their accuracy in predicting attentional states is relatively low.
For example, the eye tracking-based AALT could only provide interventions in half of the
total sessions with a low accuracy model, achieving a 0.51 F1 score [8]. Additionally, these
methods have mainly been evaluated in controlled environments, and their performance in
realistic settings remains unknown. Lastly, they often rely on education experts to label
facial videos, which can be time-consuming and resource-intensive [9].

To tackle the limitations of hardware-based approaches, a recent paper about “Pre-
dicting Attention with Facial Expression” (PAFE) [6] interprets mind wandering from
only webcam videos in online lectures with arbitrary settings (uncontrolled environment)
and obtains more reliable prediction performance. Specifically, they construct an atten-
tional state prediction model from their collected PAFE dataset, incorporating multiple
physiology-related features such as eye aspect ratio (EAR), emotion, gaze, and head move-
ment, extracted solely from video frames without support from specialized hardware.
Their t-test findings reveal that EAR is the key indicator (p < 0.001) of mind-wandering.
Nevertheless, a combination of the most important features in each feature category (EAR,
gaze, emotion, head movement) is required to outperform a single-category model, such
as a gaze-only baseline, as stated in their experiment results. However, combining these
features requires separate eye landmark detection and resource-intensive gaze-tracking
models, which hampers real-time attention prediction in online learning. To tackle this
problem of facial-based attentional state prediction, our study proposes an alternative solu-
tion: using only eye landmarks to capture the whole eye region, which contains both EAR
variations and gaze movements. Any subtle or high changes in this whole eye region from
a facial video need to be well indicated by a 1D temporal signal, from which the features
are obtained. An effective 1D temporal eye signal should (1) capture sufficient features to
improve the prediction model of attentional states and (2) maintain a low computational
cost during signal extraction.

This study aims to clarify the first goal, to effectively extract 1D temporal signal from a
2D image sequence in terms of predicting attentional states, which can be evaluated based
on Accuracy, F1-score, and AUROC metrics. A set of 2D image sequences contains high-
dimensional spatial and temporal information, and thus, a suitable feature dimensionality
reduction method is needed. Prior studies have used Singular Value Decomposition (SVD)
to achieve the temporal features extraction, either to capture scene background [10] or
eye-blink signals [11]. In this study, we focus on isolating the eye region from facial video
frames and applying SVD to generate 1D temporal eye movement signals based on higher-
rank information from singular vectors. These signals capture all temporal changes in the
eye region, encompassing eye boundary and pupil movements during different attentional
states. The resulting eye movement signals are used to extract statistical and spectral
features, creating custom datasets to train a classifier model.

This paper makes the following contributions:

• We implemented an SVD-based 1D temporal eye-signal extraction for attentional state
prediction in webcam-based online learning, requiring only eye landmark detection,
without gaze tracking or any specialized hardware support.

• We designed a thorough set of experiments pipeline for evaluation of our proposal
with other baseline models in the context of analyzing and predicting attentional state.

• Our SVD-based 1D temporal signal can capture subtle or major movements of both
eye boundary and eye pupil, whereas EAR-based 1D temporal signal can only re-
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flect eye boundary variations, requiring additional gaze tracking to capture eye
pupil variations.

• Our proposed SVD-based attentional state prediction model outperformed the combi-
nation of EAR-based and gaze-based models in state-of-the-art webcam-based mind-
wandering prediction study [6] by 7% for F1-score in predicting ‘not-focus’, and 2%
in the AUROC metric, indicating the degree of separability between “Focus” and
“non-Focus” states for the prediction model.

2. Related Work
2.1. Specialized Hardware-Based MW Detection

The use of highly sophisticated optics and photonics devices for high accuracy of
eye tracking has been a common trend in past research. The authors in [12] use Tobii 4C
gaming eye-tracker with a 90 Hz sampling frequency, utilizing a reflection pattern of NIR
(near-infrared) light for the recording of eye movements. The technology involves directing
a light source toward the eye and using sensors to detect the reflection patterns of the light
from the cornea and pupil. This method allows for the precise tracking of gaze points,
fixation durations, and saccades, which are rapid eye movements between fixations. The
study employs this technology to identify patterns indicative of mind-wandering, such as
decreased fixation on relevant text areas or increased fixation dispersion, which may indicate
a lack of focus. Another study [13] utilizes a screen-based Tobii Pro Spectrum eye-tracker with
an even higher sampling rate of 300 Hz to analyze eye movement and oculomotor data as
indicators of mind-wandering during video lectures. The specifics of eye-tracking technology
include the use of high-resolution cameras that can capture the nuanced movements of the
eye with extreme precision. This approach also encompasses the analysis of several eye
movement metrics such as blink rate, saccade velocity, and fixation patterns based on gaze
point, allowing researchers to determine where and how long a person is looking at specific
points on a screen. Other studies also include the use of specialized optics hardware [14–16]
but with less sampling rate and rely more on the biosensors such as EEG [5,6,10,11,15–21],
EDA [5,20,22], or fMRI [21,23]. Despite the high precision of these specialized optics devices,
they still require other unpleasant equipment, such as a head chin rest or head strap. This can
be inconvenient for experimental use of testing subjects, leading to less accurate results, or for
learners who use it for the long term. More recent advancements in eye-tracking technology,
such as the wearable Neon eye-tracking glasses with a sampling rate of 200 Hz [24], enable
more passive monitoring that might not affect the learner while maintaining good precision,
and thus it is a potential solution for future mind-wandering-related studies. However,
these mentioned eye trackers remain relatively expensive on the market and are thus not yet
suitable in the context of online learning.

2.2. Facial Video-Based Mind-Wandering Detection

Trading off with the high precision of optics devices to maintain users’ learning process
without affecting their experiences and with affordable price, the mind-wandering detection
technologies begin to transition into webcam-based solutions, with sampling rates up to
60 Hz [25]. Overall, there is still a limited number of webcam-based methods for attention
prediction during online courses without hardware support. Although a multimodal
classifier integrating eye tracking and facial action has been recently implemented [6,26],
partial eye-tracker equipment is still required for gaze tracking. Other webcam-only-based
approaches are limited to controlled environments in labs, so they target limited focus
on narrative film viewing [19,20] or show unreliable performance [21]. To tackle these
limitations, a recent paper about “Predicting Attention with Facial Expression” (PAFE) [6]
interprets mind wandering from only webcam videos in online lectures with arbitrary
settings (uncontrolled environment) and obtains more reliable prediction performance.
Specifically, they construct an attentional state prediction model from their collected PAFE
dataset, incorporating multiple physiology-related features such as eye aspect ratio (EAR),
emotion, gaze, and head movement, extracted solely from video frames without support
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from specialized hardware. Their t-test findings reveal that EAR is the key indicator
(p < 0.001) of mind-wandering. Nevertheless, a combination of all facial-based features,
including EAR, gaze, emotion, and head movement, is required to outperform a single-
category model, such as a gaze-only baseline, which is frequently used in hardware-based
approaches. However, combining these features requires separate eye landmark detection
and resource-intensive gaze-tracking models, which hampers real-time attention prediction
in online learning.

2.3. Feature Extraction

Given a set of 2D image sequences containing high-dimensional spatial and temporal
information, a suitable feature dimensionality reduction method is needed to efficiently ex-
tract temporal information in the context of analyzing eye behavior. Feature dimensionality
reduction can either be done by feature selection (keeping only a subset of features) or by
feature extraction (generating a reduced number of new features from the original features).
Since existing features (a set of pixels) in a 2D image sequence jointly combine both spatial
and temporal information and we need to separate only the temporal features, the feature
extract method is selected. The reduced number of new features after feature extraction
can also be regarded as low-dimensional representations, from which the original features
can be reconstructed using either linear or non-linear models. For the linear approach,
prior studies have used Singular Value Decomposition (SVD) to achieve the temporal
features extraction, either to capture scene background [10] or eye-blink signals [11]. For
the non-linear models, presently, the autoencoders, a form of neural networks, have been
commonly used to learn these low-dimensional representations for extracting temporal [27]
or both spatiotemporal features from images [28] due to its ability to well preserve locality.
A suitable feature extraction approach for our problem in this paper should be chosen
based on the following criteria: interpretability, flexibility, and computational cost. Re-
garding interpretability, SVD provides a more interpretable decomposition of the data,
where singular values directly represent the importance of features, from which we select
the main one to represent an eye signal. Autoencoders are often treated as black boxes,
and interpreting the hidden layer activations can be challenging. Regarding flexibility,
SVD is a linear dimensionality reduction technique, while autoencoders can learn com-
plex, non-linear relationships in the data. This allows autoencoders to potentially capture
more nuanced low-dimensional representations. Regarding the computational cost, SVD
is a well-established algorithm with a guaranteed closed-form solution, whereas training
autoencoders requires significant computational resources. Given the context of predict-
ing attentional states from an interpretable eye signal in online learning with real-time
capability, the SVD-based feature extraction approach is selected in our paper.

3. Problem Statement

The work proposed in PAFE [6] has shown that eye-related behaviors like eye aspect
ratio (EAR) features are the most significant indications of mind wandering (“non-Focus”
state). However, from our observations of both “Focus” and “non-Focus” states in the
PAFE dataset and previous findings in other eye gaze-based studies [23,26,29–31], another
indication of attentional state could be embedded in the movement of pupils, which has
not been reflected in the EARs, revealing only the ratio of eye boundary. For instance, a
high number of “Focus” samples indicate high pupil movement activity, whereas the eye
boundary remains stationary, except in the cases of blinks. In contrast, other “non-Focus”
samples contain either inactivity in the eye pupil and/or high activity of both eye regions
(pupil and eye boundary) and other facial or head movements. Figure 1 illustrates examples
of left eye-image sequences in “Focus” and “non-Focus” states.

As a result, in order to obtain robust performance in the prediction of attentional state,
both the EAR-based features and gaze-based features are combined in [6] to train the learn-
ing model. However, this requires separate eye landmark detection and heavy-computation
gaze detection models, leading to more resource consumption and hindering real-time at-
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tentional state prediction applications in online learning. Therefore, an alternative solution
is needed to use solely eye landmarks and capture the whole eye region, which contains
spatial and temporal information of both EAR variations and gaze movements, producing
significant features of the combined categories while maintaining a good prediction model.

(a)

(b)

(c)
Figure 1. Example of the eye-image sequence in “Focus” and “non-Focus” states from PAFE dataset [6].
The eyes pictures are ordered from left to right and top to bottom. The example sequences are sampled
at 15 FPS for ease of illustration. (a) “Focus” state: eye boundary mostly remains stationary, while the
eye pupil actively moves horizontally. (b) “non-Focus” state: Inactivity in eye pupil (long fixation).
(c) “non-Focus” state: Inactivity in eye pupil (long fixation) or high activity of eye boundary and
facial/head movements, leading to variances in orientation.

Since only temporal changes indicate attentional states, the main challenge is to extract
1D temporal signal information effectively from a spatiotemporal 2D eye-image sequence
cropped out from the facial video frames. To tackle this problem, this paper is inspired by
recent Singular Value Decomposition (SVD) -based studies, extracting spatial or temporal
information from a 2D video sequence. This approach allows the capture of either scene
background based on the low rank of left/right singular vectors [10] or eye-blink signals
based on higher-rank information representing temporal changes [11].
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4. Proposed Methodology

An overview of our proposed SVD-based mind-wandering detection is depicted in
Figure 2, consisting of three main steps: (1) extracting raw frames from an existing video
dataset and detecting facial landmarks, (2) locating eye region and extracting SVD-based
eye-signal features, and (3) training machine-learning models on datasets of extracted
features. This section focuses on Step 2, which contains our main contribution, and imple-
mentation details on Steps 1 and 3 can be found in the next Experiment Section 5.

Regarding Step 2, given the extracted facial landmarks, the approach isolates only the
eye landmarks to capture the eye regions. Then, SVD is utilized to extract eye movements
signal, capturing all temporal changes in the whole eye region, which include eye boundary
movements and pupil movements during attentional states.

Figure 2. Overview of the proposed SVD-based approach.

Specifically, the SVD-based eye-signal extraction is carried out as follows. Given a
cropped eye-image sequence J = {I1, I2, . . . , Ik} ∈ Rm×n×k, with m, n, k as image height,
width, and the number of frames, each image Ii is divided into d blocks. Each block’s
pixel energy is computed as the sum of the square intensities of all pixels within that
block. Thus, each image Ii corresponds to a d-dimensional energy vector ei ∈ R1×d,
containing d elements of block energy values. Subsequently, image sequence J with k
frames corresponds to an energy matrix E = {e1; e2; . . . ; ek} ∈ Rk×d, where each row is
the d-dimensional energy vector per image. The energy matrix E contains joint spatial
and temporal information of the image sequence. Every row in E represents the spatial
correlations between adjacent pixel blocks within each video frame, whereas every column
in E indicates temporal correlations of the same pixel block between adjacent video frames.
Previous study [10] has shown that the temporal information can be separately extracted
from E using SVD, decomposing matrix E as follows:

UTEV = Σ = diag(σ1, σ2, . . . , σp) ∈ Rk×d (1)

in which p = min(k, d) and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, U ∈ Rk×k and V ∈ Rd×d are the left
and right singular vectors, respectively.

A reduced-size matrix U is commonly used [10], where the number of rows is re-
duced to d, resulting in U = {u1, u2, . . . , ud} ∈ Rk×d. According to [10], the same temporal
information of the original spatiotemporal energy matrix E is compacted in the left sin-
gular vector matrix U, and thus its structure should be further investigated. As in signal
processing, the projection of E into the first left singular vector u1 of U uncovers the low-
rank details present in E. Meanwhile, the projections into the remaining singular vectors
u2, . . . , ud indicate sparse or high-frequency information of temporal changes. This means
any subtle or major changes in temporal dimension should be reflected distinctly in one of
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the higher-rank singular vectors u2, . . . , ud [11], and thus it is necessary to select the vector
that best represents the eye change signal.

The left singular vectors first need to be preprocessed. Each vector contains both
positive and negative values within the range of −1 to 1. To enhance the representation and
analysis of the estimated eye signal, we scale the values in the selected vectors to fit within
the range of [0 1]. These scaled vectors are then subject to temporal processing via a moving
average filter to minimize outliers and noises. Subsequently, the most suitable vector to
represent changes in the eye signal is selected based on its frequency characteristics. The
higher the changes in the temporal dimension, the higher the coefficient amplitudes in
the frequency domain in its high-frequency components range. Hence, each vector is
transformed into the frequency domain using Fast Fourier Transform (FFT) [32], and the
best candidate is selected as the vector with the highest frequency amplitude within a
predefined interval. Afterward, the obtained best left singular vector representing the 1D
temporal eye change signal is later used to extract statistical and spectral features in the
experiments and establish custom datasets, which are then used to train the classifier model.

5. Experiments

This section first introduces an overview of the experiment pipelines, including both
baseline methods and the proposed SVD-based approach, then provides details on the
evaluated dataset, implementation details, and each component in the features extraction
step. Subsequently, analysis and evaluation are given on the extracted temporal eye signals
and the performance of attentional state prediction models based on the features extracted
from those signals. Our code implementation can be found in the following repository:
https://github.com/bachzz/MW-SVD (accessed on 1 April 2024).

5.1. Overview Experiment

The overview pipelines in Figure 3 illustrate three main steps for the experiment
procedures of each scenario, extending the steps of our proposed SVD-based method in
Figure 2 to the other baseline methods. In Step (1), we investigated the existing recorded
videos of participants during online learning from the original PAFE dataset [6], in which
the authors evaluated their proposed EAR-based and gaze-based features. The details on
this dataset can be found in the next Section 5.2. In Step (2), feature extraction is also carried
out for EAR-based signal and gaze behavior, in addition to SVD-based signal. In Step (3),
the learning models are trained on datasets of extracted features for each corresponding
approach. The implementation details of each step are illustrated in Section 5.7.

5.2. Dataset

As described in [6], during the dataset recording process of the PAFE experiment, the
participants were watching the same lecture video, “AI For Everyone” by Andrew Ng, at
their preferred date and alone in their room, without disturbance from smartphones, or any
apps alerts, notifications. The authors implemented a periodic probing method (by a ding
sound every 40 s, as shown in Figure 4) for the participants to report their attentional states.
To reduce the distraction effect of probing sound, they utilized only the last 20 seconds
in every 40-second interval for later processing steps such as feature extraction. This is
supported by previous findings that our thoughts are shifted from 5 to 30 s [33]. For every
probing time window, given 30 FPS in their experiment setup, the investigated 20-second
video produces a sequence of 600 frames for further processing, with a single label (i.e.,
“Focus”, “non-Focus”, “Skip”). Our experiment extracts only “Focus” and “non-Focus”
sequences, excluding “Skip” sequences, in which the participants could not immediately
decide the response. Eventually, we obtained sequences of 5 participants, each participant
containing about 80 labeled sequences of 600 frames, and each frame has a resolution of
640 × 480. Each sequence of 600 frames also corresponds to an eye signal. As a result, the
total number of data samples or eye signals is around 400, and the proportion of ’Focus’
and ’Non-Focus’ labels after preprocessing is about 5 to 1, respectively.

https://github.com/bachzz/MW-SVD
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Figure 3. Overview of experimental scenarios, including the proposed SVD-based approach (red),
and the baseline methods: EAR-based [6] (blue), Gaze-based [26,29] (green).

Figure 4. Periodic Probing used in PAFE experiment [6].

5.3. Implementation Details

This section provides the experimental details of each component described in Figure 3.
In Step (1), facial landmark detection was carried out using HRNet [34]. In Step (2), from
the facial landmarks, left and right eye landmarks were extracted from points 60 to 67
and 68 to 75, respectively, which were used in the EAR-based and SVD-based approaches.
In our proposed SVD-based solution, the eye region was then cropped surrounding the
target eye landmarks by 25% in all directions. Then, the cropped eye images were resized
into 96 × 128 pixels. For the gaze-based method, iris detection was carried out using
MediaPipe Facemesh [35] to locate the coordinates of the iris. The extracted eye region
and landmarks were then used to produce 1D temporal eye signals for EAR-based and
SVD-based approaches. Since these signals are 1D time series data, their features should
be extracted with a suitable tool, for which we used the Time Series Feature Extraction
Library (TSFEL) [36]. On the other hand, the detected iris locations over a sequence
were used to compute gaze-related features: horizontal fixation percentage, horizontal
saccade percentage, and horizontal saccade velocity, as single values representing the
whole sequence, instead of 1D time series data [26,29]. Afterward, the extracted features of
each approach were further selected based on their importance (t-test) to create different
datasets for prediction model training. In Step (3), following the same model learning
strategy of the baseline study [6], a traditional machine-learning technique, XGBoost, and a
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simple Deep Neural Network (DNN) were utilized to learn from the generated datasets.
The XGBoost model was set up with 1000 boosting rounds and an “AUC” evaluation
metric for validation data. Regarding the DNN architecture, since the input features are
structured numerical data, a simple Multi-Layer Perceptron (MLP) network was utilized in
the original experiment proposed in [6]. Following their design, we implemented the same
MLP model consisting of two layers: the first one contains 12 nodes with ReLU activation,
and the second one contains 1 output node with Sigmoid activation, along with binary
cross-entropy loss and Adam optimizer.

5.4. Features Extraction
5.4.1. Proposed SVD-Based Approach

As discussed in Section 4, the obtained best left singular vector represents the 1D
temporal eye change signal. From the given signal in the time series domain, this paper
extracts SVD-based features from their corresponding statistical domain and spectral
domain, utilizing the Time Series Feature Extraction Library (TSFEL) [36]. An overview of
the investigated features description is given in Table 1.

Table 1. Overview of statistical and spectral features from the time series feature.

Features Description

Statistical

Absolute energy Computes the absolute energy of the signal

Entropy Computes the entropy of the signal using the Shannon Entropy

Interquartile range Computes interquartile range (Q3-Q1) of the signal

Max Computes the maximum value of the signal

Min Computes the minimum value of the signal

Mean Computes the mean value of the signal

Mean absolute deviation Computes mean absolute deviation of the signal

Median Computes median value of the signal

Median absolute deviation Computes median absolute deviation of the signal

Standard deviation Computes standard deviation of the signal

Variance Computes variance of the signal

Peak to peak distance Computes peak to peak distance of the signal

Root mean square Computes root mean square of the signal

Kurtosis Computes kurtosis of the signal

Skewness Computes skewness of the signal

Spectral

Max power spectrum Computes maximum power spectrum density of the signal after Fast Fourier
Transform (FFT)

Maximum frequency Returns the frequency with 95% of the Cumulative sum of the magnitude after FFT

Median frequency Returns the frequency with 50% of the Cumulative sum of the magnitude after FFT

Power bandwidth Computes power spectrum density bandwidth of the signal after FFT

Fundamental frequency Finds the lowest frequency of the signal after FFT

Spectral centroid Computes the barycenter of the spectrum after FFT

Spectral decrease Computes the amount of decreasing of the spectra amplitude after FFT

Spectral distance Compute spectral distance between Cumulative sum of the magnitude after FFT and
its linear regression

Spectral entropy Compute Spectral entropy of the spectrum after FFT

Spectral kurtosis Computes the flatness of a distribution around its mean value in the spectrum
after FFT
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Table 1. Cont.

Features Description

Statistical

Spectral skewness Computes the asymmetry of a distribution around its mean value in the spectrum
after FFT

Spectral slope Computes the spectral slope, obtained by linear regression of the spectral amplitude
after FFT

Spectral spread Computes the spread of the spectrum around its mean value after FFT

Spectral variation Computes the amount of variation of the spectrum along time after FFT

Wavelet energy Computes Continuous Wavelet Transform (CWT) energy of each wavelet scale

Wavelet entropy Computes CWT entropy of the signal

Wavelet variance Computes CWT variance value of each wavelet scale.

Since SVD-based eye temporal signals contain both changes in eye aspect ratio and
pupil movement, the signal patterns seem to be “noisy” with peaks of blinking. However,
the “noisy” fluctuations actually indicate pupil movements, but they are excluded by
statistical feature extraction. On the other hand, noisy data features are better represented
and handled in the spectral domain of the signal [37]. Thus, spectral feature extraction is
more suitable for SVD-based eye signals.

5.4.2. Baseline Methods

(a) EAR-based approach

As illustrated in Figure 3, from the extracted eye landmarks of each frame, the eye as-
pect ratio (EAR) representing eye height over eye width is computed using Equation (1) [34],
in which the eye landmarks are denoted from p1 to p6, as shown in Figure 5. The ratio is
scale-invariant, which is not affected by the varying distances from the eye to the camera.
Furthermore, the facial landmark detection system, along with the Perspective-n-Point
(PnP) algorithm, provides translation invariance and rotation invariance [6]. Thus, EAR
should be robust to potential variances, provided that the eye is detectable. Additionally,
following the procedure proposed in [6], the EAR values are then scaled with median
and median absolute deviation (MAD) of the initial 20 s during data collection, assuming
most participants are fully focused at the beginning, in order to achieve per-participant
invariance. This scaling allows the strategy to be applicable to any session. Furthermore,
missing EAR values as a result of failed facial landmark detection are linearly interpolated.

EAR =
∥p2 − p6∥+ ∥p3 − p5∥

2∥p1 − p4∥
(2)

Figure 5. An example of eye landmarks, representing ratio of eye height over width.

Repeating the process for a sequence of frames, we obtain a time series data of EAR
values, resulting in an eye signal. From the obtained time series data, their features also
need to be extracted in the corresponding statistical domain and spectral domain, utilizing
TSFEL [36]. The EAR-based signal is frequently used in blink-based partial drowsiness
detection, which has been reported as a strong indication of attentional states [6,38,39].
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Thus, the EAR-based features extracted from the signal should focus on clear blinking
factors, reducing the short-term effects of noisy data. Since EAR reflects only movements of
eye boundary, the noisy data (i.e., partial blinks) does not include useful information such
as eye pupil movements, unlike SVD-based signal. As a result, statistical features excluding
outliers (i.e., partially closing eyes) are suitable to be extracted from the EAR-based eye
signal. Nevertheless, its features in the spectral domain were also extracted for comparison
with the SVD-based approach.

(b) Gaze-based approach

There are three major components of gaze movements during online learning [6] and
computerized reading [10]: speed, fixations, and saccades. Although our eyes generally
seem to be gliding smoothly across the page of text as we read the slide content, in reality,
they make a series of rapid movements (called saccades, which move the eyes from one
place to another in the screen) separated by pauses (called fixations, which typically
last roughly 200–250 ms during focus, and longer during mind wandering) [40]. These
indications can be obtained solely based on iris tracking [41].

For each frame, the coordinate of the iris is first computed within the region of detected
facial landmarks. Repeating the computation for a sequence of frames, we obtain a time
series data of iris coordinates. Based on the coordinate information, the horizontal velocity
of eye movement, the fixation percentage, and the horizontal saccade percentage are
calculated. Each frame is marked as “saccade” if the iris’s horizontal position in the current
frame is different from the previous frame by a threshold of pixels (in the experiment,
we use a threshold of 1 pixel). Each frame is marked as “fixation” if the iris’s horizontal
position does not change with respect to the previous frame. Then, the horizontal fixation
percentage and the horizontal saccade percentage are calculated as the number of “fixation”
and “saccade” frames, respectively, over the total number of frames in the eyes sequence
window. The horizontal velocity of pupil movement is calculated during continuous
“saccade” frames as the total pixel movement over the number of “saccade” frames.

It should be noted that in this experiment, due to a lack of hardware resources and lack of
gaze-calibration files from the computer monitors of participants in the PAFE dataset, we could
not use the same heavy-computation gaze estimation approach from the original baseline
attentional state prediction work [6]. In their work, the authors utilized the Few-Shot Adaptive
Gaze Estimation (FAZE) [42] method for gaze tracking and extracting gaze features. Despite
the real-time ability for inference with a live webcam, FAZE requires heavy-computation
training: 8x GPUs, each one is Tesla V100 GPU with 32 GB memory [43]; meanwhile, the
inference process still requires multi-GPU support [44]. Additionally, on inference with new
subjects that have not been learned, FAZE requires a gaze-calibration process (approximately
10 s) and further training [42]. On the other hand, the proposed SVD-based approach is
mainly based on signal processing; hence, it requires no training or intensive memory, and
no calibration process for new subjects is needed. Therefore, as an alternative approach, we
utilized light-computation MediaPipe Facemesh [35] to detect iris coordinates in a gaze-based
baseline, which is adequate to compute the above gaze-based features: horizontal fixation
percentage, horizontal saccade percentage, horizontal pupil velocity.

5.5. Analysis of Temporal Eye Signals on Eye Activities

The experiment investigates the three most frequent cases of attentional states from
the PAFE dataset. Regarding the eye sequences labeled as ‘Focus’ (Figure 6a), the eye
boundary mostly remains stationary, while the eye pupil actively moves horizontally. It
can be seen that both EAR-based and SVD-based eye signals can capture major changes in
eye movement, such as blinks or partial blinks; however, the temporal changes in pupil
during gaze movement can only be captured using our proposed SVD-based approach,
excluding the need for gaze-tracking system.

Regarding the eye sequences labeled as ‘non-Focus’, there is usually either inactivity
in the eye pupil, causing long fixation (Figure 7a) or high activity of both eye boundary
and facial/head movements (Figure 8a), leading to variances in eye orientation. Long
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fixation leads to low activity in pupil movement, which is also reflected in SVD-based eye
signals. On the other hand, rapid translational/rotational eye changes caused by head
movement are indicated with more significance in SVD-based than EAR-based signals
because the eye aspect ratio is translation invariance and rotation invariance [6]. Therefore,
our proposed SVD-based eye signal can capture more features of both “Focus” and “non-
Focus” attentional states.

(a)

(b) (c)
Figure 6. “Focus” state: eye boundary mostly remains stationary, while the eye pupil actively moves
horizontally. (a) Eye images sequence from PAFE dataset [6], consisting of 4 blinks and active pupil
movements. The eyes pictures are ordered from left to right and top to bottom. (b) EAR-based eye signal,
mainly capturing 4 blinks. (c) SVD-based eye signal, capturing both 4 blinks and pupil movement.

(a)

Figure 7. Cont.
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(b) (c)
Figure 7. “Non-Focus” state: Inactivity in eye pupil (long fixation). (a) Eye mages sequence from
PAFE dataset [6], consisting of 5 blinks and low activity in pupil movement. The eyes pictures are
ordered from left to right and top to bottom. (b) EAR-based eye signal, mainly capturing 5 blinks.
(c) SVD-based eye signal, capturing 5 blinks and low pupil activity.

(a)

(b) (c)
Figure 8. “Non-Focus” state: Inactivity in eye pupil (long fixation). (a) Eye-Image sequence from PAFE
dataset [6], consisting of blinks, low pupil activity, and rapid translational/rotational changes caused
by head movement. The eyes pictures are ordered from left to right and top to bottom. (b) EAR-based
eye signal, mainly capturing blinks due to translation invariance and rotation invariance. (c) SVD-
based eye signal, capturing blinks, low pupil activity, translational and rotational changes.

5.6. Features Selection and Generated Datasets

As discussed in Section 5.4, TSFEL [36] was used to extract both statistical and spectral
features (as listed in Table 1) from the EAR-based and SVD-based eye temporal signal,
whereas the Gaze-based approach utilized independent features: horizontal saccade veloc-
ity, horizontal fixation percentage, horizontal saccade percentage.

Following the procedure in [6], we performed a feature-elimination process based on
the p-value technique. The p-value results used for feature selection were calculated based
on the null hypothesis, indicating there is no relationship between a feature (predictor
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variable) and the target label (response variable). The lower the p-value, the stronger
the evidence against the null hypothesis, and the more significant the feature is to the
target label. Specifically, given a dataset with a set of features, we utilized the Ordinary
Least Squares (OLS) module from the “statsmodels” library [45] in Python to estimate
the parameters of a linear regression model. It internally calculates various statistics,
including p-values. The p-values associated with the coefficients of the model are typically
calculated based on the assumption of normally distributed errors for the coefficients. After
fitting the model, OLS computes the standard errors for each estimated coefficient. These
standard errors represent the uncertainty or variability in the estimated coefficients. For
each coefficient, the t-statistic is calculated by dividing the estimated coefficient by its
standard error. The t-statistic measures the number of standard deviations the coefficient
estimate is away from zero. OLS uses these values along with the degrees of freedom to
compute the p-values. The p-value associated with each coefficient tests the null hypothesis
that the coefficient is equal to zero (i.e., there is no relationship between the predictor
variable and the response variable). The lower the p-value, the stronger the evidence
against the null hypothesis. In our experiment, we utilized threshold p-value = 0.05 to
retain only important features.

Table 2 shows the statistics of only significant features (p-value ≤ 0.05) obtained after
performing the t-test for the three approaches. It can be seen that the statistical features of
EAR-based and spectral features of SVD-based methods share a high number of features
with strong significance (p-value < 0.001). This corresponds well to the findings of previous
studies [6,38,39] about using statistical features of EAR variations (excluding outliers) for
blink-based detection of partial drowsiness, which is a strong indication of attentional
states. On the other hand, since an SVD-based signal contains variations in eye aspect ratio
and pupil movements, the features of its noisy data are better shown and extracted in the
spectral domain, leading to higher significance than SVD-based statistical features in the
temporal domain. Lastly, the table also showed that only the horizontal saccade percentage
feature is retained for the gaze-based approach for having high significance.

Table 2. Statistics of only important features for EAR-based, Gaze-based, and SVD-based methods.
The number of stars indicates the significance level of the feature.

Method Domain Features
Focused Not-Focused

p-Value
Mean SD Mean SD

EAR

statistical

Absolute energy 2027.00 920.69 2302.74 930.27 <0.001 ***

Entropy 0.50 0.18 0.44 0.16 <0.001 ***

Kurtosis 5.08 21.76 6.37 30.10 0.050 *

Mean absolute deviation 0.23 0.47 0.25 0.47 0.001 **

Root mean square 0.89 1.60 1.01 1.68 <0.001 ***

Skewness −0.88 1.70 −0.52 2.15 0.006 **

Standard deviation 0.29 0.59 0.35 0.64 <0.001 ***

spectral

Maximum frequency 42.64 1.72 43.11 1.72 0.007 **

Wavelet energy (scale = 5) 0.55 1.08 0.63 1.11 0.020 *
Wavelet energy (scale = 8) 0.65 1.27 2.27 1.32 0.020 *
Wavelet entropy 2.11 0.02 2.11 0.02 <0.001 ***

Wavelet variance (scale = 5) 1.47 3.81 1.61 3.59 0.020 *
Wavelet variance (scale = 8) 2.03 5.20 2.27 5.16 0.030 *

Gaze horizontal saccade
percentage 0.39 0.13 0.36 0.14 0.007 **
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Table 2. Cont.

Method Domain Features
Focused Not-Focused

p-Value
Mean SD Mean SD

SVD

statistical

Entropy 0.71 0.12 0.78 0.07 <0.001 ***

Kurtosis 0.91 2.43 0.52 1.51 0.003 **

Max 0.71 0.09 0.72 0.08 0.007 **

Standard deviation 0.07 0.01 0.07 0.01 0.001 **

spectral

Max power spectrum 1.18 0.72 1.01 0.56 <0.001 ***

Maximum frequency 41.29 3.86 42.35 3.00 <0.001 ***

Spectral decrease −5.71 2.12 −5.98 1.96 <0.001 ***

Spectral kurtosis 4.31 2.25 4.16 1.59 0.003 **

As a result, we created 7 different datasets (5 baseline datasets and 2 proposed SVD-
based datasets) to evaluate our proposed SVD-based mind-wandering detection during
online learning. The utilized datasets are described in Table 3.

Table 3. Descriptions of 5 baseline datasets (EAR-stats, EAR-spectral, Gaze, EAR-stats + Gaze,
EAR-spectral + Gaze) and 2 proposed datasets (SVD-stats, SVD-spectral).

Datasets Description

EAR-spectral Dataset consisting of EAR-based spectral features

Gaze Dataset consisting of Gaze-based features

EAR-stats + Gaze Dataset consisting of EAR-based statistical and Gaze-based
features

EAR-spectral + Gaze Dataset consisting of EAR-based spectral and Gaze-based
features

SVD-stats Dataset consisting of SVD-based statistical features

SVD-spectral Dataset consisting of SVD-based spectral features

5.7. Evaluation Metrics

F1 score is often utilized over Accuracy for imbalanced dataset evaluation because it
combines Precision and Recall. Accuracy can be misinterpreted when there is a skewed
class distribution since it may be high even when the classifier performs poorly on the
minority class. Precision is about how many of the positively predicted samples are actually
positive, but it does not capture the full classifier’s performance by neglecting negative
samples. Recall is about how many of the actual positive samples are predicted correctly,
but it may be influenced by the class imbalance, causing inflated values. In contrast, the F1
score combines Precision and Recall into a single measure and balances the two affected
metrics, where the relative individual contributions are equal.

AUROC (Area Under the Receiver Operating Characteristic Curve) measures the
ability of the model to distinguish between the classes by telling how well the classifier can
rank a random positive sample higher than a random negative sample [46]. AUROC can
reflect the overall performance of the classifier across different threshold levels. It is less
sensitive to class imbalance [47] because it focuses on the model’s ability to rank samples
rather than directly on the absolute numbers of true positives and false positives.

Overall, the F1 score is suitable when dealing with an imbalanced dataset and when
it is more important to predict the minority (positive) class accurately (high recall) while
ensuring the predicted sample is indeed the minority class (high precision). On the other
hand, if the problem concerns the overall classifier performance to separate both classes
while minimizing misclassifications, AUROC might be the more suitable metric [46]. In the
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context of predicting attentional states with our currently limited and imbalanced dataset,
both F1 and AUROC are necessary for evaluation since we equally care about both ’Focus’
and ’Non-Focus’ classes and their separability, in addition to balancing Precision and Recall
when influenced by the imbalanced dataset. Future work may also investigate the use of
data augmentation techniques to deal with the imbalanced learning problem.

5.8. Prediction Model Results and Discussion

The 7 generated datasets were used to train and evaluate 5 baseline models, and
2 proposed SVD-based models. Each model was utilized with either XGBoost or DNN for
the datasets of the 20-second probing window. Since the datasets are imbalanced, consisting
of approximately 5× labels of “Focus” than “non-Focus”, we implemented stratified 5-fold
cross-validation and random undersampling for the training data in order to ensure the
training and test sets with the same proportion in each fold as the original dataset and to
reduce the imbalance effect.

Table 4 provides the experimental results. Overall, the XGBoost model outperforms
the DNN models. The poor AUROC results of DNN models are likely caused by either
insufficient training data (few participants), making the model mainly predict a single label
and leading to results around 0.5, or the model learned from highly imbalanced labels, or
the model choice issue (i.e., the selected features may have complex relationships that a
simple model cannot capture). Thus, the use of DNN should be investigated further in
our future work. Regarding the comparison between our proposal and baseline models,
XGBoost model training on our proposed SVD-spectral features shows the highest AUROC
performance (AUROC = 0.57), representing the highest capability separating the classifica-
tion of “Focus” and “non-Focus”. Our proposed model outperforms the original EAR-stats
baseline (AUROC = 0.53), the gaze-based baseline (AUROC = 0.54), and the combination
of both baselines features EAR-spectral + Gaze (AUROC = 0.56). This indicates that the
SVD-based eye signal can capture both features of EAR-based and Gaze-based methods,
and the SVD-based features can provide better classification performance in the prediction
of attentional states. Although the EAR-spectral+Gaze baseline slightly outperforms the
proposed SVD-spectral by 1% in the accuracy of “Focus” predictions, the proposal still has
the highest F1-score (=0.3) in “Not-Focus” predictions. The higher accuracy is likely due to
the baseline model having a higher chance of predicting “Focus” for datasets with a large
proportion of “Focus” labels. Additionally, the SVD-spectral model also outperforms the
SVD-statistical model (AUROC = 0.52), aligning well with our assumption that the noisy
features of both eye aspect ratio and gaze movement are better captured and exploited in
the spectral domain.

Table 4. Accuracy, F1, AUROC performance of each model, corresponding to each dataset of 20-s
probing window with stratified 5-fold cross-validation. Stars (*) denote the results obtained by
baseline methods in a state-of-the-art webcam-based mind-wandering prediction study [6]. Highest
F1 and AUROC are highlighted in bold.

Features Model
Focused Not-Focused

AUROC
Accuracy F1 Accuracy F1

EAR-stats *
XGBoost 0.84 ± 0.03 0.79 ± 0.02 0.17 ± 0.04 0.21 ± 0.04 0.53 ± 0.03

DNN 0.81 ± 0.02 0.77 ± 0.01 0.12 ± 0.03 0.19 ± 0.02 0.49 ± 0.01

EAR-spectral
XGBoost 0.80 ± 0.04 0.77 ± 0.02 0.16 ± 0.07 0.18 ± 0.07 0.53 ± 0.02

DNN 0.76 ± 0.03 0.75 ± 0.02 0.14 ± 0.04 0.16 ± 0.02 0.45 ± 0.01

Gaze *
XGBoost 0.79 ± 0.03 0.76 ± 0.03 0.18 ± 0.08 0.19 ± 0.08 0.54 ± 0.03

DNN 0.68 ± 0.02 0.61 ± 0.02 0.12 ±0.03 0.15 ± 0.04 0.50 ± 0.02

EAR-stats + Gaze *
XGBoost 0.83 ± 0.05 0.78 ± 0.04 0.20 ± 0.05 0.23 ± 0.08 0.55 ± 0.01

DNN 0.77 ± 0.03 0.69 ± 0.02 0.22 ± 0.03 0.24 ± 0.03 0.51 ± 0.02
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Table 4. Cont.

Features Model
Focused Not-Focused

AUROC
Accuracy F1 Accuracy F1

EAR-spectral + Gaze
XGBoost 0.85 ± 0.04 0.80 ± 0.02 0.19 ± 0.07 0.24 ± 0.08 0.56 ± 0.03

DNN 0.71 ± 0.02 0.69 ± 0.04 0.28 ± 0.05 0.27 ± 0.03 0.53 ± 0.02

SVD-stats
XGBoost 0.81 ± 0.04 0.78 ± 0.03 0.22 ± 0.08 0.25 ± 0.06 0.52 ± 0.03

DNN 0.76 ± 0.03 0.76 ± 0.05 0.26 ± 0.04 0.24 ± 0.02 0.49 ± 0.03

SVD-spectral
XGBoost 0.84 ± 0.04 0.80 ± 0.03 0.27 ± 0.09 0.30 ± 0.09 0.57 ± 0.04

DNN 0.79 ± 0.05 0.78 ± 0.02 0.28 ± 0.03 0.26 ± 0.07 0.51 ± 0.02

6. Conclusions

In conclusion, our study presents a novel approach for predicting attentional states in
webcam-based online learning environments. By leveraging Singular Value Decomposition
(SVD) to extract 1D temporal eye signals from solely detected eye landmarks, our method
offers a lightweight and accessible solution that eliminates the need for gaze tracking or spe-
cialized hardware. Through a rigorously designed experimental pipeline, we demonstrated
the effectiveness of our proposal by comparing it against baseline models in the context of
attentional state prediction. Importantly, our SVD-based eye signal exhibits the ability to
capture subtle and major movements of both eye boundary and eye pupil, distinguishing
it from existing EAR-based eye signals that primarily focus on eye boundary variations,
which require additional gaze tracking to capture eye pupil variations. The experiment
results demonstrate that our SVD-based attentional state model outperforms the baseline
combination of EAR-based and gaze-based models by 2% and 7% in the AUROC and F1
metrics, indicating its ability to separate well between "Focus" and "non-Focus" states while
better balancing between precision and recall, given a sequence of facial video frames.
This highlights its potential for enhancing attentional state prediction in online learning
scenarios. These contributions hold promise for enhancing the development of adaptive
learning systems, allowing for the intervention of mind-wandering once detected and
paving the way for improved online learning experiences. In future work, we intend to
assess the real-time ability of the proposed system, gather more online learning datasets,
and improve the performance of deep learning-based methods.
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