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Abstract: Stress-related biophysical variables of capital intensive orchard crops can be estimated with
proxies via spectral vegetation indices from off-nadir viewing satellite imagery. However, variable
viewing compositions affect the relationship between spectral vegetation indices and stress-related
variables (i.e., chlorophyll content, water content and Leaf Area Index (LAI)) and could obstruct
change detection. A sensitivity analysis was performed on the estimation of biophysical variables via
vegetation indices for a wide range of viewing geometries. Subsequently, off-nadir viewing satellite
imagery of an experimental orchard was analyzed, while all influences of background admixture
were minimized through vegetation index normalization. Results indicated significant differences
between nadir and off-nadir viewing scenes (∆R2 > 0.4). The Photochemical Reflectance Index
(PRI), Normalized Difference Infrared Index (NDII) and Simple Ratio Pigment Index (SRPI) showed
increased R2 values for off-nadir scenes taken perpendicular compared to parallel to row orientation.
Other indices, such as Normalized Difference Vegetation Index (NDVI), Gitelson and Merzlyak (GM)
and Structure Insensitive Pigment Index (SIPI), showed a significant decrease in R2 values from nadir
to off-nadir viewing scenes. These results show the necessity of vegetation index selection for variable
viewing applications to obtain an optimal derivation of biophysical variables in all circumstances.

Keywords: biophysical variables; orchards; vegetation indices; view angle sensitivity

1. Introduction

Monitoring and managing of capital intensive orchard crops through precision agriculture is
centered around the estimation of stress-related biophysical variables such as chlorophyll content [1,2],
water content [2–4] and Leaf Area Index (LAI) [5]. Time consuming, labor intensive and destructive in
situ measurements of biophysical variables could be circumvented through remotely sensed imagery
and spectral vegetation indices [6,7]. Examples include the Photochemical Reflectance Index (PRI) [8]
for chlorophyll content [1,3], the Water Index (WI) [9] for water content [2] and the standardized
LAI-Determining Index (sLAIDI) for LAI [5]. On the one hand, practical use of remotely sensed
spectral imagery in temperate climates requires near-to-daily revisit times because of the high cloud
cover [10]. On the other hand, heterogeneous orchards require high spatial resolution imagery
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to provide frequent and accurate information on field and plant conditions [11]. Currently, this
combination of both high spatial and temporal resolutions is feasible with high spatial resolution
satellite sensors capable of off-nadir viewing, such as GeoEye-1, Quickbird, Pleaides, WorldView-1,
WorldView-2 and WorldView-3.

The main downside of using these agile satellites is the influence of variable viewing angles on the
relationship between biophysical variables and spectral measurements or vegetation indices [4,12,13].
Although information from multiple view angles is considerably greater than from a single angle
and could provide information regarding structural variables (i.e., plant cover, canopy height and
biomass) [14,15], varying viewing angles within and between time series could obstruct change
detection due to the confusion between genuine changes and viewing geometry influences. In the
past, several methods were constructed to remove the influence of variable viewing and illumination
angles. The most common is the use of Bidirectional Reflectance Distribution Function (BRDF) models
to standardize and produce nadir equivalent reflectance values [16–21]. However, this could remove
useful information regarding vegetation structure [19,21,22] or plant stress [4] and requires a wide
range of viewing angles over a short period of time. Therefore, existing research focused mostly on
imagery of low spatial resolution images (i.e., > 20 m spatial resolution e.g., Moderate Resolution
Imaging Spectroradiometer (MODIS)) [17,19,21,23] and/or at fixed view angles (e.g., +/´ 55˝, +/´ 36˝

and 0˝ for the pushbroom CHRIS (Compact High Resolution Imaging Spectrometer) sensor mounted
on the PROBA (Project for On-Board Autonomy) platform) [24].

In addition, the research on the effects of variable viewing conditions focused mostly on vegetative
systems with a continuous canopy cover, such as forests [18,24,25], grasslands [24] and soybeans [26].
However, high spatial resolution satellite imagery over orchard cropping systems will always contain
mixtures of canopies and background (i.e., soil, grass and shadow) [27,28]. This mixture effects can be
further aggravated by the variable viewing conditions. Recent studies have shown the necessity and
usefulness of the removal or reduction of background effects through either unmixing algorithms [29]
or vegetation index corrections [28]. However, both methods were developed for nadir viewing
imagery and assumed the presence of the full range of canopy fractions.

The goal of this study was to investigate the view-angle sensitivity of common spectral vegetation
indices on the estimation of biophysical variables—i.e., chlorophyll content, water content and
LAI—in orchards. In high spatial resolution imagery, changing view angles causes both BRDF- and
mixture-related differences. As the latter influence can be minimized through a correction method, the
view-angle sensitivity of common vegetation indices for high spatial resolution imagery of hedgerow
cropping systems can be assessed and minimize the effects of varying viewing angles on change
detection within and between time series. Synthetic imagery of a virtual orchard was used to include
variable orchard conditions, as well as different background scenarios—i.e., non-vegetated, vegetated
and partially vegetated. Finally, imagery from a satellite with off-nadir viewing capacities over an
experimental orchard was investigated to highlight the importance of changing viewing geometry
towards the estimation of biophysical variables.

2. Materials

2.1. Synthetic Imagery

Synthetic imagery was used in this study to improve our understanding of the effects of a
changing viewing geometry on the remotely sensed data and the information derived from it [28,30,31].
The synthetic data provided exact cover fractions, spectral signatures and biophysical variables of
the target crop for a range of viewing compositions. Additionally, the simulations were used to
investigate the overall effect of viewing composition on the estimation of biophysical variables via
vegetation indices.

In compliance with [28,31], the virtual orchard, developed by [32], consisted of virtual citrus trees
(Citrus sinensis L.). The trees were arranged in a 3.5 by 2 m grid (row orientation of 7˝; i.e., north-south



J. Imaging 2016, 2, 15 3 of 20

direction). Within each orchard, several sections of the virtual orchard were modified to mimic stressed
conditions for chlorophyll content, water content and LAI. Stressed leaf spectra were modified through
PROSPECT [33]. Chlorophyll contents were extracted from in situ-measured unmodified leaf spectra
and reduced by 25% and 50% and the water content by 15% and 30% [32]. LAI stress was introduced
by randomly removing or adding leaves to the virtual trees representing 56% and 125% of the original
LAI [32]. The spatial distribution and range of each variable is shown in Figure 1.
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Figure 1. Spatial distribution of biophysical and structural variables in the virtual orchard for (a)
chlorophyll content, (b) water content, (c) leaf area index and (d) canopy cover fractions.

From these virtual orchards, different images were rendered in a physically-based ray-tracer
(PBRT) [34]. The model has previously been calibrated and validated with the Radiation Transfer
Model Intercomparison (RAMI) online model checker [35,36] and field data obtained in a citrus orchard
in Wellington, South Africa [32,37]. Images were rendered with a direct and diffuse light source
(solar elevation of 79.2˝ and solar azimuth of 339.6˝) mimicking South African winter solstice [32].
The spectral range of the synthetic images was 350-2500 nm with a spectral resolution of 10 nm, while
the spatial resolution of the sensor was fixed at 2 m. The resulting canopy cover fractions within the
2 m pixels are shown in Figure 1d. The influence of different viewing compositions was investigated
by adjusting the position of the sensor. The sensor’s azimuth angles were varied between 0 and 315˝

with 45˝ increments and the sensor’s view angle was varied between 0 and 60˝ with 15˝ increments.
As a result, each orchard composition was rendered from 33 different sensor positions.

The influence of different orchard conditions was investigated by varying the orchard floor or
background through four different scenarios, while the position of the virtual trees remained identical
for each scenario. Through these modifications, the sensitivity of commonly used vegetation indices to
orchard- and viewing parameters could be investigated.
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‚ Scenario 1 (S1), a uniform soil background, consisting of an Albic Leptic Luvisol soil [38] measured
in situ [39], shown in Figure 2a. Soil reflectance was assumed Lambertian.

‚ Scenario 2 (S2), a uniform weed background (Figure 2b), consisting of Phleum pratense L. modeled
with leaf reflectance obtained from the Leaf Optical Experiment database [32,40].

‚ Scenario 3 (S3), a variable weed and soil background, consisting of a weed background with
random and irregular soil patches (65/35% cover fraction distribution), depicted in Figure 2c.

‚ Scenario 4 (S4), a variable weed background with a chlorophyll gradient. The weed background
was modified similar to the leaf reflectances, increasing the chlorophyll content from 75% to the
reference value (i.e., uniform weed background). A true color representation of the variable weed
background is shown in Figure 2d.
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2.2. Real Imagery

2.2.1. Study Area

The irrigated orchard, planted with Conference pear trees (Pyrus communis L. cv. “Conference”)
on Quince C rootstock, was situated in Bierbeek, Belgium (50˝49134.59”N, 4˝47142.83”E). The 2.5 m
high trees were planted in 2000 in a 3.5 by 1 meter grid. They were trained in a V-system with four
fruiting branches on one central stem [41]. The orchard was situated on a south-east facing slope (3.5˝)
with a loamy soil and two dominant row azimuths, namely 41 and 131˝. The trees received 100% of
the crop evapotranspiration (ETc) [42,43], throughout most of the growing season.

The non-irrigated or rainfed orchard, situated in Kerkom, Belgium (50˝46124.25”N, 5˝09127.05”E),
was planted in 2000 with Conference pear trees on Quince A rootstock. The 3.5 m high trees, planted in
a 3.75 by 1.75 m grid, were trained in a Spindle bush system [41]. The orchard was situated on a south
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facing slope (1.1˝) with a loamy soil and a row azimuth of 197˝. The trees were rainfed and received
no additional water input.

In both orchards, the soil under the trees was kept weed free for about 0.3 m from the trunk and
grass was sown in between the tree rows.

2.2.2. Satellite Imagery

WorldView-2 multispectral images were acquired under different off-nadir viewing angles, with
a ground sampling distance of 2.0 m and a spectral resolution complying eight bands: Coastal
(400–450 nm), Blue (450–510 nm), Green (510–580 nm), Yellow (585–625 nm), Red (630–690 nm), Red
Edge (705–745 nm), NIR1 (Near InfraRed 1; 770–895 nm) and NIR2 (860–1,040 nm). The acquisition
details for the WorldView-2 images are shown in Table 1. All images were radiometrically [44],
atmospherically [45] and geometrically corrected [46].

Table 1. Metadata of WorldView-2 acquisitions used in this study.

Location Year Day Of Year
(DOY)

Off-Nadir
Viewing Angle (˝)

Satellite
Azimuth (˝)

Satellite
Elevation (˝)

Irrigated
Orchard

2011 214 10.8 45.9 78
2012 148 2.7 181.1 86.7

232 18.9 209.8 68.6
2013 189 26.1 14.7 60.7

214 25.6 107.9 61

Rainfed
Orchard

2011 196 43.3 116.1 39.7
214 4.8 68.6 84.7

2012 148 15 199.8 72.9
232 23.7 211.1 62.9

2013 187 28 99.1 58.2
214 27.4 133.5 58.7

2.2.3. Reference Plots

During each satellite acquisition, ground reference plots were monitored, each plot consisting
of four adjacent trees. In the rainfed orchard, 16 plots were selected on fixed intervals within two
adjacent rows of similar structure and age. In the irrigated orchard, 32 plots were selected with variable
age, soil type and row orientation. The position of each plot was determined with a differential
global positioning system (Trimble RTK 58000). Spatial variation was introduced by the application of
one-sided root-pruning (rainfed orchard) and deficit irrigation (irrigated orchard). The location of the
ground measurements and both root-pruning and deficit irrigation treatments is shown in Figure 3.

3. Methods

3.1. Vegetation Indices

The spectral vegetation indices used in this study were divided into categories based on their
proven or expected relationship with biophysical and structural variables (i.e., chlorophyll content,
water content and LAI). The used vegetation indices are listed in Table 2 [5,8,9,47–63]. The indices
were chosen because of a proven link with biophysical variables in fruit orchards [1,2,64].
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Table 2. Overview of the biophysical and structural vegetation indices used in this study, their formulation and reference. The distinction was made between
chlorophyll content, water content and Leaf Area Index (LAI)—related indices. Vegetation indices were approximated by WorldView-2 bands.

Index Formulation Reference WorldView-2 Band Combination

Chlorophyll content related indices
NDVI (Normalized Difference Vegetation Index) (RNIR ´ RRed)/(RNIR + RRed) [47] (RNIR1 ´ RRed)/(RNIR1 + RRed)

OSAVI (Optimization SAVI ª) (1 + 0.16) * (R800 ´ R670)/(R800 ´ R670 + 0.16) [48] (1 + 0.16) * (RNIR1 ´ RRed)/(RNIR1 ´ RRed + 0.16)
MCARI (Modified CARI b) [(R700 ´ R670) ´ 0.2 * (R700 ´ R550) ]* (R700/R670) [49] [(RRed-edge ´ RRed) ´ 0.2 * (RRed-edge ´ RGreen) ]* (RRed-edge/RRed)

TCARI (Transformed CARI b) 3 * (R700 ´ R670) ´ 0.2 * (R700 ´ R550) * (R700/R670) [50] 3 * (RRed-edge ´ RRed) ´ 0.2 * (RRed-edge ´ RGreen) * (RRed-edge/RRed)
ZM (Zarco and Miller) R750/R710 [51] -

SRPI (Simple Ratio Pigment Index) R430/R680 [52] RCoastal/RRed
PRI (Photochemical Reflectance Index) (R531 ´ R570)/(R531 + R570) [8] (RGreen ´ RBlue)/(RGreen + RBlue)

NPCI (Normalized Pigment Chlorophyll Index) (R680 ´ R430)/(R680 + R430) [53] (RRed ´ RCoastal)/(RRed + RCoastal)
CTR1 (Carter Index) R695/R420 [54] (RRed-edge + RRed)/(2*RCoastal)
CTR2 (Carter Index) R695/R760 [55] (RRed-edge + RRed)/(2*RNIR1)

SIPI (Structure Insensitive Pigment Index) (R800 ´ R450)/(R800 + R650) [52] (RNIR1 ´ RCoastal)/(RNIR1 + RRed)
GM (Gitelson and Merzlyak Index) R750/R550 [56] RRed-edge/RGreen

Water content related indices
WI (Water Index) R900/R970 [9] RNIR1/RNIR2

MSI (Moisture Stress Index) R1600/R820 [57,58] -
CAI (Cellulose Absorption Index) 0.5 * (R2000 + R2200) ´ R2100 [59] -

NDWI (Normalized Difference Water Index) (R850 ´ R1240)/(R850 + R1240) [60] -
LAI related indices

RDVI (Renormalized Difference Vegetation Index) (R800 ´ R670)/
‘

(R800 + R670) [61] (RNIR1 ´ RRed)/
‘

(RNIR1 + RRed)
TVI (Triangular Vegetation Index) 0.5 * [ 120 * (R750 ´ R550) ´ 200* (R670 ´ R550)] [62] 0.5 * [ 120 * (RRed ´ RGreen) ´ 200* (RRed ´ RGreen)]

NDII (Normalized Difference Infrared Index) (R850 ´ R1650)/(R850 + R1650) [63] -
sLAIDI (standardized LAI Determining Index) 5 * [(R1050 ´ R1250)/(R1050 + R1250)] [5] -

With Rx the reflectance at band or wavelength x; Near Infrared (NIR); ª Soil-Adjusted Vegetation Index (SAVI); b Chlorophyll Absorption in Reflectance Index (CARI).
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symbols represent the location of the ground measurement plots.



J. Imaging 2016, 2, 15 8 of 20

Vegetation indices for which representative WorldView-2 band combinations were available, are
also listed in Table 2. The conversion from narrowband to broadband vegetation indices should be
viewed as an approximation as the exact wavelengths from the narrowband vegetation indices overlap
in two or more satellite bands, e.g., WI (Water Index [9]).

3.2. Vegetation Index Correction

To remove canopy fraction differences for all high spatial resolution orchard images, a vegetation
index correction was applied [28]. This correction algorithm rescaled the range of index values for
all pixels to the range of index values for the pure canopy pixels (i.e., pixels with a canopy fractions
over 0.8). The correction was applied in a moving window of size 7 by 7 pixels. Within each moving
window, (i) background was assumed uniform, (ii) the pure canopy pixels were assumed to represent
the true vegetation index range in the pure canopy pixels for that moving window and (iii) the presence
of the full range of canopy fractions was assumed. Before the correction was applied, outliers were
detected and removed, based on the threshold of 1.5 times the inter-quartile range from the upper or
lower quartile [65]. Afterwards, the index values for each pixel were averaged from all the moving
windows that included that pixel. In general, this correction assumed that the variability along the
y-axis (i.e., vegetation index value) was only caused by the variability in tree conditions, while the
variability along the x-axis (i.e., canopy fraction) was caused by the admixture of the background
component. More information on this vegetation index correction can be found in [28].

For the synthetic images, the exact tree cover was known for each pixel. For the real satellite
imagery, the canopy cover fraction was estimated through a Gram-Schmidt pan-sharpening [66] to
produce multispectral bands with a panchromatic resolution (0.5 m). This pan-sharpened image was
classified through unsupervised classification [67] and resampled for each 2 m multispectral pixel to
provide an estimation of the canopy fractions, similar to Hamada et al. [68].

3.3. Determination of in situ Measured Biophysical and Structural Variables

During satellite acquisitions, biophysical variables were determined based on the inversion of
leaf spectral measurements on 20 samples per plot. A validation experiment was acquired with lab
measured chlorophyll and water content which achieved R2 values of 0.79 and 0.85 between measured
and modeled water and chlorophyll content respectively (results not shown here). In addition,
hemispherical photographs were collected for each plot using a Kodak Professional DCS 660 digital
camera (6 mega pixels) with a Sigma 8mm Circular Fisheye lens (Sigma Corporation, Tokyo, Japan).
Each plot was sampled 5 times at fixed positions [69] and processed with the CAN-EYE software to
determine LAI based on canopy gap fraction [70]. An overview of the mean and standard deviations
of for both orchards is shown in Table 3.

Table 3. The mean (˘ standard deviation) of leaf chlorophyll, leaf water content and Leaf Area Index
(LAI) for the reference plots in both the irrigated (n = 32) and rainfed orchard (n = 16).

Location Chlorophyll Content (µg/cm²) Water Content (mg/cm²) LAI

Irrigated Orchard 82.9 (˘14.1) 19.1 (˘2.0) 2.5 (˘0.6)
Rainfed Orchard 81.3 (˘10.8) 17.8 (˘3.2) 1.5 (˘0.5)

4. Results

4.1. Synthetic Imagery

The synthetic imagery in this study provided exact cover fractions, spectral signatures and
biophysical variables of the target crop for a range of view angles. The simulations were used to
investigate the overall effect of viewing geometry on the estimation of biophysical variables through
vegetation indices without the influence of sensor/target anomalies.
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In a first step the ground references or tree endmembers—pure canopy pixels collected from scenes
of individual trees without background—were used to illustrate optimal coefficient of determination
values (R2) between biophysical variables and vegetation indices. The variation of R2 values between
vegetation indices and chlorophyll content, water content and LAI for different viewing compositions
is shown in Figure 4. As only pure canopy pixels were used, view angle effects regarding variable
canopy fraction distributions could be assumed absent and resulting effects attributed to BRDF.
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(OSAVI), (c) Modified Chlorophyll Absorption in Reflectance Index (MCARI), (d) Transformed
Chlorophyll Absorption in Reflectance Index (TCARI), (e) Zarco and Miller (ZM), (f) Simple
Ratio Pigment Index (SRPI), (g) Photochemical Reflectance Index (PRI), (h) Normalized Pigment
Chlorophyll Index (NPCI), (i) Carter Index (CTR1), (j) Carter Index (CTR2), (k) Structure Insensitive
Pigment Index (SIPI), (l) Gitelson and Merzlyak Index (GM), (m) Water Index (WI), (n) Moisture
Stress Index (MSI), (o) Cellulose Absorption Index (CAI), (p) Normalized Difference Water Index
(NDWI), (q) Renormalized Difference Vegetation Index (RDVI), (r) Triangular Vegetation Index (TVI),
(s) Normalized Difference Infrared Index (NDII), (t) standardized Leaf Area Index Determining Index
(sLAIDI) and (a–l) chlorophyll-, (m–p) water content and (q–t) Leaf Area Index (LAI) respectively.
Star symbols denote illumination source, dotted lines denote tree row orientation and white crosses
indicate different scenes. Index values were obtained from scenes without background to represent
tree endmembers.

Figure 4 illustrates the complexity of viewing composition influences on biophysical and structural
variables estimation through vegetation indices. On the one hand, several indices—such as the NDVI,
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TCARI, PRI and CAI indices—showed an increase of R2 values with increased sensor zenith angles.
On the other hand, the sLAIDI showed higher R2 values with LAI at nadir compared to off-nadir
viewing angles. Figure 4 was only illustrative for imagery under ideal circumstances—i.e., pure canopy
scenes without the influence of background. Therefore, the viewing composition distribution of R2

values for the uniform weed background (S2) are shown in Figure 5 prior to the vegetation index
correction (Section 3.2). Figure 5 was limited to results from the S2 background scenario, as other
scenarios presented similar distributions.
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Figure 5. Viewing composition distribution of coefficient of determination (R2) values between
(a) NDVI, (b) OSAVI, (c) MCARI, (d) TCARI, (e) ZM, (f) SRPI, (g) PRI, (h) NPCI, (i) CTR1, (j) CTR2,
(k) SIPI, (l) GM, (m) WI, (n) MSI, (o) CAI, (p) NDWI, (q) RDVI, (r) TVI, (s) NDII, (t) sLAIDI and (a–l)
chlorophyll-, (m–p) water content and (q–t) LAI respectively. Star symbols denote illumination source,
dotted lines denote tree row orientation and white crosses indicate different scenes. Index values were
obtained from scenes with a uniform weed background (S2) before a vegetation index correction.

The distribution of R2 values in Figure 5 illustrated the influence of variable viewing angles on
vegetation indices in a realistic scenario (i.e., uniform background of vegetation). For several indices,
this distribution was mirrored around the row orientation (i.e., NDVI, SRPI, PRI, SIPI and NDII). This
effect could most likely be attributed to variable canopy fraction distribution, as off-nadir viewing
imagery perpendicular to the row orientation would represent a decreasingly smaller fraction of
background. To circumvent this problem, a vegetation index correction algorithm (Section 3.2) was
applied. The distribution of R2 values for S2 after the correction is shown in Figure 6. In addition,
viewing geometry differences for R2 values between index values and biophysical variables are listed
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in Table 4. For Table 4, the differences between viewing compositions were quantified through the
range of R2 values for each index and all viewing compositions in each scenario (Section 2.1).

Despite the correction algorithm removing the effects of variable canopy distribution in Figure 6
and Table 4, several indices were still significantly dependent on viewing composition. Only the
distribution of R2 values for S2 was shown in Figure 6, as other background scenarios showed
similar distributions, although the scale varied depending on either vegetated or non-vegetated
background scenarios.
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Figure 6. Viewing composition distribution of coefficient of determination (R2) values between
(a) NDVI, (b) OSAVI, (c) MCARI, (d) TCARI, (e) ZM, (f) SRPI, (g) PRI, (h) NPCI, (i) CTR1, (j) CTR2,
(k) SIPI, (l) GM, (m) WI, (n) MSI, (o) CAI, (p) NDWI, (q) RDVI, (r) TVI, (s) NDII, (t) sLAIDI and (a–l)
chlorophyll-, (m–p) water content and (q–t) LAI respectively. Star symbols denote illumination source,
dotted lines denote tree row orientation and white crosses indicate different scenes. Index values were
obtained from scenes with a uniform weed background (S2) after a vegetation index correction.

Figure 6 shows the dependency of viewing compositions for several vegetation indices while
estimating biophysical and structural variables. Some indices showed higher R2 values for nadir
viewing scenes and a decrease towards more off-nadir viewing scenes, for example the ZM (Figure 6e),
SIPI (Figure 6k) and GM1 indices (Figure 6l). SRPI (Figure 6f), PRI (Figure 6g) and NDII (Figure 6s)
showed increased R2 values for off-nadir scenes perpendicular to the row orientation, while R2 values
decreased for scenes parallel to row orientation for higher sensor zenith angles.
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Table 4. Overview of the ranges for coefficient of determination values (R2) between biophysical
or structural variables and vegetation indices over different viewing compositions (Section 2.1).
The distinction was made between chlorophyll content, water content and Leaf Area Index
(LAI)—related indices. Results were shown for reference (without background) and a uniform soil
background (S1), a uniform weed background (S2) background, a variable weed and soil background
(S3) and a variable chlorophyll weed background (S4) after the use of a vegetation index correction
(Section 3.2).

Index Reference R2 Range S1 R2 Range S2 R2 Range S3 R2 Range S4 R2 Range

Chlorophyll content related indices

NDVI 0.67 *–0.77 * 0.03 *–0.20 * 0.26 *–0.39 * 0.06 *–0.21 * 0.30 *–0.43 *
OSAVI 0.31 *–0.61 * 0.01 *–0.06 * 0.01 *–0.11 * 0.01 *–0.05 * 0.02 *–0.12 *
MCARI 0.77 *–0.95 * 0.42 *–0.53 * 0.09 *–0.46 * 0.09 *–0.33 * 0.11 *–0.49 *
TCARI 0.93 *–0.97 * 0.40 *–0.65 * 0.25 *–0.67 * 0.29 *–0.55 * 0.29 *–0.65 *

ZM 0.78 *–0.90 * 0.31 *–0.50 * 0.37 *–0.57 * 0.31 *–0.50 * 0.43 *–0.59 *
SRPI 0.81 *–0.94 * 0.41 *–0.57 * 0.59 *–0.67 * 0.45 *–0.61 * 0.59 *–0.70 *
PRI 0.68 *–0.71 * 0.56 *–0.62 * 0.52 *–0.60 * 0.34 *–0.58 * 0.55 *–0.65 *

NPCI 0.83 *–0.93 * 0.40 *–0.57 * 0.57 *–0.67 * 0.44 *–0.61 * 0.58 *–0.69 *
CTR1 0.87 *–0.91 * 0.42 *–0.58 * 0.40 *–0.63 * 0.22 *–0.48 * 0.40 *–0.66 *
CTR2 0.80 *–0.89 * 0.19 *–0.42 * 0.39 *–0.58 * 0.18 *–0.39 * 0.45 *–0.61 *
SIPI 0.69 *–0.81 * 0.04 *–0.22 * 0.24 *–0.43 * 0.07 *–0.21 * 0.28 *–0.48 *
GM 0.79 *–0.90 * 0.31 *–0.51 * 0.40 *–0.61 * 0.30 *–0.50 * 0.44 *–0.61 *

Water content related indices

WI 0.22 *–0.41 * 0.07 *–0.21 * 0.10 *–0.20 * 0.07 *–0.16 * 0.08 *–0.21 *
MSI 0.18 *–0.45 * 0.02 *–0.12 * 0.04 *–0.17 * 0.01 *–0.08 * 0.04 *–0.17 *
CAI 0.50 *–0.84 * 0.01 *–0.13 * 0.02 *–0.25 * 0.00–0.12 * 0.02 *–0.21 *

NDWI 0.24 *–0.45 * 0.05 *–0.15 * 0.08 *–0.18 * 0.03 *–0.08 * 0.08 *–0.20 *

LAI related indices

RDVI 0.26 *–0.55 * 0.01 *–0.10 * 0.00–0.13 * 0.01 *–0.08 * 0.00–0.15 *
TVI 0.23 *–0.71 * 0.00–0.01 * 0.00–0.06 * 0.00–0.01 * 0.00–0.02 *

NDII 0.30 *–0.53 * 0.07 *–0.29 * 0.09 *–0.26 * 0.05 *–0.22 * 0.09 *–0.26 *
SLAIDI 0.53 *–0.75 * 0.04 *–0.21 * 0.00 *–0.21 * 0.03 *–0.17 * 0.02 *–0.20 *

* p-value < 0.01.

4.2. Real Imagery

Similarly to the synthetic imagery, the satellite imagery was corrected for canopy cover fraction
distribution based on the vegetation index correction algorithm described in [28]. Afterwards,
index values for each plot were extracted. The R2 values between vegetation indices and measured
biophysical variables are presented in Table 5.

The results depicted in Table 5 showed significant correlations between biophysical variables
and vegetation indices when combining both orchards. Significant R2 values were found between
chlorophyll content and the PRI, SRPI, NPCI and CTR1 indices. However, after processing imagery
for both orchards separately, significantly higher R2 values were found in the rainfed orchard for
chlorophyll related indices. For example, R2 values of 0.64, 0.59 and 0.58 for OSAVI, NDVI and CTR2
index values respectively. On the other hand, indices in the irrigated orchard showed no significant
correlations. To visualize the influence of variable viewing geometry on the relationship between index
values and biophysical variables, R2 values were calculated for each available viewing composition.
In order to compare different row orientations, only the relative angle between the row azimuth and
view azimuth was used. The results are shown in Figure 7.
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Table 5. Coefficient of determination (R2) values between biophysical and structural variables and
vegetation indices for satellite imagery (Section 2.2.2) after the use of a vegetation index correction
(Section 3.2). The distinction was made between chlorophyll content, water content and Leaf Area
Index (LAI)—related indices for both orchards combined and for each orchard separately. Indices for
which appropriate bands were not available were omitted (Table 2).

Index

R2 Values
both

Orchards
(n = 232)

R2 Values
Irrigated
Orchard
(n = 144)

R2 Values
Rainfed
Orchard
(n = 88)

Index

R2 Values
both

Orchards
(n = 232)

R2 Values
Irrigated
Orchard
(n = 144)

R2 Values
Rainfed
Orchard
(n = 88)

Chlorophyll content related indices Water content related indices

NDVI 0.03 0.00 0.59 * WI 0.00 0.01 0.16 *
OSAVI 0.01 0.06 * 0.64 * MSI - - -
MCARI 0.03 0.12 * 0.48 * CAI - - -
TCARI 0.01 0.00 0.02 NDWI - - -

ZM - - -
SRPI 0.14 * 0.04 0.30 * LAI related indices
PRI 0.25 * 0.06 * 0.16 * RDVI 0.00 0.00 0.01

NPCI 0.18 * 0.03 0.40 * TVI 0.01 0.01 0.02
CTR1 0.37 * 0.01 0.27 * NDII - - -
CTR2 0.12 * 0.04 * 0.58 * SLAIDI - - -
SIPI 0.02 0.02 0.38 *
GM 0.05 * 0.02 0.43 *

* p-value < 0.01.
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Figure 7. Viewing composition distribution of coefficient of determination (R2) values between
(a) Normalized Difference Vegetation Index (NDVI), (b) Optimization Soil-Adjusted Vegetation Index
(OSAVI), (c) Modified Chlorophyll Absorption in Reflectance Index (MCARI), (d) Transformed
Chlorophyll Absorption in Reflectance Index (TCARI), (f) Simple Ratio Pigment Index (SRPI),
(g) Photochemical Reflectance Index (PRI), (h) Normalized Pigment Chlorophyll Index (NPCI), (i) Carter
Index (CTR1), (j) Carter Index (CTR2), (k) Structure Insensitive Pigment Index (SIPI), (l) Gitelson and
Merzlyak Index (GM), (m) Water Index (WI), (q) Renormalized Difference Vegetation Index (RDVI),
(r) Triangular Vegetation Index (TVI) and (a–l) chlorophyll-, (m) water content and (q–r) Leaf Area Index
(LAI) respectively. Star symbols viewing geometries. Index values were obtained after the use of a
vegetation index correction (Section 3.2) from imagery at irrigated and rainfed orchard (Section 2.2).
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Figure 7 showed the influence of viewing geometry on the estimation of biophysical and structural
variables through vegetation indices. For several indices, the shaded side of the canopy presented
higher R2 values compared to the sunlit side—i.e., NDVI (Figure 7a), MCARI (Figure 7c), TCARI
(Figure 7d), CTR2 (Figure 7j) and RDVI (Figure 7q). Conversely, several indices were presenting higher
R2 values for the sunlit side compared to the shaded side—i.e., CTR1 (Figure 7i) and TVI (Figure 7r).
Finally, some indices presented high R2 values for both sunlit and shaded sides—i.e., OSAVI (Figure 7b),
SIPI (Figure 7k) and WI (Figure 7m)—further illustrating that variable viewing geometry should be
avoided or accounted for.

5. Discussion

The use of remote sensing within capital intensive orchard crops provides alternatives to time
consuming, labor intensive and destructive in situ measurements. Practical use in hedgerow orchards
under temperate climate conditions requires the use of high spatial resolution satellite sensors with
off-nadir viewing capabilities [10,11]. However, this presence of variable viewing angles could affect
the relationship between biophysical variables and spectral measurements [4,12,13]. Moreover, variable
viewing angles within and between time series could obstruct the distinction between genuine changes
and viewing geometry influences. In this study, the distribution of R2 values for different viewing
compositions (Figures 4–7) and the ranges for different background scenarios (Table 4) showed the
necessity of careful selection of vegetation indices for applications using spectral imagery acquired
under or subject to multiple viewing geometries.

For high spatial resolution imagery, changing viewing geometries would cause both differences
related to Bidirectional Reflectance Distribution Function (BRDF) influences [21] and to variable canopy
fraction mixtures. The former was visible for the tree endmembers, rendered without background
and extracted from pure canopy pixels (Figure 4). For these reference images, several indices showed
a variable distribution favoring more nadir viewing—i.e., sLAIDI (Figure 4t)—or off-nadir viewing
scenes—i.e., OSAVI (Figure 4b), WI (Figure 4m), CAI (Figure 4o) and TVI (Figure 4r). These effect
could be attributed to the inherent BRDF effects and should be avoided or corrected for [16–21].
However, other indices showed a less significant change in R2 values and were less affected for these
ideal circumstances.

The synthetic imagery also demonstrated a high dependence of several indices towards canopy
fraction distribution (Figure 5), which was removed through a vegetation index correction (Figure 6).
After the correction, the lowest R2 values from the synthetic imagery were found for the most variable
background scenario—i.e., the soil and weed background or S3 (Table 4). Generally, the differences
between different background scenarios were relatively small. This was most likely the result of the
vegetation index correction [28], which removed most of the influence of background mixtures and
variable canopy cover fractions. Exceptions hereof were indices that were related to vegetative cover
fraction, e.g., NDVI [71], which showed significantly higher R2 values for vegetated backgrounds (S2
and S4, Table 4) compared to non-vegetated backgrounds (S1 and S3, Table 4). This could be the result
of the assumption of Lambertian behavior for the soil backgrounds. Although the range of R2 values
will be similar, the R2 values could be lower for non-Lambertian backgrounds. Overall, the R2 values
were significantly higher between vegetation indices and chlorophyll content compared to LAI and
water content, because of larger differences between treatments and the inherent relationship between
leaf area and the amount of canopy water content [5].

For the synthetic imagery, several commonly used vegetation indices presented an influence
towards variable viewing geometries. PRI, NDII and SRPI values showed higher R2 values
perpendicular to the row orientation compared to parallel to rows for higher off-nadir view angles
(Figure 6). This might be attributed to the inclusion of background with parallel viewing to the rows,
as imagery perpendicular to the rows would not present any background. Overall, differences between
off-nadir viewing parallel or perpendicular to the row orientation might be greater without the use of
the vegetation index correction to normalize for different canopy cover fractions. On the other hand,
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this view angle sensitivity of PRI was similar to [24,25,72], finding a large difference between PRI
values from forward (shaded) and backward (sunlit) scattered scenes. Other indices, such as NDVI,
GM, ZM and SIPI, showed a decrease in R2 values from nadir to off-nadir viewing scenes (Figure 6).
These results were similar to studies indicating a high dependence of NDVI towards variable viewing
angles [24,73,74] and a degraded correlation with NDVI-derived products [18].

The R2 values of satellite derived vegetation indices (Table 5) were significantly lower compared
to the synthetic images (Table 4). This was most likely by the restricted amount of point measurements
for the real imagery and the use of different row orientations within and between the orchards. On the
other hand, also a suboptimal vegetation index correction could cause a decrease in R2 values between
indices and variables. For the rainfed orchard, R2 increased significantly because of the similar row
azimuth for all ground control plots. For the irrigated orchard, a significant decrease in R2 values was
the result of both sunlit and shaded canopies within one scene, as both 41 and 131˝ row orientations
were monitored. The increased influence of shadow compared to the synthetic imagery was caused
by a decrease in illumination elevation and the presence of a hedgerow cropping system causing
one predominantly shaded and sunlit side [41,75]. Several studies have shown the negative effect of
shaded canopy parts on the correlation between vegetation indices and biophysical variables [3,4,76].
As the virtual orchard trees consisted of spherical canopies, shaded canopy sections and the effects of
shadow on the vegetation indices were of less importance [3].

The vegetation index correction algorithm could not mitigate the inclusion of shadow on the
variation of index values, as it is not directly related to canopy cover fraction. Conversely, problems
could be avoided by segmenting or classifying the canopies into sunlit and shaded areas—e.g.,
Stagakis et al. [2,3]. However, for hedgerow systems problems with canopy anisotropy would be
enlarged and cause significant differences between both faces of the canopy [13], obstructing derivation
of structural variables—i.e., plant cover, canopy height and biomass—from multiple viewing angles.
Another solution would be the minimization of shaded pixels in the analysis [3,76,77]. To illustrate
the usefulness of this approach, a selection was made for all satellite images (Section 2.2) based on
row orientation, viewing and illumination angles. Similarly to [4], scenes with high off-nadir viewing
angles—i.e., off-nadir viewing angles over 20˝—and viewing geometries opposite to the sun were
removed as they consisted mostly of shaded canopies. Off-nadir viewing angles under 20˝ would
result in partially sunlit scenes and were shown less affected [4]. The average R2 values for all indices
after the selection of sunlit image pixels are shown in Table 6.

Table 6 illustrated the usefulness of pixel selection based on scene illumination for the irrigated
orchard, as a significant increase in R2 values was found between biophysical variables and index
values compared to Table 5. The indices showing a significant increase also showed higher R2 values
for sunlit scene compositions in Figure 7. On the other hand, indices which presented higher R2 values
for shaded scene compositions—i.e., NDVI, CTR2, MCARI, OSAVI and TCARI—showed similar or
decreased R2 values.

For the rainfed orchard, a significant decrease of R2 values was present for almost all indices after
the selection of sunlit pixels compared to Table 5. This was the effect of the different growing systems
within both orchards. On the one hand, the Spindle bush system (rainfed orchard) resulted in open
tree canopies and more sunlit areas [41]. On the other hand, the hedgerow V-system (irrigated orchard)
resulted in variable canopy faces—i.e., one predominantly sunlit and shaded side [41].

With regards to the optimal vegetation indices for high spatial resolution imagery, PRI, CTR1, SIPI
and GM provided more stable correlations with chlorophyll content for variable viewing geometries
(Figure 6, Tables 5 and 6). However, these indices were highly affected by the canopy fraction
distribution and should be corrected or normalized prior to analysis (Figures 5 and 6). With regards to
water content and LAI, WI and sLAIDI provided good correlations for nadir viewing scenes, with a
significant decrease towards off-nadir viewing angles. Other vegetation indices could be used in certain
circumstances, but should be avoided in time series with variable viewing angles, e.g., NDVI, OSAVI,
MCARI, TCARI, RDVI and TVI (Figure 6, Tables 5 and 6). Although the vegetation indices (Table 2)
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were selected based on previous studies in fruit orchards, the list was not complete [1,2,64]. Further
research is required for vegetation indices not represented here prior to their use for applications with
multiple viewing angles.

Table 6. Coefficient of determination (R2) values between biophysical and structural variables and
vegetation indices for satellite imagery (Section 2.2.2) after the use of a vegetation index correction
(Section 3.2). The distinction was made between chlorophyll content, water content and Leaf Area
Index (LAI)—related indices for both orchards combined and for each orchard separately. Pixels were
selected based on the combination of large off-nadir viewing angles (i.e., over 20˝) and a viewing
geometry on the opposite side of the rows with regards to the illumination source. Indices for which
appropriate bands were not available were omitted (Table 2).

Index

R2 Values
both

Orchards
(n = 160)

R2 Values
Irrigated
Orchard
(n = 112)

R2 Values
Rainfed
Orchard
(n = 48)

Index

R2 Values
both

Orchards
(n = 160)

R2 Values
Irrigated
Orchard
(n = 112)

R2 Values
Rainfed
Orchard
(n = 48)

Chlorophyll content related indices Water content related indices
NDVI 0.01 0.01 0.01 WI 0.07 * 0.13 * 0.00
OSAVI 0.04 0.07 * 0.04 MSI - - -
MCARI 0.14 * 0.22 * 0.00 CAI - - -
TCARI 0.06 * 0.04 0.02 NDWI - - -

ZM - - -
SRPI 0.07 * 0.09 * 0.13 LAI related indices
PRI 0.24 * 0.28 * 0.20 RDVI 0.02 0.05 0.00

NPCI 0.09 * 0.11 * 0.14 TVI 0.00 0.17 * 0.01
CTR1 0.37 * 0.42 * 0.29 * NDII - - -
CTR2 0.02 0.06* 0.01 SLAIDI - - -
SIPI 0.16* 0.24* 0.21
GM 0.20* 0.23* 0.07

* p-value < 0.01.

Overall, the results illustrated the necessity of a vegetation index selection or correction based on
each specific circumstance and data set. However, through the careful selection of vegetation indices,
an optimal derivation of biophysical variable should be plausible for applications with multiple
viewing angles. Moreover, depending on the size of the available time series for a fixed target location,
index values could be normalized with regards to view angle—e.g., Seaquist and Olsson [73]. However,
the most important limitation to this approach is the high amount of images required within a relatively
small time window to minimize influences of a changing solar angle.

6. Conclusions

Stress-related biophysical and structural variables of capital intensive orchard crops can be
approximated with accurate and consistent estimations of spectral vegetation indices from off-nadir
viewing satellite imagery. However, the variable viewing compositions of each image could affect this
relationship. Most of the research studying this effect has focused on cropping systems with complete
canopy cover, while imagery over orchard cropping systems could cause mixtures between canopies
and backgrounds. This study investigated the sensitivity of common spectral vegetation indices on
changing viewing geometries and its relationship with the estimation of biophysical variables—i.e.,
chlorophyll content, water content and Leaf Area Index (LAI). Ultimately to minimize variable viewing
influences within and between time series, which could obstruct change detection because of the
confusion with genuine changes. This was achieved through the use of synthetic and satellite imagery
over a virtual citrus orchard and an experimental hedgerow pear orchard respectively.

Results indicated significant differences between nadir and off-nadir viewing scenes for some
indices (∆R2 > 0.4). Several indices—such as the Photochemical Reflectance Index (PRI), Normalized
Difference Infrared Index (NDII) and Simple Ratio Pigment Index (SRPI)—showed higher coefficient
of determination (R2) values for higher off-nadir view angles perpendicular compared to parallel to
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the row orientation. On the other hand, indices—such as the Normalized Difference Vegetation Index
(NDVI), Gitelson and Merzlyak (GM), Zarco and Miller (ZM) and Structure Insensitive Pigment Index
(SIPI)—showed a decrease in R2 values from nadir to off-nadir viewing scenes.

In general, this study showed the necessity for a careful selection of vegetation indices for
estimating biophysical variables, especially for applications with multiple viewing angles.
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