
Journal of

Imaging

Article

Memory Efficient VLSI Implementation of Real-Time
Motion Detection System Using FPGA Platform

Sanjay Singh 1,2,*, Atanendu Sekhar Mandal 1,2, Chandra Shekhar 1,2 and Anil Vohra 3

1 CSIR—Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani 333031, Rajasthan, India;
atanu@ceeri.ernet.in (A.S.M.); chandra@ceeri.ernet.in (C.S.)

2 Academy of Scientific & Innovative Research (AcSIR), Pilani 333031, Rajasthan, India
3 Electronic Science Department, Kurukshetra University, Kurukshetra 136119, Haryana, India;

vohra64@gmail.com
* Correspondence: sanjay.csirceeri@gmail.com; Tel.: +91-1596-252-214; Fax: +91-1596-242-294

Academic Editor: Gonzalo Pajares Martinsanz
Received: 25 February 2017; Accepted: 5 June 2017; Published: 7 June 2017

Abstract: Motion detection is the heart of a potentially complex automated video surveillance
system, intended to be used as a standalone system. Therefore, in addition to being accurate and
robust, a successful motion detection technique must also be economical in the use of computational
resources on selected FPGA development platform. This is because many other complex algorithms
of an automated video surveillance system also run on the same platform. Keeping this key
requirement as main focus, a memory efficient VLSI architecture for real-time motion detection
and its implementation on FPGA platform is presented in this paper. This is accomplished by
proposing a new memory efficient motion detection scheme and designing its VLSI architecture.
The complete real-time motion detection system using the proposed memory efficient architecture
along with proper input/output interfaces is implemented on Xilinx ML510 (Virtex-5 FX130T)
FPGA development platform and is capable of operating at 154.55 MHz clock frequency. Memory
requirement of the proposed architecture is reduced by 41% compared to the standard clustering
based motion detection architecture. The new memory efficient system robustly and automatically
detects motion in real-world scenarios (both for the static backgrounds and the pseudo-stationary
backgrounds) in real-time for standard PAL (720 × 576) size color video.

Keywords: real-time motion detection; VLSI architecture; FPGA implementation; video surveillance
system; smart camera system

1. Introduction

Motion detection, one of the fundamental and most important problem of computer vision, plays
a very important role in the realization of a complete vision based automated video surveillance system
for automatic scene analysis, monitoring, and generation of security alerts based on relevant motion
in a video scene. Motion detection in a video scene provides significant and important information
related to movement and presence of objects in a scene. This information helps in achieving higher
level objectives such as target detection and segmentation, target tracking, object recognition, scene
analysis, etc. Furthermore, real-time motion detection allows more efficient hard disk storage by only
archiving video frames where a motion threshold is crossed. By selecting the frames of relevant motion,
it also reduces the communication and processing overheads (which are key implementation issues for
an automated video surveillance system) in a remote video surveillance scenario.

The problem of motion detection can be stated as “given a set of images of the same scene
taken at several different times, the goal of motion detection is to identify the set of pixels that
are significantly different between the last image of the sequence and the previous images” [1].

J. Imaging 2017, 3, 20; doi:10.3390/jimaging3020020 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
http://dx.doi.org/10.3390/jimaging3020020
http://www.mdpi.com/journal/jimaging

J. Imaging 2017, 3, 20 2 of 28

The identified pixels comprise the motion mask. One of the key issues is that the motion mask should
not contain “unimportant” or “nuisance” forms of motion.

The importance of motion detection for designing an automated video surveillance system can
be gauged from the availability of a large number of robust and complex algorithms that have been
developed to-date, and the even larger number of articles that have been published on this topic so
far. The simplest approach for motion detection is the frame differencing method in which motion
detection can be achieved by finding the difference of the pixels between two adjacent frames. If the
difference is higher than a threshold, the pixel is identified as foreground otherwise background.
The threshold is chosen empirically. Different methods and criteria for choosing the threshold have
been surveyed and their comparative results have been reported in the literature [2–4]. Researchers
have reported several motion detection methods that are closely related to simple differencing, e.g.,
change vector analysis [5–7], image rationing [8], and frame differencing using sub-sampled gradient
images [9]. The simplicity of frame differencing based approaches comes at the cost of motion detection
quality. For a chosen threshold, simple differencing based approaches are unlikely to outperform the
more advanced algorithms proposed for real-world surveillance applications. There are several other
motion detection techniques such as predictive models [10–14], adaptive neural network [15], and
shading models [16–18]. A comprehensive description and comparative analysis of these methods has
been presented by Radke et al. [1].

Practical real-world video surveillance applications demand a continuous updating of the
background frame to incorporate any permanent scene change, i.e., if a pixel has remained stationary
for a sufficient number of frames, it must be copied into the background frame, for example
light intensity changes in day time must be a part of the background. For this purpose, several
researchers [19,20] have described adaptive background subtraction techniques for motion detection.
They have used single Gaussian Density Function to model the background. These algorithms succeed
in learning and refining the single background model. They are capable of handling illumination
changes in a scene and are well suited for stationary background scenarios.

Due to pseudo-stationary nature of the background in real-world scenes, assuming that
background is perfectly stationary for surveillance applications is a serious flaw. For example, in a
real-world video scene, there may be swaying branches of trees, moving tree leaves in windows
of rooms, moving clouds, the ripples of water on a lake, or moving fan in the room. These are
small repetitive motions (typically not important) and so should be incorporated into background.
The single background model based approaches mentioned above are incapable of correctly modeling
such pseudo-stationary backgrounds. Stauffer and Grimson [21] recognized that these kinds of
pseudo-stationary backgrounds are inherently multi-model and hence they developed the technique
of an Adaptive Background Mixture Models, which models each pixel by a mixture of Gaussians.
According to this method, every incoming pixel value is compared against the existing set of models
at that location to find a match. If there is a match, the parameters of matched model are updated
and the incoming pixel is classified as background pixel. If there is no match, the incoming pixel is
motion pixel and the least-likely model (model having minimum weighted Gaussian) is discarded
and replaced by a new one with incoming pixel as its mean value and a high initial variance value.
However, maintaining these mixtures for every pixel is an enormous computational burden and
results in low frame rates when compared to previous approaches. Butler et al. [22] proposed a new
approach, similar to that of Stauffer and Grimson [21], but with a reduced computational complexity.
The processing, in this approach, is performed on YCrCb video data format, but it still requires many
floating point computations and needs large amounts of memory for storing background models.

Within computer vision community, a myriad of algorithms exist for motion detection,
unfortunately, most of these are not suitable for real-time processing and at the same time require a
huge amount of storage space (memory) for storing multiple background models. Because of this,
the objective of performing motion detection in real-time on limited computational resources for
developing standalone automated video surveillance system proves to be a major bottleneck.

J. Imaging 2017, 3, 20 3 of 28

Furthermore, it is important to note that motion detection is one component of a potentially
complex automated video surveillance system, intended to be used as a standalone system. Therefore,
in addition to being accurate and robust, a successful motion detection technique must also be
economical in the use of computational resources on FPGA development platform. This is because
many other complex algorithms of an automated video surveillance system also run on the same FPGA
platform. In order to address this problem of reducing the computational complexity, Chutani and
Chaudhury [23] proposed a block-based clustering scheme with a very low complexity for motion
detection. On the one hand, this scheme is robust enough for handling pseudo-stationary nature
of background, and on the other it significantly lowers the computational complexity. To achieve
the real-time performance, a dedicated VLSI architecture has been designed for this clustering based
motion detection scheme by Singh et al. [24]. After analyzing the synthesis results, it is found that
proposed architecture for clustering based motion detection scheme utilizes 168 36Kb Block RAMs out
of the total 298 (approximately 56%) Block RAMs are on a Xilinx ML510 (Virtex-5 FX130) FPGA board.
This implies that a large amount of on-chip memory (Block RAMs) is utilized by motion detection
system, which is only one of the potentially complex and important components of an automated video
surveillance system. This is a major concern for designing of a complete standalone automated video
surveillance system which requires the implementation of multiple hardware architectures on the same
FPGA platform—as not much FPGA Block RAMs are left for other complex operations such as focused
region extraction, object tracking, and video history generation. For this reason, further emphasis
needs to be given to the minimization of memory requirements of clustering-based motion detection
algorithm and architecture without compromising on accuracy and robustness of motion detection.

To overcome this problem, based on certain key observation and associated modification in
original clustering-based motion detection algorithm, we have proposed a memory-efficient motion
detection scheme and designed its dedicated memory-efficient VLSI architecture. Memory requirement
of the proposed architecture is reduced by 41% compared to standard clustering based motion detection
architecture [24]. We have integrated the implemented memory efficient VLSI architectural modules
with the camera interface module and DVI display controller and a working prototype system has
been developed using Xilinx ML510 (Virtex-5 FX130T) FPGA development platform for real-time
motion detection in a video scene. The system so developed is capable of detecting relevant motion in
real-time and can filter the frames of interest for remote surveillance scenarios based on visual motion
in a scene. The implemented memory-efficient system can be used as a component of a complete
standalone automated video surveillance system.

In short, the contributions of this work over the existing literature are threefold. First, we have
proposed and designed a memory efficient hardware implementation friendly motion detection
algorithm. Further, its functionality has been verified through software implementation using C/C++
programming language. Second, for the proposed algorithm, we have designed and synthesized
a VLSI architecture capable of providing real-time performance. Finally, we have integrated the
implemented architectural modules with the camera interface module and DVI display controller and
a working prototype system has been developed for real-time motion detection in a video scene.

2. Proposed Motion Detection Algorithm

The original clustering-based motion detection algorithm [23] and its VLSI architecture [24] were
re-looked and the memory analysis of the implemented architecture was carried out. There are three
memory components in the proposed architecture: Input Buffer Memory, Output Buffer Memory, and
Parameter Memory (Centroid Memory and Frame Number Memory). Each of the two output buffer
memory modules stores one-bit output of 4 × 4 pixel block for 4 rows. This requires only 180 bits for
each memory. Therefore, both the output memory modules are implemented using LUTs instead of
Block RAMs and thus utilizes FPGA slices and not the on-chip memory. The input buffer memory
requires eight 36-Kb Block RAMs. The Parameter memory requires 160 36-Kb Block RAMs (96 36-Kb
Block RAMs for Centroid Parameter memory and 64 36-Kb Block RAMs for Frame Number Parameter

J. Imaging 2017, 3, 20 4 of 28

Memory). As output buffer memory is implemented using FPGA slice LUTs so there is no scope of
Block RAM reduction for this memory component. Therefore, we need to focus on minimizing the
memory requirements for Input Buffer Memory and Parameter Memory. As Input Buffer Memory,
requires only eight 36-Kb Block RAMs, effect of optimizations/improvements in Input Buffer Memory
will be very small on overall memory requirements. On the other hand, the optimizations/reduction
in Parameter Memory will significantly affect overall memory requirements.

Furthermore, based on prior VLSI design experience and computer vision algorithm knowledge,
we observed that the optimizations of Input Buffer Memory will come through architectural
modifications, while the optimizations/reduction in Parameter Memory will come through algorithmic
modifications. A new architecture has also been proposed for Input Buffer Memory for enabling
streaming video processing which utilizes only three 36-Kb Block RAMs and four registers (each of
24-bit width) as against the earlier requirement of eight 36-Kb Block RAMs for Input Buffer Memory.

Therefore, in order to reduce the parameter memory size we proposed a new algorithm based on
certain observations and modifications in the original clustering-based motion detection scheme [23].
It has been found that the proposed modifications have resulted in 40% reduction in Parameter
Memory requirements. The algorithm is proposed and designed aiming at reduction in the memory
requirements without compromising on the robustness and accuracy of motion detection.

By proposing these architectural and algorithmic modifications, overall 41% reduction has
been achieved in total on-chip memory requirements as compared to the architecture designed and
implemented for the original clustering-based motion detection scheme. This reduction in memory
requirements is very significant.

In the hardware architecture implemented and discussed in [24] for original clustering based
motion detection scheme, almost 95% of the total utilized Block RAMs (160 36-Kb Block RAMs out of
168 utilized 36-Kb Block RAMs) are used by parameter memory for storing Centroid values and Frame
Number values of four clusters (used for modeling the pseudo-stationary backgrounds). The parameter
memory size is directly proportional to the size of the cluster group, block size, and video frame size.
Therefore, for given standard PAL (720 × 576) size color video streams, parameter memory size can be
reduced either by reducing the number of clusters from four to three or by increasing the 4 × 4 pixel
block size to a larger block size. However, Chutani and Chaudhury [23] had chosen to select a cluster
size of four clusters and block size of 4 × 4 pixels because empirically they had found that these values
result in a good balance between accuracy and computational complexity of their algorithm. Therefore,
reducing cluster size or increasing block size will result in the degradation of accuracy and robustness
of the clustering based motion detection scheme. In the first case, if the number of clusters is reduced to
three then the algorithm’s background model used to capture pseudo-stationary changes/movements
becomes weak and the algorithm becomes more sensitive to pseudo-stationary background changes,
resulting in false relevant motion detection outputs for pseudo-stationary background changes. In the
second case, for larger block sizes, the system becomes less sensitive to relevant motions in smaller areas
in a video scene. Therefore, none of the above two techniques can be used to reduce parameter memory
size as the objective is to reduce parameter memory size without compromising on the accuracy and
the robustness of motion detection. For this reason, we re-analyzed the original clustering based
motion detection algorithm [23] and the following observations resulted.

The background related information in the clustering-based motion detection algorithm is stored
and updated in parameter memory having two components viz. Centroid Memory and Frame
Number Memory. Each Centroid Memory location contains four Centroid values (corresponding to
four clusters), which contain the background color and intensity related information. Each Frame
Number Memory location stores four Frame Number values (corresponding to four clusters) which are
used to keep the record of update or replacement history of the Centroid value, i.e., for the particular
4 × 4 pixel block when (at what time or for what Frame Number) the cluster Centroid value is updated
or replaced. Now, the important observation is that during the cluster update (in the case a matching
cluster is found) or cluster replacement (in the case no matching cluster is found) the actual time or

J. Imaging 2017, 3, 20 5 of 28

frame number when the cluster is updated or replaced is not necessarily required. During cluster
update, the matching cluster number is required (i.e., first or second or third or fourth), not the actual
value of the Frame Number. In the case of cluster replacement, the oldest cluster number (which has
not been updated for the longest period of time) is required. This implies that there is no need of
storing the complete Frame Number value. An index value is sufficient to maintain the update or
replacement history of a cluster, which implies that it is the newest cluster (most recently updated or
replaced), the second newest cluster, the second oldest cluster, or the oldest cluster (which has not
been updated for the longest period of time). It further implies that a two-bit index value is sufficient
to record this information for four clusters. This reduces the 16-bit wide Frame Number Memory to
two-bit wide memory. This saves 56 36-Kb Block RAMs for PAL resolution color videos.

It is further observed that the record of cluster update or cluster replacement history can be
maintained by using appropriate logic without even using two-bit index value. In order to store
Centroid value of four clusters, there are four Centroid memories, i.e., CM1, CM2, CM3, and CM4.
Consider that, the first memory CM1 always contains the newest Centroid value, i.e., the Centroid
value of the cluster which is most recently updated (it is considered as Cluster 1), the second memory
CM2 always contains the second newest Centroid value, i.e., Centroid value of the cluster which has
been updated just before most recently updated cluster (it is considered as Cluster 2), the third memory
CM3 always contains the second oldest Centroid value, i.e., the Centroid value of the cluster which
has been updated just after oldest cluster (it is considered as Cluster 3), and the fourth memory CM4
always contains the oldest Centroid value, i.e., the Centroid value of the cluster which has not been
updated for the longest period of time (it is considered as Cluster 4). These considerations are shown
in Figure 1a. The algorithmic steps for performing motion detection based on these assumptions are
discussed next.

The main steps of the proposed memory efficient clustering based motion detection scheme
are Block Centroid Computation, Cluster Group Initialization, Cluster Matching, Cluster Updating,
Cluster Replacement, and Classification. Three steps of the proposed algorithm, i.e., Block Centroid
Computation, Cluster matching, and Classification are the same as that in the case of original clustering
based scheme. The remaining three steps of the proposed memory efficient motion detection algorithm,
i.e., Cluster Group Initialization, Cluster Updating, and Cluster Replacement are explained below.

Cluster Group Initialization is performed during first four frames. In the first frame, the fourth
cluster of each 4 × 4 pixel block is initialized with its Centroid set to Block Centroid of the corresponding
block of the first frame and therefore, it is stored in Centroid Memory CM4, as this is going to be the
oldest value at the end of the Cluster Group Initialization process. In the second frame, the third cluster
of each 4 × 4 pixel block is initialized with its Centroid set to Block Centroid of the corresponding
block of the second frame and therefore, it is stored in Centroid Memory CM3, as this is going to
be the second oldest value at the end of the Cluster Group Initialization process. In the third frame,
the second cluster of each 4 × 4 pixel block is initialized with its Centroid set to Block Centroid of the
corresponding block of the third frame and therefore, it is stored in Centroid Memory CM2, as this
is going to be the second newest value at the end of the Cluster Group Initialization process. In the
fourth frame, the first cluster of each 4 × 4 pixel block is initialized with its Centroid set to Block
Centroid of the corresponding block of the fourth frame and, therefore, it is stored in Centroid Memory
CM1, as this is going to be the newest value at the end of the Cluster Group Initialization process.
At the end of initialization process, the Centroid Memories (CM1, CM2, CM3, and CM4) contains the
Centroid values in order from the newest (CM1) to the oldest (CM4). The complete process is shown
in Figure 1b.

J. Imaging 2017, 3, 20 6 of 28

J. Imaging 2017, 3, 20 6 of 28

(a)

(b)

Figure 1. (a) Structure of parameter memory for storing centroid values of four clusters; and (b)
cluster group initialization process.

After initialization (in initial four frames), for all subsequent frames, the motion detection is
performed. During motion detection either of the two processes (i.e., Cluster Updating process or
Cluster Replacement process) is performed. Therefore, the objective is either to update the Centroid
value or to replace the Centroid value in the Centroid memories and maintain the order of newest
value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and CM4
respectively.

If a matching cluster is found (i.e., the Minimum Centroid Difference is less than the threshold)
within the cluster group then the matching cluster is updated. For this purpose, the Centroid value
of the matching cluster is updated with the average value of the matching cluster Centroid value and
incoming current Block Centroid value. The matching cluster can be any one of the four clusters, i.e.,
first or second or third or fourth.

Consider the first case of Cluster Updating, i.e., matching cluster is the first cluster. In this case,
Centroid memory CM1 is updated with the average value of the matching cluster Centroid value
and incoming current Block Centroid value. The updated value in CM1 is the newest value.
Therefore, no re-ordering of other memories values is required for arraigning the values in order of
newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and
CM4 respectively. The process is explained in Figure 2a.

Consider the second case of Cluster Updating, i.e., matching cluster is the second cluster. In this
case, Centroid memory CM2 is updated with the average value of the matching cluster Centroid
value and incoming current Block Centroid value. The updated value in CM2 is the newest value.
Therefore, the re-ordering of other memories values is required for arraigning the values in order of
newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and
CM4, respectively. For this purpose, the value of CM1 and updated value in CM2 are interchanged.
During interchanging, the new updated value in CM2 (which is latest updated value) is moved to

Figure 1. (a) Structure of parameter memory for storing centroid values of four clusters; and (b) cluster
group initialization process.

After initialization (in initial four frames), for all subsequent frames, the motion detection is
performed. During motion detection either of the two processes (i.e., Cluster Updating process or
Cluster Replacement process) is performed. Therefore, the objective is either to update the Centroid
value or to replace the Centroid value in the Centroid memories and maintain the order of newest value,
second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and CM4 respectively.

If a matching cluster is found (i.e., the Minimum Centroid Difference is less than the threshold)
within the cluster group then the matching cluster is updated. For this purpose, the Centroid value of
the matching cluster is updated with the average value of the matching cluster Centroid value and
incoming current Block Centroid value. The matching cluster can be any one of the four clusters, i.e.,
first or second or third or fourth.

Consider the first case of Cluster Updating, i.e., matching cluster is the first cluster. In this case,
Centroid memory CM1 is updated with the average value of the matching cluster Centroid value and
incoming current Block Centroid value. The updated value in CM1 is the newest value. Therefore,
no re-ordering of other memories values is required for arraigning the values in order of newest value,
second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and CM4 respectively.
The process is explained in Figure 2a.

Consider the second case of Cluster Updating, i.e., matching cluster is the second cluster. In this
case, Centroid memory CM2 is updated with the average value of the matching cluster Centroid value
and incoming current Block Centroid value. The updated value in CM2 is the newest value. Therefore,
the re-ordering of other memories values is required for arraigning the values in order of newest value,
second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and CM4, respectively.

J. Imaging 2017, 3, 20 7 of 28

For this purpose, the value of CM1 and updated value in CM2 are interchanged. During interchanging,
the new updated value in CM2 (which is latest updated value) is moved to CM1 and the old value of
CM1 is moved to CM2. The values of CM3 and CM4 remain unchanged. The process is explained
in Figure 2b. At the end of cluster updating process, the values are in the order of newest (CM1) to
oldest (CM4).

J. Imaging 2017, 3, 20 7 of 28

CM1 and the old value of CM1 is moved to CM2. The values of CM3 and CM4 remain unchanged.
The process is explained in Figure 2b. At the end of cluster updating process, the values are in the
order of newest (CM1) to oldest (CM4).

(a) (b)

(c) (d)

Figure 2. Cluster updating process: (a) first case; (b) second case; (c) third case; (d) fourth case.

Consider the third case of Cluster Updating, i.e., matching cluster is the third cluster. In this
case, Centroid memory CM3 is updated with the average value of the matching cluster Centroid
value and incoming current Block Centroid value. The updated value in CM3 is the newest value.
Therefore, the re-ordering of other memories values is required for arraigning the values in order of
newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and
CM4, respectively. For this purpose, the cluster Centroid values in CM1 and CM2 are shifted to CM2
and CM3, respectively, and these become older by one step. The latest updated value of CM3 is
moved to CM1. The value of CM4 remains unchanged. The process is explained in Figure 2c. At the
end of cluster updating process, the values are in the order of newest (CM1) to oldest (CM4).

Consider the last/fourth case of Cluster Updating, i.e., matching cluster is the fourth cluster. In
this case, Centroid memory CM4 is updated with the average value of matching cluster Centroid

Figure 2. Cluster updating process: (a) first case; (b) second case; (c) third case; (d) fourth case.

Consider the third case of Cluster Updating, i.e., matching cluster is the third cluster. In this case,
Centroid memory CM3 is updated with the average value of the matching cluster Centroid value and
incoming current Block Centroid value. The updated value in CM3 is the newest value. Therefore,
the re-ordering of other memories values is required for arraigning the values in order of newest
value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and CM4,
respectively. For this purpose, the cluster Centroid values in CM1 and CM2 are shifted to CM2 and
CM3, respectively, and these become older by one step. The latest updated value of CM3 is moved
to CM1. The value of CM4 remains unchanged. The process is explained in Figure 2c. At the end of
cluster updating process, the values are in the order of newest (CM1) to oldest (CM4).

J. Imaging 2017, 3, 20 8 of 28

Consider the last/fourth case of Cluster Updating, i.e., matching cluster is the fourth cluster.
In this case, Centroid memory CM4 is updated with the average value of matching cluster Centroid
value and incoming current Block Centroid value. The updated value in CM4 is the newest value.
Therefore, the re-ordering of other memories values is required for arraigning the values in order of
newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and
CM4 respectively. For this purpose, the cluster Centroid values in CM1, CM2, and CM3 are shifted to
CM2, CM3, and CM4, respectively and these become older by one step. The latest updated value of
CM4 is moved to CM1. The process is explained in Figure 2d. At the end of cluster updating process,
the values are in the order of newest (CM1) to oldest (CM4).

If no matching cluster is found (i.e., the Minimum Centroid Difference is greater than the threshold)
within the cluster group then oldest cluster is replaced. For this purpose, the oldest cluster which has
not been updated for the longest period of time, i.e., fourth cluster (Centroid value in Centroid memory
CM4) is replaced with a cluster having Centroid value set to incoming current Block Centroid value.
The new value in CM4 is the newest value as it is replaced most recently. Therefore, the re-ordering of
other memories values is required for arraigning the values in order of newest value, second newest
value, second oldest value, and oldest value in CM1, CM2, CM3, and CM4, respectively. For this
purpose, the cluster Centroid values in CM1, CM2, and CM3 are shifted to CM2, CM3, and CM4,
respectively, and these become older by one step. The latest (new) value of CM4 is moved to CM1.
The process is explained in Figure 3. At the end of the cluster replacement process, the values are in
the order of newest (CM1) to oldest (CM4).

J. Imaging 2017, 3, 20 8 of 28

value and incoming current Block Centroid value. The updated value in CM4 is the newest value.
Therefore, the re-ordering of other memories values is required for arraigning the values in order of
newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and
CM4 respectively. For this purpose, the cluster Centroid values in CM1, CM2, and CM3 are shifted
to CM2, CM3, and CM4, respectively and these become older by one step. The latest updated value
of CM4 is moved to CM1. The process is explained in Figure 2d. At the end of cluster updating
process, the values are in the order of newest (CM1) to oldest (CM4).

If no matching cluster is found (i.e., the Minimum Centroid Difference is greater than the
threshold) within the cluster group then oldest cluster is replaced. For this purpose, the oldest
cluster which has not been updated for the longest period of time, i.e., fourth cluster (Centroid value
in Centroid memory CM4) is replaced with a cluster having Centroid value set to incoming current
Block Centroid value. The new value in CM4 is the newest value as it is replaced most recently.
Therefore, the re-ordering of other memories values is required for arraigning the values in order of
newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3, and
CM4, respectively. For this purpose, the cluster Centroid values in CM1, CM2, and CM3 are shifted
to CM2, CM3, and CM4, respectively, and these become older by one step. The latest (new) value of
CM4 is moved to CM1. The process is explained in Figure 3. At the end of the cluster replacement
process, the values are in the order of newest (CM1) to oldest (CM4).

Figure 3. Cluster replacement process.

Thus, at the end of any of the processes, i.e., Cluster Group Initialization, Cluster Updating, or
Cluster Replacing, the four Centroid memories CM1, CM2, CM3, and CM4 contain values in the
order of newest value, second newest value, second oldest value, and oldest value in CM1, CM2,
CM3, and CM4, respectively. This process is performed for all the blocks in every incoming frame
and thus maintains the record of history of clusters without storing the frame number or the index
value. In other words, it keeps track of newest cluster (most recently updated or replaced), second
newest cluster, second oldest cluster, or oldest cluster (which has not been updated for the longest
period of the time) and does not require frame number or index value. Only this much information
about the history of the clusters (i.e., newest cluster, second newest cluster, second oldest cluster,
and oldest cluster) is required for performing clustering based motion detection. The proposed
novel scheme is thus successful in substantially reducing the memory requirement of clustering
based motion detection scheme, without any loss of accuracy in motion detection. The resulting

Figure 3. Cluster replacement process.

Thus, at the end of any of the processes, i.e., Cluster Group Initialization, Cluster Updating, or
Cluster Replacing, the four Centroid memories CM1, CM2, CM3, and CM4 contain values in the order
of newest value, second newest value, second oldest value, and oldest value in CM1, CM2, CM3,
and CM4, respectively. This process is performed for all the blocks in every incoming frame and
thus maintains the record of history of clusters without storing the frame number or the index value.
In other words, it keeps track of newest cluster (most recently updated or replaced), second newest
cluster, second oldest cluster, or oldest cluster (which has not been updated for the longest period of
the time) and does not require frame number or index value. Only this much information about the
history of the clusters (i.e., newest cluster, second newest cluster, second oldest cluster, and oldest
cluster) is required for performing clustering based motion detection. The proposed novel scheme is

J. Imaging 2017, 3, 20 9 of 28

thus successful in substantially reducing the memory requirement of clustering based motion detection
scheme, without any loss of accuracy in motion detection. The resulting reduction in Parameter
memory size is 40% as compared to the original clustering based motion detection scheme [23] with
no loss of accuracy or robustness of the system.

In order to reduce the memory requirement of motion detection algorithm, without negatively
impacting the quality of processed videos, it is important to accurately evaluate the proposed
algorithm against original clustering-based motion detection algorithm on video streams of different
real-world scenarios.

For this purpose, the standard clustering based algorithm and proposed memory efficient
algorithm have been programmed in C/C++ programming language. For running the code, a Dell
Precision T3400 workstation (with Windows XP operating system, quad-core Intel® CoreTM2 Duo
Processor with 2.93 GHz Operating Frequency, and 4 GB RAM) was used. Open Computer Vision
(OpenCV) libraries were used in the code for reading video streams (either stored or coming from
camera) and displaying motion detection results. Effect of removing the frame number from parameter
memory was evaluated on test bench videos taken from surveillance cameras. The selected video
streams have a resolution of 720 × 576 pixels (PAL size) and five-minute duration.

Figure 4 visually compares the results for both the motion detection algorithms (proposed and
original) for different indoor and outdoor conditions with pseudo-stationary backgrounds. In Figure 4a,
moving fan in background is present, while, in Figure 4b, moving leaves of trees are present. Top row
shows the original frames extracted from video streams. Second row shows the motion detection results
obtained from the original clustering based algorithm and the third row shows the motion detection
results obtained from the proposed memory efficient clustering based algorithm for respective frames.
To compare the results, pixel-by-pixel difference of second and third row images has been taken and it
gives black images (fourth row). This indicates that the proposed memory efficient algorithm produces
same motion detection results as original clustering based motion detection algorithm without any
loss of accuracy and robustness but with 40% reduction in memory requirement. The frame rate
for software-based implementation of memory efficient proposed motion detection algorithm is five
frames per second (fps) for PAL (720 × 576) resolution color videos.

J. Imaging 2017, 3, 20 9 of 28

reduction in Parameter memory size is 40% as compared to the original clustering based motion
detection scheme [23] with no loss of accuracy or robustness of the system.

In order to reduce the memory requirement of motion detection algorithm, without negatively
impacting the quality of processed videos, it is important to accurately evaluate the proposed
algorithm against original clustering-based motion detection algorithm on video streams of different
real-world scenarios.

For this purpose, the standard clustering based algorithm and proposed memory efficient
algorithm have been programmed in C/C++ programming language. For running the code, a Dell
Precision T3400 workstation (with Windows XP operating system, quad-core Intel® CoreTM2 Duo
Processor with 2.93 GHz Operating Frequency, and 4 GB RAM) was used. Open Computer Vision
(OpenCV) libraries were used in the code for reading video streams (either stored or coming from
camera) and displaying motion detection results. Effect of removing the frame number from
parameter memory was evaluated on test bench videos taken from surveillance cameras. The
selected video streams have a resolution of 720 × 576 pixels (PAL size) and five-minute duration.

Figure 4 visually compares the results for both the motion detection algorithms (proposed and
original) for different indoor and outdoor conditions with pseudo-stationary backgrounds. In Figure
4a, moving fan in background is present, while, in Figure 4b, moving leaves of trees are present. Top
row shows the original frames extracted from video streams. Second row shows the motion
detection results obtained from the original clustering based algorithm and the third row shows the
motion detection results obtained from the proposed memory efficient clustering based algorithm
for respective frames. To compare the results, pixel-by-pixel difference of second and third row
images has been taken and it gives black images (fourth row). This indicates that the proposed
memory efficient algorithm produces same motion detection results as original clustering based
motion detection algorithm without any loss of accuracy and robustness but with 40% reduction in
memory requirement. The frame rate for software-based implementation of memory efficient
proposed motion detection algorithm is five frames per second (fps) for PAL (720 × 576) resolution
color videos.

(a) (b)

Figure 4. Comparison of results of the proposed memory efficient motion detection algorithm with
the original clustering based motion detection scheme for: (a) indoor scenario; and (b) outdoor
scenario.

For a mathematical proof, for every frame of each video stream, the mean square error (MSE) is
calculated. MSE is a common measure of quality of video and is equivalent to other commonly used
measures of quality. For example, the peak signal-to-noise ratio (PSNR) is equivalent to MSE [25].
Some researchers measure the number of false positives (FP) and false negatives (FN) whose sum is
equivalent to the MSE [26]. MSE is defined as

Figure 4. Comparison of results of the proposed memory efficient motion detection algorithm with the
original clustering based motion detection scheme for: (a) indoor scenario; and (b) outdoor scenario.

For a mathematical proof, for every frame of each video stream, the mean square error (MSE) is
calculated. MSE is a common measure of quality of video and is equivalent to other commonly used
measures of quality. For example, the peak signal-to-noise ratio (PSNR) is equivalent to MSE [25].

J. Imaging 2017, 3, 20 10 of 28

Some researchers measure the number of false positives (FP) and false negatives (FN) whose sum is
equivalent to the MSE [26]. MSE is defined as

MSE =
1

M ∗ N

M−1

∑
m=0

N−1

∑
n=0

(IPROPOSED (m, n)− IORIGINAL (m, n))2

In the above equation, IORIGINAL (m, n) is the motion detected binary output image produced
by running of the software (C/C++) implementation of original clustering based algorithm, while
IPROPOSED (m, n) is the motion detected binary output image produced by running of the software
(C/C++) implementation of proposed memory efficient clustering based algorithm. M is the number
of rows in a video frame, i.e., 576 and N is the number of columns in a video frame, i.e., 720.

As the motion detection outputs are binary images, therefore, the square of the difference between
IORIGINAL (m, n) and IPROPOSED (m, n) has only two possible values: “1” if the pixel has different values
in IORIGINAL and IPROPOSED and “0” if the pixel has same values. As a result of this MSE is equivalent
to the ratio of the number of pixels which are different in IPROPOSED with respect to IORIGINAL to the
total number of pixels in a video frame.

The computed MSE for every frame of all the test bench videos is zero and it confirms that the
proposed memory efficient motion detection scheme produces the same motion detection results as
the original clustering based motion detection scheme without negatively affecting the quality of
processed videos, but with 40% reduction in memory requirement.

3. VLSI Implementation of Proposed Memory Efficient Algorithm

A simplified conceptual block diagram of the proposed and developed FPGA-based motion
detection system is shown in Figure 5 to illustrate the data flow within the system. The main
components of a complete FPGA-based standalone motion detection system are: analog Camera,
VDEC1 Video Decoder Board for analog to digital video conversion, custom designed Interface PCB,
Xilinx ML510 (Virtex-5 FX130T) FPGA platform for performing real-time motion detection, and a
display device (Display Monitor).

J. Imaging 2017, 3, 20 10 of 28

= 1∗ ((,) − (,))

In the above equation, IORIGINAL (m, n) is the motion detected binary output image produced by
running of the software (C/C++) implementation of original clustering based algorithm, while
IPROPOSED (m, n) is the motion detected binary output image produced by running of the software
(C/C++) implementation of proposed memory efficient clustering based algorithm. M is the number
of rows in a video frame, i.e., 576 and N is the number of columns in a video frame, i.e., 720.

As the motion detection outputs are binary images, therefore, the square of the difference
between IORIGINAL (m, n) and IPROPOSED (m, n) has only two possible values: “1” if the pixel has different
values in IORIGINAL and IPROPOSED and “0” if the pixel has same values. As a result of this MSE is
equivalent to the ratio of the number of pixels which are different in IPROPOSED with respect to IORIGINAL
to the total number of pixels in a video frame.

The computed MSE for every frame of all the test bench videos is zero and it confirms that the
proposed memory efficient motion detection scheme produces the same motion detection results as
the original clustering based motion detection scheme without negatively affecting the quality of
processed videos, but with 40% reduction in memory requirement.

3. VLSI Implementation of Proposed Memory Efficient Algorithm

A simplified conceptual block diagram of the proposed and developed FPGA-based motion
detection system is shown in Figure 5 to illustrate the data flow within the system. The main
components of a complete FPGA-based standalone motion detection system are: analog Camera,
VDEC1 Video Decoder Board for analog to digital video conversion, custom designed Interface PCB,
Xilinx ML510 (Virtex-5 FX130T) FPGA platform for performing real-time motion detection, and a
display device (Display Monitor).

Figure 5. Dataflow diagram of the proposed and developed motion detection system.

Input video, captured by a Sony Analog Camera, is digitized by Digilent VDEC1 Video
Decoder Board. The digital output signals from the video decoder board are transferred to FPGA
platform using high speed I/O ports (HSIO PINS) available on Xilinx ML510 (Virtex-5 FX130T)
FPGA Board using custom designed Interface PCB. The components inside dashed blue line are
available on Xilinx ML510 (Virtex-5 FX130T) FPGA Board. These include FPGA Device (shown by
dashed red line), High Speed Input Output Interface (HSIO PINS), and DVI Interface. The Camera
Interface module uses the digital video signals available at the FPGA interface and extracts RGB data
and generates Video Timing Signals. The DVI Display Controller is used to display the processed
data on Display Monitor.

Figure 5. Dataflow diagram of the proposed and developed motion detection system.

Input video, captured by a Sony Analog Camera, is digitized by Digilent VDEC1 Video Decoder
Board. The digital output signals from the video decoder board are transferred to FPGA platform
using high speed I/O ports (HSIO PINS) available on Xilinx ML510 (Virtex-5 FX130T) FPGA Board
using custom designed Interface PCB. The components inside dashed blue line are available on Xilinx
ML510 (Virtex-5 FX130T) FPGA Board. These include FPGA Device (shown by dashed red line), High
Speed Input Output Interface (HSIO PINS), and DVI Interface. The Camera Interface module uses

J. Imaging 2017, 3, 20 11 of 28

the digital video signals available at the FPGA interface and extracts RGB data and generates Video
Timing Signals. The DVI Display Controller is used to display the processed data on Display Monitor.

Data arrive from the Camera Interface module row by row. As motion detection scheme is based
on the processing of 4 × 4 image blocks, therefore, streaming video processing cannot be used for
clustering based motion detection scheme. For this reason, the four rows of image data are buffered in
Input Memory before processing begins. The Motion Detection architecture takes its input from the
Input Memory and processes the data. The output of Motion Detection module is stored in Output
Memory for synchronization purpose before sending it for display. This is because the output data of
Motion Detection module is for 4 × 4 pixel block while the DVI Display Controller takes the input data
row by row. The processed image pixel data from Output Memory along with video timing signals
is sent for display on Display Monitor through DVI Interface available on FPGA board. The three
modules (Input Memory, Motion Detection, and Output Memory) within green dashed line form the
clustering based motion detection architecture.

3.1. Motion Detection VLSI Architecture

A dedicated VLSI architecture has been proposed and implemented by us for the memory efficient
motion detection algorithm is shown in Figure 6. This block level architecture is the same as that
proposed earlier for the original clustering-based motion detection scheme except that it does not
have FRNM MEM memory and its associated modules required to update FRNM MEM. However,
the functionalities, and therefore the internal architectures for the individual blocks are different as
compared to those in the architecture for the original clustering-based motion detection scheme [24].
There are two major advantages of the architecture being presented over the previously discussed
architecture for the original clustering-based motion detection algorithm. Firstly, the proposed
architecture has no frame number memory (FRNM MEM) component and therefore it requires much
less parameter memory. Secondly, the associated logic modules necessary for updating frame number
memory (FRNM MEM) are also eliminated, thereby, reducing the computational complexity. All the
modules of the proposed architecture are explained in detail individually in the following sub-sections.

In this architecture, INPUT MEM module receives the incoming pixel data as input and buffers it
in the memory. The output of INPUT MEM is fed to BLCENT COMPUTATION UNIT which computes
the average centroid for 4 × 4 image block by taking pixel data from input memory (four clock cycles
are required for reading 16 pixels from input memory buffer as four pixels are read in one clock
cycle). Read address, write address, and write enable signals for input memory are generated by
corresponding INPUT-MEM RADD-WRADD WEN module. MOTION COMPUTATION ENABLE
UNIT generates the motion computation enable (MCEN) signal which is used as enable single for
different modules of motion detection architecture.

Different control signals are generated by the COUNTERS & CONTROLLER MODULE.
Each Centroid Memory location contains four Centroid values (corresponding to four clusters), which
contain the background color and intensity related information. The read address and write address
signals for CENT-MEM are generated by the corresponding CENT-MEM RADD-WRADD UNIT.

Minimum Centroid difference value is computed by the MINIMUM CENT DIFF COMPUTATION
UNIT. It outputs MCD (minimum centroid difference value) and CINDX (Centroid Index). CINDX
gives the cluster number corresponding to MCD (minimum centroid difference value). MCD is
used to find a matching cluster. The MCD and BLCENT values are used by CENT-MEM WDATA
COMPUTATION UNIT to compute the write data for Centroid Memory (CENT MEM). The CINDX
value is used by CENT-MEM WEN UNIT for generating the write enable signal for CENT MEM.
The MD FLAG takes MCD as input, compares it with a user defined threshold value, and the one-bit
motion detection Flag signal is generated which is low if no motion is detected for current block
and is high if current block is motion detected block. This motion information data of 4 × 4 pixel
block is written to OUTPUT MEM and corresponding addresses for this memory are generated by

J. Imaging 2017, 3, 20 12 of 28

OUTPUT-MEM RADD-WRADD WEN module. Finally, the motion detected data are read from this
output buffer memory and sent to the display controller for display on the screen.J. Imaging 2017, 3, 20 12 of 28

Figure 6. Proposed VLSI architecture for the memory efficient motion detection algorithm.

3.1.1. Input Buffer Memory

As mentioned in the algorithm section, the motion detection is performed for 4 × 4 pixel blocks.
Therefore, it is not possible to process the incoming data directly. Four rows of input image pixel data
must be available before processing begins. For this purpose, the input buffer memory module is used to
buffer the four rows of input image data. To enable the real-time processing for this kind of
requirements, the dual memory architecture (Figure 7) is most suitable. There are two memories (MEM1
and MEM2) in parallel. If the data are written in first memory, then the reading is performed from the
second memory and vice-versa. Each of the memories is constructed by four block RAMs in the FPGA.
Each block RAM is used to buffer one row of image pixel data. The width of each block RAM is 24 bits
(eight bits for each Red, Green, and Blue color channels). In total, eight 36-Kb Block RAMs are needed for
the complete Input Buffer Memory Architecture for processing PAL resolution color video.

Figure 7. VLSI architecture for input buffer memory.

A novel smart buffer based input memory architecture for block-level (4 × 4 pixels) memory
efficient clustering based motion detection scheme that aims at reducing the Block RAM
requirements for input memory has been proposed in this sub-section of the paper. The proposed
architecture (Figure 8) uses three FIFOs (First-in first-out registers) and four 24-bit registers. The
width of the FIFOs is 24 bits and length of the FIFOs is 719 locations. These three FIFOs are designed

Figure 6. Proposed VLSI architecture for the memory efficient motion detection algorithm.

3.1.1. Input Buffer Memory

As mentioned in the algorithm section, the motion detection is performed for 4 × 4 pixel blocks.
Therefore, it is not possible to process the incoming data directly. Four rows of input image pixel
data must be available before processing begins. For this purpose, the input buffer memory module
is used to buffer the four rows of input image data. To enable the real-time processing for this kind
of requirements, the dual memory architecture (Figure 7) is most suitable. There are two memories
(MEM1 and MEM2) in parallel. If the data are written in first memory, then the reading is performed
from the second memory and vice-versa. Each of the memories is constructed by four block RAMs in
the FPGA. Each block RAM is used to buffer one row of image pixel data. The width of each block
RAM is 24 bits (eight bits for each Red, Green, and Blue color channels). In total, eight 36-Kb Block
RAMs are needed for the complete Input Buffer Memory Architecture for processing PAL resolution
color video.

J. Imaging 2017, 3, 20 12 of 28

Figure 6. Proposed VLSI architecture for the memory efficient motion detection algorithm.

3.1.1. Input Buffer Memory

As mentioned in the algorithm section, the motion detection is performed for 4 × 4 pixel blocks.
Therefore, it is not possible to process the incoming data directly. Four rows of input image pixel data
must be available before processing begins. For this purpose, the input buffer memory module is used to
buffer the four rows of input image data. To enable the real-time processing for this kind of
requirements, the dual memory architecture (Figure 7) is most suitable. There are two memories (MEM1
and MEM2) in parallel. If the data are written in first memory, then the reading is performed from the
second memory and vice-versa. Each of the memories is constructed by four block RAMs in the FPGA.
Each block RAM is used to buffer one row of image pixel data. The width of each block RAM is 24 bits
(eight bits for each Red, Green, and Blue color channels). In total, eight 36-Kb Block RAMs are needed for
the complete Input Buffer Memory Architecture for processing PAL resolution color video.

Figure 7. VLSI architecture for input buffer memory.

A novel smart buffer based input memory architecture for block-level (4 × 4 pixels) memory
efficient clustering based motion detection scheme that aims at reducing the Block RAM
requirements for input memory has been proposed in this sub-section of the paper. The proposed
architecture (Figure 8) uses three FIFOs (First-in first-out registers) and four 24-bit registers. The
width of the FIFOs is 24 bits and length of the FIFOs is 719 locations. These three FIFOs are designed

Figure 7. VLSI architecture for input buffer memory.

A novel smart buffer based input memory architecture for block-level (4 × 4 pixels) memory
efficient clustering based motion detection scheme that aims at reducing the Block RAM requirements
for input memory has been proposed in this sub-section of the paper. The proposed architecture
(Figure 8) uses three FIFOs (First-in first-out registers) and four 24-bit registers. The width of the FIFOs

J. Imaging 2017, 3, 20 13 of 28

is 24 bits and length of the FIFOs is 719 locations. These three FIFOs are designed using the Block
RAMs on FPGA. The complete architecture for the input buffer memory using Block RAMs is shown
in Figure 9.

J. Imaging 2017, 3, 20 13 of 28

using the Block RAMs on FPGA. The complete architecture for the input buffer memory using Block
RAMs is shown in Figure 9.

Figure 8. Proposed smart buffer based input buffer memory architecture.

Figure 9. Detailed implementation of input buffer memory architecture using block RAMs and
registers.

This proposed architecture requires only three 36-Kb Block RAMs instead of eight 36-Kb Block
RAMs that are required by the earlier proposed architecture and also maintains the real-time

Figure 8. Proposed smart buffer based input buffer memory architecture.

J. Imaging 2017, 3, 20 13 of 28

using the Block RAMs on FPGA. The complete architecture for the input buffer memory using Block
RAMs is shown in Figure 9.

Figure 8. Proposed smart buffer based input buffer memory architecture.

Figure 9. Detailed implementation of input buffer memory architecture using block RAMs and
registers.

This proposed architecture requires only three 36-Kb Block RAMs instead of eight 36-Kb Block
RAMs that are required by the earlier proposed architecture and also maintains the real-time

Figure 9. Detailed implementation of input buffer memory architecture using block RAMs
and registers.

J. Imaging 2017, 3, 20 14 of 28

This proposed architecture requires only three 36-Kb Block RAMs instead of eight 36-Kb Block
RAMs that are required by the earlier proposed architecture and also maintains the real-time processing.
The processing can begin as soon as three rows of pixel data arrive in the FIFOs and the fourth
row begins. At the start of the fourth row, this architecture provides access to the four pixel data
corresponding to each of the four rows. The motion detection block starts working for every fourth
row. The first-in first-out mechanism keeps only the data of the four rows necessary for processing
and pushes out the unnecessary data. This mechanism is very effective for block based processing.
It requires the number of FIFOs equal to the number of rows in the block minus one. The length of
each FIFO is equal to the number of pixels in one row minus one. This new architecture saved five
36-Kb Block RAMs as compared to the dual memory architecture for PAL size color video processing.

3.1.2. Motion Computation Enable Unit

Based on the value of row counter RW4C (reset after every fourth row, i.e., counts from 00 to
11) and column counter CL4C (reset after every fourth column, i.e., counts from 00 to 11) the motion
computation enable (MCEN) signal is generated and stored in REG1 (Figure 10). This one-bit MCEN
signal is used for enabling the other blocks of motion detection system. It is set to “1” only if both
RW4C and CL4C are “11”, which indicates that a 4 × 4 pixel block is available for processing.

J. Imaging 2017, 3, 20 14 of 28

processing. The processing can begin as soon as three rows of pixel data arrive in the FIFOs and the
fourth row begins. At the start of the fourth row, this architecture provides access to the four pixel
data corresponding to each of the four rows. The motion detection block starts working for every
fourth row. The first-in first-out mechanism keeps only the data of the four rows necessary for
processing and pushes out the unnecessary data. This mechanism is very effective for block based
processing. It requires the number of FIFOs equal to the number of rows in the block minus one. The
length of each FIFO is equal to the number of pixels in one row minus one. This new architecture
saved five 36-Kb Block RAMs as compared to the dual memory architecture for PAL size color video
processing.

3.1.2. Motion Computation Enable Unit

Based on the value of row counter RW4C (reset after every fourth row, i.e., counts from 00 to 11)
and column counter CL4C (reset after every fourth column, i.e., counts from 00 to 11) the motion
computation enable (MCEN) signal is generated and stored in REG1 (Figure 10). This one-bit MCEN
signal is used for enabling the other blocks of motion detection system. It is set to “1” only if both
RW4C and CL4C are “11”, which indicates that a 4 × 4 pixel block is available for processing.

Figure 10. VLSI architecture of motion computation enable signal generation unit.

3.1.3. Parameter Memory

Hardware architecture for memory efficient motion detection algorithm requires only one
component of parameter memory (i.e., centroid memory) as compared to two components (i.e.,
centroid memory and frame number memory) required by the hardware architecture of original
clustering based motion detection algorithm [24]. Centroid memory (CENT MEM) stores centroid
values of four clusters for all image blocks. This memory contains four memory modules in parallel,
each corresponding to one cluster. Each centroid memory module is eight-bit wide and is of size
25,920 locations. The four-centroid parameter memory modules are CM1, CM2, CM3, and CM4.
Data are written to and read from all the four memories from same locations at a time. Therefore the
read address (RDADDCM), write address (WDADDCM), and write enable signal (WRENCM) for all
centroid memories are common. The complete centroid memory architecture is shown in Figure 11.

Centroid memory input write data (CMWD) and output read data (CMRD) are 32-bit wide
each. For both input data and output data, the first set of eight bits (7 down to 0) is for the first cluster
centroid value (CM1), the second set of eight bits (15 down to 8) is for the second cluster centroid
value (CM2), the third set of eight bits (23 down to 16) is for the third cluster centroid value (CM3),
and the last set of eight bits (31 down to 24) is for the fourth cluster centroid value (CM4). There are
three such memories working in parallel each corresponding to Red, Green, and Blue color
components.

Figure 10. VLSI architecture of motion computation enable signal generation unit.

3.1.3. Parameter Memory

Hardware architecture for memory efficient motion detection algorithm requires only one
component of parameter memory (i.e., centroid memory) as compared to two components (i.e.,
centroid memory and frame number memory) required by the hardware architecture of original
clustering based motion detection algorithm [24]. Centroid memory (CENT MEM) stores centroid
values of four clusters for all image blocks. This memory contains four memory modules in parallel,
each corresponding to one cluster. Each centroid memory module is eight-bit wide and is of size
25,920 locations. The four-centroid parameter memory modules are CM1, CM2, CM3, and CM4.
Data are written to and read from all the four memories from same locations at a time. Therefore the
read address (RDADDCM), write address (WDADDCM), and write enable signal (WRENCM) for all
centroid memories are common. The complete centroid memory architecture is shown in Figure 11.

Centroid memory input write data (CMWD) and output read data (CMRD) are 32-bit wide each.
For both input data and output data, the first set of eight bits (7 down to 0) is for the first cluster
centroid value (CM1), the second set of eight bits (15 down to 8) is for the second cluster centroid value
(CM2), the third set of eight bits (23 down to 16) is for the third cluster centroid value (CM3), and the
last set of eight bits (31 down to 24) is for the fourth cluster centroid value (CM4). There are three such
memories working in parallel each corresponding to Red, Green, and Blue color components.

J. Imaging 2017, 3, 20 15 of 28

J. Imaging 2017, 3, 20 15 of 28

Figure 11. Centroid memory architecture.

Write enable signal is high only if motion computation enable signal (MCEN) is high (Figure
12a). The read and write addresses are generated with the help of a counter which is incremented
only when motion computation enable signal (MCEN) is high (Figure 12b).

(a) (b)

Figure 12. Logic for generating: (a) write enable signal; (b) addresses for centroid memory.

3.1.4. Block Centroid Computation Module

Block Centroid Computation module (Figure 13) computes the average centroid of 4 × 4 pixel
block. It receives four pixels at a time as inputs. Therefore, it takes four cycles in total to compute 4 ×

Figure 11. Centroid memory architecture.

Write enable signal is high only if motion computation enable signal (MCEN) is high (Figure 12a).
The read and write addresses are generated with the help of a counter which is incremented only when
motion computation enable signal (MCEN) is high (Figure 12b).

J. Imaging 2017, 3, 20 15 of 28

Figure 11. Centroid memory architecture.

Write enable signal is high only if motion computation enable signal (MCEN) is high (Figure
12a). The read and write addresses are generated with the help of a counter which is incremented
only when motion computation enable signal (MCEN) is high (Figure 12b).

(a) (b)

Figure 12. Logic for generating: (a) write enable signal; (b) addresses for centroid memory.

3.1.4. Block Centroid Computation Module

Block Centroid Computation module (Figure 13) computes the average centroid of 4 × 4 pixel
block. It receives four pixels at a time as inputs. Therefore, it takes four cycles in total to compute 4 ×

Figure 12. Logic for generating: (a) write enable signal; (b) addresses for centroid memory.

3.1.4. Block Centroid Computation Module

Block Centroid Computation module (Figure 13) computes the average centroid of 4 × 4 pixel
block. It receives four pixels at a time as inputs. Therefore, it takes four cycles in total to compute
4 × 4 pixel block average centroid. In the first cycle, the incoming four pixels are added by using three

J. Imaging 2017, 3, 20 16 of 28

adders. The 10-bit sum output is “0” extended by two bits resulting in a 12-bit signal. It is directly
stored in REG2 register using 4:1 multiplexer MX1 as CL4C is “00” in the first cycle. In the second and
third cycles (for “01” and “10” values of CL4C), the sum of incoming four pixels is added with the
stored sum in REG2 and the result is stored back in REG2. In the fourth cycle (for “11” value of CL4C),
the last set of 4 pixels of present block is received. The sum of these four pixels is added with the
previously stored sum in REG2, resulting in the sum of 16 pixels of the current block. This sum value
of the current block is divided by 16 resulting in the current block Centroid (BLCENT). The division by
16 is performed by right shift operations. This value is stored in register REG1 with the help of 4:1
multiplexer MX2. The value of current block centroid is stored in REG1 only when both RW4C and
CL4C are “11” (i.e., when complete 4 × 4 pixel block Centroid is computed) otherwise the value in
REG1 remains 0. The output of REG1 (BLCENT) is used in further computations.

J. Imaging 2017, 3, 20 16 of 28

4 pixel block average centroid. In the first cycle, the incoming four pixels are added by using three
adders. The 10-bit sum output is “0” extended by two bits resulting in a 12-bit signal. It is directly
stored in REG2 register using 4:1 multiplexer MX1 as CL4C is “00” in the first cycle. In the second
and third cycles (for “01” and “10” values of CL4C), the sum of incoming four pixels is added with
the stored sum in REG2 and the result is stored back in REG2. In the fourth cycle (for “11” value of
CL4C), the last set of 4 pixels of present block is received. The sum of these four pixels is added with
the previously stored sum in REG2, resulting in the sum of 16 pixels of the current block. This sum
value of the current block is divided by 16 resulting in the current block Centroid (BLCENT). The
division by 16 is performed by right shift operations. This value is stored in register REG1 with the
help of 4:1 multiplexer MX2. The value of current block centroid is stored in REG1 only when both
RW4C and CL4C are “11” (i.e., when complete 4 × 4 pixel block Centroid is computed) otherwise the
value in REG1 remains 0. The output of REG1 (BLCENT) is used in further computations.

Figure 13. Proposed VLSI architecture for block centroid computation module.

In order to deal with color video processing (in RGB color space), there are three such block
Centroid computation modules in parallel, each computing the 4 × 4 pixel block centroid for each
color channel R (first set of eight bits, i.e., 0 to 7 bits of incoming 24-bit pixel data), G (second set of
eight bits, i.e., 8 to 15 bits of incoming 24-bit pixel data), and B (third set of eight bits, i.e., 16 to 24 bits
of incoming 24-bit pixel data). The outputs of these three blocks are three color channels’ block
Centroid values BLCENTR, BLCENTG, and BLCENTB (each of eight-bit). These are used for further
processing.

3.1.5. Minimum Centroid Difference Computation Module

The function of Minimum Centroid Difference Computation (Figure 14) block is to find the
minimum centroid difference and corresponding centroid index value. The current block centroid
value for each color channel is subtracted from its corresponding centroid values of the four clusters
(read from Centroid memories CENT MEM). The minimum centroid difference for a particular
cluster is computed by using the sum of absolute differences for the three color channels. There are
four sums of absolute difference values corresponding to each one of the four clusters.

Figure 13. Proposed VLSI architecture for block centroid computation module.

In order to deal with color video processing (in RGB color space), there are three such block
Centroid computation modules in parallel, each computing the 4 × 4 pixel block centroid for each
color channel R (first set of eight bits, i.e., 0 to 7 bits of incoming 24-bit pixel data), G (second set of
eight bits, i.e., 8 to 15 bits of incoming 24-bit pixel data), and B (third set of eight bits, i.e., 16 to 24 bits of
incoming 24-bit pixel data). The outputs of these three blocks are three color channels’ block Centroid
values BLCENTR, BLCENTG, and BLCENTB (each of eight-bit). These are used for further processing.

3.1.5. Minimum Centroid Difference Computation Module

The function of Minimum Centroid Difference Computation (Figure 14) block is to find the
minimum centroid difference and corresponding centroid index value. The current block centroid
value for each color channel is subtracted from its corresponding centroid values of the four clusters
(read from Centroid memories CENT MEM). The minimum centroid difference for a particular cluster
is computed by using the sum of absolute differences for the three color channels. There are four sums
of absolute difference values corresponding to each one of the four clusters.

J. Imaging 2017, 3, 20 17 of 28

J.
Im

ag
in

g
20

17
, 3

, 2
0

17

 o
f 2

8

Fi

gu
re

 1
4.

 P
ro

po
se

d
V

LS
I a

rc
hi

te
ct

ur
e

fo
r m

in
im

um
 c

en
tr

oi
d

di
ffe

re
nc

e
co

m
pu

ta
tio

n
m

od
ul

e.

Th
e

fir
st

 t
w

o
di

ffe
re

nc
es

 o
f

th
e

fir
st

 t
w

o
cl

us
te

rs
 (

D
IF

F1
 a

nd
 D

IF
F2

)
ar

e
co

m
pa

re
d

us
in

g
a

co
m

pa
ra

to
r

an
d

th
e

m
in

im
um

 d
iff

er
en

ce
 a

m
on

g
th

e
tw

o
(M

D
IF

F1
) i

s
se

le
ct

ed
 u

si
ng

 a
 m

ul
tip

le
xe

r

Figure 14. Proposed VLSI architecture for minimum centroid difference computation module.

J. Imaging 2017, 3, 20 18 of 28

The first two differences of the first two clusters (DIFF1 and DIFF2) are compared using a
comparator and the minimum difference among the two (MDIFF1) is selected using a multiplexer (MX1).
The corresponding index value (INDX1) is also computed using a multiplexer (MX2). This index value gives
the cluster number having the minimum difference value. Similarly, the remaining two differences of the
last two clusters (DIFF3 and DIFF4) are compared using a comparator and the minimum difference among
the two (MDIFF2) is selected using a multiplexer (MX3). The corresponding index value (INDX2) is also
computed using a multiplexer (MX4). Finally, using a comparator and a multiplexer (MX5), the minimum
centroid difference (MCD) is computed. The centroid index (CINDX) is also computed using values INDX1
and INDX2 and a multiplexer (MX6). This CINDX gives the cluster number to which minimum centroid
difference (MCD) value belongs. The MCD and CINDX are used in further computations.

3.1.6. Initialization-Update-Replace Module

This module is the heart of motion detection architecture. The proposed architecture for the
Initialization-Update-Replace module of memory efficient motion detection scheme is shown in
Figure 15. This architecture is for one color component and the complete architecture for color video
processing consists of three such blocks in parallel (one for each color component R, G, and B). There are
two main tasks performed by this architecture. Firstly, it computes data to be written in centroid
parameter memories (CENT MEM) during cluster group initialization, cluster updating, and cluster
replacement processes. Secondly, it rearranges data in the order of newest value, second newest value,
second oldest value, and oldest value in CM1, CM2, CM3, and CM4, respectively, before sending the
data for writing to centroid memories. Data are written to the memories only when MCEN is high.

For initial four frames, the initialization process takes place. During initialization, the centroid
parameter memory is initialized with incoming frame block centroid values. The architecture for
cluster group initialization is shown within blue dashed lines in Figure 15. This architecture block
generates 32-bit data for initialization of four centroid memories CM1, CM2, CM3, and CM4 (8-bit
for each memory) according to the proposed algorithmic procedure discussed in algorithmic section.
The data selection is done based on frame number value (FRNUM) using multiplexer.

In the first frame, the block centroid (BLCENT) is written to CM4 memory and therefore
the 32-bit output data are “BLCENT-000000000000000000000000”. In the second frame, the
block centroid (BLCENT) is written to CM3 memory and therefore the 32-bit output data are
“CMRD31:24-BLCENT-0000000000000000”. As the write enable is common for all the four memories,
therefore, the data read or write operation for all memories is performed at the same time. For this
reason, the read data (CMRD) of centroid memories are also sent back for writing into corresponding
memories if it is to be retained at same location. The common write enable, read address, and write
address signals are used for all four centroid memories to simplify the logic blocks for generating these
signals. In the third frame, the block centroid (BLCENT) is written to CM2 memory and therefore
the 32-bit output data are “CMRD31:16-BLCENT-00000000”. In the fourth frame, the block centroid
(BLCENT) is written to CM1 memory and therefore the 32-bit output data are “CMRD31:8-BLCENT”.
At the end of the fourth frame, all four centroid memories are initialized and contain data in the order
of newest (CM1) to oldest (CM4) centroid values.

For all subsequent frames, there are two possibilities. Existing data are either updated or replaced
depending upon the value of MCD. If MCD value is greater than the user defined threshold, then
cluster replace is performed. In this case, the oldest cluster centroid value is replaced by current block
centroid value. For this purpose, CM4 centroid memory value (which is the oldest centroid value) is
replaced by current block centroid value. As the replaced value in CM4 is the newest value, therefore,
the other memory values are rearranged in order of newest value, second newest value, second oldest
value, and oldest value in CM1, CM2, CM3, and CM4 respectively. This is done by shifting the centroid
values of CM1, CM2, and CM3 into CM2, CM3, and CM4, respectively and moving the current block
centroid value held in CM4 into CM1. Therefore, the generated 32-bit data are“CMRD23:0-BLCENT”.
The architecture block for cluster replace is shown within red dashed line in Figure 15.

J. Imaging 2017, 3, 20 19 of 28

J.
Im

ag
in

g
20

17
, 3

, 2
0

19

 o
f 2

8

Fi

gu
re

 1
5.

 P
ro

po
se

d
V

LS
I a

rc
hi

te
ct

ur
e

fo
r c

lu
st

er
 in

iti
al

iz
at

io
n,

 u
pd

at
in

g,
 a

nd
 re

pl
ac

em
en

t.

Figure 15. Proposed VLSI architecture for cluster initialization, updating, and replacement.

J. Imaging 2017, 3, 20 20 of 28

If MCD value is less than the user defined threshold then cluster updating process is performed.
During cluster update process, first the centroid value corresponding to minimum difference value is
selected based on the centroid index (CINDX) value using a 4:1 multiplexer MX1 and then added with
the current block centroid BLCENT. The result is divided by two using a right shift to get the average
value (AVG). This average value updates the centroid value in centroid memory corresponding to
CINDX using multiplexer MX2. After this, the values of all four centroid memories are rearranged
in the order of newest value, second newest value, second oldest value, and oldest value in CM1,
CM2, CM3, and CM4, respectively according to the algorithmic rules. This is achieved by shifting
and concatenation operations. The 32-bit data generated for centroid memories are “CMRD31:8-AVG”
if CINDX is “00”, “CMRD31:16-CMRD7:0-AVG” if CINDX is “01”, “CMRD31:24-CMRD15:0-AVG”
if CINDX is “10”, or “CMRD23:0-AVG” if CINDX is “11”. For all the four cases of cluster update,
at the end, centroid values in the four centroid memories CM1, CM2, CM3, and CM4 are in the
order of newest value, second newest value, second oldest value, and oldest value, respectively.
The architecture block for cluster updating is shown within green dashed line in Figure 15.

The selection of output data for REPLACE MODULE, UPDATE MODULE, and INITIALIZATION
MODULE is done using 2:1 multiplexer MX3 and 4:1 multiplexer MX4. The output data are written
to output register REG1 only if MCEN is high, otherwise “0” value is stored in REG1. The output of
REG1 (CMWD) is sent to centroid parameter memory for writing.

3.1.7. Motion Detection Flag Computation

This module classifies the current 4 × 4 pixel block as motion block or non-motion block.
The architecture for this block is shown in Figure 16. This motion detection information is indicated
by motion detection flag (MDF) signal value. MDF value of zero indicates no motion detection for
the current block, and MDF value of one indicates motion detection for the current block. For the
initial four frames, the initialization process takes place, and therefore MDF remains zero for the
initial four frames. As motion detection is performed for 4 × 4 pixel blocks, therefore, the motion
detection works only if MCEN (motion computation enable) is high. This implies that motion detection
process works only if MCEN is high and frame number (FRNUM) is greater than four. If both these
conditions are satisfied, then the minimum centroid difference (MCD) is compared with a user defined
threshold. The one-bit Motion Detection Flag (MDF) signal is set low (“0”) if the difference is less
than the threshold (i.e., current block matches with background model and therefore, no motion is
detected) and high (“1”) if the difference is greater than the threshold (i.e., current block is motion
detected block).

J. Imaging 2017, 3, 20 20 of 28

If MCD value is less than the user defined threshold then cluster updating process is
performed. During cluster update process, first the centroid value corresponding to minimum
difference value is selected based on the centroid index (CINDX) value using a 4:1 multiplexer MX1
and then added with the current block centroid BLCENT. The result is divided by two using a right
shift to get the average value (AVG). This average value updates the centroid value in centroid
memory corresponding to CINDX using multiplexer MX2. After this, the values of all four centroid
memories are rearranged in the order of newest value, second newest value, second oldest value,
and oldest value in CM1, CM2, CM3, and CM4, respectively according to the algorithmic rules. This
is achieved by shifting and concatenation operations. The 32-bit data generated for centroid
memories are “CMRD31:8-AVG” if CINDX is “00”, “CMRD31:16-CMRD7:0-AVG” if CINDX is “01”,
“CMRD31:24-CMRD15:0-AVG” if CINDX is “10”, or “CMRD23:0-AVG” if CINDX is “11”. For all the
four cases of cluster update, at the end, centroid values in the four centroid memories CM1, CM2,
CM3, and CM4 are in the order of newest value, second newest value, second oldest value, and
oldest value, respectively. The architecture block for cluster updating is shown within green dashed
line in Figure 15.

The selection of output data for REPLACE MODULE, UPDATE MODULE, and
INITIALIZATION MODULE is done using 2:1 multiplexer MX3 and 4:1 multiplexer MX4. The
output data are written to output register REG1 only if MCEN is high, otherwise “0” value is stored
in REG1. The output of REG1 (CMWD) is sent to centroid parameter memory for writing.

3.1.7. Motion Detection Flag Computation

This module classifies the current 4 × 4 pixel block as motion block or non-motion block. The
architecture for this block is shown in Figure 16. This motion detection information is indicated by
motion detection flag (MDF) signal value. MDF value of zero indicates no motion detection for the
current block, and MDF value of one indicates motion detection for the current block. For the initial
four frames, the initialization process takes place, and therefore MDF remains zero for the initial four
frames. As motion detection is performed for 4 × 4 pixel blocks, therefore, the motion detection
works only if MCEN (motion computation enable) is high. This implies that motion detection
process works only if MCEN is high and frame number (FRNUM) is greater than four. If both these
conditions are satisfied, then the minimum centroid difference (MCD) is compared with a user
defined threshold. The one-bit Motion Detection Flag (MDF) signal is set low (“0”) if the difference is
less than the threshold (i.e., current block matches with background model and therefore, no motion
is detected) and high (“1”) if the difference is greater than the threshold (i.e., current block is motion
detected block).

Figure 16. Architecture of motion detection flag computation module.

Figure 16. Architecture of motion detection flag computation module.

J. Imaging 2017, 3, 20 21 of 28

3.1.8. Output Buffer Memory

While the motion detection output (i.e., motion detection flag (MDF)) represents the motion
information of a 4 × 4 pixel block, the display controller requires the processed data in row by row
sequence for sending it to the display device. For this reason, to properly synchronize the motion
detection output with display controller inputs, a buffer memory is used at the output end of the
motion detection architecture. The motion detection flag (MDF) is stored in this output buffer memory
(OUTPUT MEM) (Figure 17). Finally, the motion detected data stored in this output buffer memory is
read row by row and sent to the display controller for display on the screen.

J. Imaging 2017, 3, 20 21 of 28

3.1.8. Output Buffer Memory

While the motion detection output (i.e., motion detection flag (MDF)) represents the motion
information of a 4 × 4 pixel block, the display controller requires the processed data in row by row
sequence for sending it to the display device. For this reason, to properly synchronize the motion
detection output with display controller inputs, a buffer memory is used at the output end of the
motion detection architecture. The motion detection flag (MDF) is stored in this output buffer
memory (OUTPUT MEM) (Figure 17). Finally, the motion detected data stored in this output buffer
memory is read row by row and sent to the display controller for display on the screen.

Figure 17. Proposed output buffer memory architecture.

To enable real-time processing and displaying, two output memory modules OP-M1 and
OP-M2 are used in parallel. Each one-bit motion detection flag (MDF) output represents motion
information for one 4 × 4 pixel block. Therefore, to store the motion information of four rows we
need 180 (i.e., 4 × 720/16) memory locations. The size of output memory is 180 locations, each one-bit
wide. When processed data are being written to one memory, data from the second memory are read
for sending to the display controller and vice versa.

Read and write addresses (Figure 18) for the two output memories are generated using
conditional counters (i.e., counter increments only when a particular condition is satisfied). Both the
addresses are eight-bit wide. The read address in incremented only when CL4C (Column 4 Count) is
11 (i.e., counts four pixels of row). The write address is incremented only when MCEN (Motion
Computation Enable) is high. These addresses are reset when their values reach 180. The write
enable signals for these two output memories are set true only when MCEN is high. The write enable
signal for OP-M1 (WRENOM1) and write enable signal for OP-M2 (WRENOM2) are complements of
each other to ensure that data are written into only one output memory at a time: either in OP-M1 or
in OP-M2 (Figure 19).

Figure 17. Proposed output buffer memory architecture.

To enable real-time processing and displaying, two output memory modules OP-M1 and OP-M2
are used in parallel. Each one-bit motion detection flag (MDF) output represents motion information
for one 4 × 4 pixel block. Therefore, to store the motion information of four rows we need 180 (i.e.,
4 × 720/16) memory locations. The size of output memory is 180 locations, each one-bit wide. When
processed data are being written to one memory, data from the second memory are read for sending to
the display controller and vice versa.

Read and write addresses (Figure 18) for the two output memories are generated using conditional
counters (i.e., counter increments only when a particular condition is satisfied). Both the addresses
are eight-bit wide. The read address in incremented only when CL4C (Column 4 Count) is 11 (i.e.,
counts four pixels of row). The write address is incremented only when MCEN (Motion Computation
Enable) is high. These addresses are reset when their values reach 180. The write enable signals for
these two output memories are set true only when MCEN is high. The write enable signal for OP-M1
(WRENOM1) and write enable signal for OP-M2 (WRENOM2) are complements of each other to
ensure that data are written into only one output memory at a time: either in OP-M1 or in OP-M2
(Figure 19).

J. Imaging 2017, 3, 20 22 of 28
J. Imaging 2017, 3, 20 22 of 28

Figure 18. Write address and read address generation logic of output memories.

Figure 19. Write enable signal generation logic for two output memories.

3.1.9. Control Signals

In this subsection, we discuss the generation of some of the most important control signals
required for proper synchronization and functioning of complete motion detection system. The logic
blocks for generating these signals are shown in Figure 20. The first important signal is the SWITCH
signal. This signal changes after every four rows. At the end of the fourth row, the RW4C value
changes to 00 and the SWITCH signal value is complemented. Then, for the next four rows, the value
remains the same. This signal is generated with the help of a comparator, register, multiplexer, and

Figure 18. Write address and read address generation logic of output memories.

J. Imaging 2017, 3, 20 22 of 28

Figure 18. Write address and read address generation logic of output memories.

Figure 19. Write enable signal generation logic for two output memories.

3.1.9. Control Signals

In this subsection, we discuss the generation of some of the most important control signals
required for proper synchronization and functioning of complete motion detection system. The logic
blocks for generating these signals are shown in Figure 20. The first important signal is the SWITCH
signal. This signal changes after every four rows. At the end of the fourth row, the RW4C value
changes to 00 and the SWITCH signal value is complemented. Then, for the next four rows, the value
remains the same. This signal is generated with the help of a comparator, register, multiplexer, and

Figure 19. Write enable signal generation logic for two output memories.

3.1.9. Control Signals

In this subsection, we discuss the generation of some of the most important control signals required
for proper synchronization and functioning of complete motion detection system. The logic blocks
for generating these signals are shown in Figure 20. The first important signal is the SWITCH signal.
This signal changes after every four rows. At the end of the fourth row, the RW4C value changes to 00
and the SWITCH signal value is complemented. Then, for the next four rows, the value remains the

J. Imaging 2017, 3, 20 23 of 28

same. This signal is generated with the help of a comparator, register, multiplexer, and not gate. Second
signal is the frame number signal (FRNUM). It is a three-bit signal and distinguishes between cluster
group initialization process and subsequent processes. It is used in the cluster initialization architecture
to select a particular cluster to be initialized. It is generated with the help of a comparator, adder,
multiplexer, and register. The clock for the frame number generation architecture is vertical blanking
signal (VBLK) which indicates end of the video frame. The frame number value is incremented by 1
when one frame completes. The frame number counter counts up to five, and then, for all subsequent
frames, its value remains five.

The other two important signals are CL4C and RW4C. These two signals are used for processing
4 × 4 pixel blocks. The CL4C is used to count four columns of pixel data in a row. This signal has four
values and counts from 00 to 11. Its value becomes 00 after every fourth column of pixel data in a row
and is reset to 00 at the end of every row of image pixel data. CL4C signal value is incremented every
pixel clock cycle. The RW4C is used to count four rows of image pixel data. It also counts from 00 to
11. This counter is incremented at the end of each row of the image pixel data. The clock used for this
counter is horizontal blanking signal (HBLK) which indicates the end of one row of data in a video
frame. The RW4C becomes 00 at the end of every fourth row of image pixel data. SWITCH, CL4C, and
RW4C signals are reset before the start of every new frame of incoming video.

J. Imaging 2017, 3, 20 23 of 28

not gate. Second signal is the frame number signal (FRNUM). It is a three-bit signal and
distinguishes between cluster group initialization process and subsequent processes. It is used in the
cluster initialization architecture to select a particular cluster to be initialized. It is generated with the
help of a comparator, adder, multiplexer, and register. The clock for the frame number generation
architecture is vertical blanking signal (VBLK) which indicates end of the video frame. The frame
number value is incremented by 1 when one frame completes. The frame number counter counts up
to five, and then, for all subsequent frames, its value remains five.

The other two important signals are CL4C and RW4C. These two signals are used for
processing 4 × 4 pixel blocks. The CL4C is used to count four columns of pixel data in a row. This
signal has four values and counts from 00 to 11. Its value becomes 00 after every fourth column of
pixel data in a row and is reset to 00 at the end of every row of image pixel data. CL4C signal value is
incremented every pixel clock cycle. The RW4C is used to count four rows of image pixel data. It also
counts from 00 to 11. This counter is incremented at the end of each row of the image pixel data. The
clock used for this counter is horizontal blanking signal (HBLK) which indicates the end of one row
of data in a video frame. The RW4C becomes 00 at the end of every fourth row of image pixel data.
SWITCH, CL4C, and RW4C signals are reset before the start of every new frame of incoming video.

Figure 20. Logic modules to generate different control signals required for synchronization and
proper functioning of complete motion detection system.

4. Results and Discussions

4.1. Synthesis Results

All of the above-mentioned modules of the proposed and designed memory efficient motion
detection VLSI/hardware architecture were coded in VHDL and simulated using ModelSim. A top
level design module was created which invoked the memory efficient motion detection architecture,
camera interface, and display controller module. A User Constraint File (UCF) was created to map
the input/output ports of the design on actual pins of the FPGA. This top level design was

Figure 20. Logic modules to generate different control signals required for synchronization and proper
functioning of complete motion detection system.

4. Results and Discussions

4.1. Synthesis Results

All of the above-mentioned modules of the proposed and designed memory efficient motion
detection VLSI/hardware architecture were coded in VHDL and simulated using ModelSim. A top
level design module was created which invoked the memory efficient motion detection architecture,
camera interface, and display controller module. A User Constraint File (UCF) was created to
map the input/output ports of the design on actual pins of the FPGA. This top level design was

J. Imaging 2017, 3, 20 24 of 28

synthesized using Xilinx ISE (Version 12.1) tool chain. The resulting configuration (.bit) file was stored
in the Flash Memory to enable automatic configuration of the FPGA at power-on. Thus, a complete
standalone prototype system for real-time motion detection was developed, as shown in Figure 21.
The components of the system are Xilinx ML510 (Virtex-5 FX130T) FPGA platform, Sony EVI D-70P
Camera, and display monitor.

J. Imaging 2017, 3, 20 24 of 28

synthesized using Xilinx ISE (Version 12.1) tool chain. The resulting configuration (.bit) file was
stored in the Flash Memory to enable automatic configuration of the FPGA at power-on. Thus, a
complete standalone prototype system for real-time motion detection was developed, as shown in
Figure 21. The components of the system are Xilinx ML510 (Virtex-5 FX130T) FPGA platform, Sony
EVI D-70P Camera, and display monitor.

Figure 21. Complete motion detection system setup.

Table 1 shows the comparison of FPGA resources (post-place and route results) utilized by the
hardware architecture of original clustering based motion detection scheme [24] and by the
proposed and implemented memory efficient motion detection hardware architecture. It is clear
from the table that the memory efficient architecture utilizes 41% less on-chip memory (Block RAMs)
and 24% less FPGA Slices. Therefore, this architecture is FPGA resource and area efficient.

Table 1. Comparison of FPGA Resource Utilization by the Implementations of Proposed Memory
Efficient Architecture and Original Algorithm’s Architecture.

Resources Original Architecture [24]
Proposed Memory

Efficient Architecture
Percentage of

Reduction
Slice LUTs 1379 960 30.38%

Occupied Slices 467 354 24.20%
BRAMs 36K 168 99 41.07%

Memory (Kb) 6048 3564 41.07%

Table 2 presents FPGA resources utilized (post-place and route results) by the complete
implementation of motion detection system using memory efficient hardware architecture. The
maximum operating frequency is 154.55 MHz and maximum possible frame rate for PAL (720 × 576)
size color video is 372 frames per second. Synthesis results also reveal that enough FPGA resources
are left for implementing other complex computer vision algorithms required by automated video
surveillance system on the same FPGA platform, as the memory efficient motion detection system
proposed, designed, and implemented by us utilizes only around 34% Block RAMs and 3% FPGA
slices. The implemented system yields good results and works in real-time.

Table 2. FPGA Resource Utilization by Our Memory Efficient Motion Detection System.

Resources
Camera

Interface
DVI Display

Interface

Proposed
Memory Efficient

Architecture

Complete
System

Total
Available
Resources

Percentage of
Utilization

Slice Registers 391 79 506 983 81,920 1.20%
Slice LUTs 434 101 960 1492 81,920 1.82%
Occupied

Slices
199 33 354 597 20,840 2.86%

BRAMs 36K 3 0 99 102 298 34.23%
Memory (Kb) 108 0 3564 3672 10,728 34.23%

DSP Slices 3 0 0 3 320 0.94%
IOs 16 22 36 36 840 4.28%

Figure 21. Complete motion detection system setup.

Table 1 shows the comparison of FPGA resources (post-place and route results) utilized by the
hardware architecture of original clustering based motion detection scheme [24] and by the proposed
and implemented memory efficient motion detection hardware architecture. It is clear from the table
that the memory efficient architecture utilizes 41% less on-chip memory (Block RAMs) and 24% less
FPGA Slices. Therefore, this architecture is FPGA resource and area efficient.

Table 1. Comparison of FPGA Resource Utilization by the Implementations of Proposed Memory
Efficient Architecture and Original Algorithm’s Architecture.

Resources Original Architecture [24] Proposed Memory
Efficient Architecture

Percentage of
Reduction

Slice LUTs 1379 960 30.38%
Occupied Slices 467 354 24.20%

BRAMs 36K 168 99 41.07%
Memory (Kb) 6048 3564 41.07%

Table 2 presents FPGA resources utilized (post-place and route results) by the complete
implementation of motion detection system using memory efficient hardware architecture.
The maximum operating frequency is 154.55 MHz and maximum possible frame rate for PAL
(720 × 576) size color video is 372 frames per second. Synthesis results also reveal that enough
FPGA resources are left for implementing other complex computer vision algorithms required by
automated video surveillance system on the same FPGA platform, as the memory efficient motion
detection system proposed, designed, and implemented by us utilizes only around 34% Block RAMs
and 3% FPGA slices. The implemented system yields good results and works in real-time.

Table 2. FPGA Resource Utilization by Our Memory Efficient Motion Detection System.

Resources Camera
Interface

DVI
Display
Interface

Proposed
Memory Efficient

Architecture

Complete
System

Total
Available
Resources

Percentage of
Utilization

Slice Registers 391 79 506 983 81,920 1.20%
Slice LUTs 434 101 960 1492 81,920 1.82%

Occupied Slices 199 33 354 597 20,840 2.86%
BRAMs 36K 3 0 99 102 298 34.23%

Memory (Kb) 108 0 3564 3672 10,728 34.23%
DSP Slices 3 0 0 3 320 0.94%

IOs 16 22 36 36 840 4.28%

J. Imaging 2017, 3, 20 25 of 28

Performance of the proposed, designed, and implemented memory efficient motion detection
hardware architecture is compared with some recently published motion detection hardware
implementations using different algorithms. The performance comparison is shown in Table 3.

Table 3. Performance Comparison with Existing Motion Detection Implementations.

Target FPGA Device Implementation Maximum Frame Rate (fps) for
PAL Resolution Videos

Virtex5 (xc5fx130t-2ff1738)
Our Implementation 372

[24] 178

Virtex6 (xc6vlx75t-3ff784)
Our Implementation 511

[25] 456

Virtex5 (xc5vlx50-2ff1153)

Our Implementation 372
[25] 315
[27] 121
[28] 113

Virtex-IIPro (xc2pro30-5ff1152) Our Implementation 230
[29,30] 200

VLSI implementation of original clustering based motion detection scheme has been presented
in [24]. The motion detection/segmentation architectures presented by Genovese and Napoli [27]
and Genovese et al. [28] were designed for OpenCV GMM algorithm and were implemented on
Virtex5 (xc5vlx50-2ff1153) FPGA. The motion segmentation circuit proposed by Genovese and Napoli
in [25] has been implemented on both Virtex6 (xc6vlx75t-3ff784) and Virtex5 (xc5vlx50-2ff1153) FPGAs
and is an improved version of the work presented by them in [27] and [28]. Jiang et al. [29] and
Kristensen et al. [30] have presented the design of a digital surveillance system running in real-time
on an embedded platform. The motion detection/segmentation unit of the circuit proposed by these
researchers is able to run at 83 MHz on Virtex-IIPro (xc2pro30-5ff1152) FPGA. For accurate performance
comparison with the work reported in literature [24,25] and [27–30], the proposed memory efficient
architecture has also been synthesized (including place and route) for Virtex6 (xc6vls75t), Virtex5
(xc5vls50), and Virtex-IIPro (xc2pro30) FPGA devices using Xilinx ISE tool chain.

The memory efficient motion detection VLSI/hardware architecture proposed in this paper
outperforms existing implementations in terms of processing speed while occupying less FPGA
resources. Although the FPGA resources utilized by the memory efficient architecture proposed and
implemented in this paper are lesser than the existing implementations in the literature [24,26–30],
nevertheless, an apple to apple comparison of FPGA resource utilization does not make proper sense
as the number of background models considered and the video formats and sizes considered in these
implementations are different than in our implementation. For this reason, one to one FPGA resource
utilization comparisons are not tabulated here.

The system architecture for motion detection, proposed, designed, and implemented by us is
adaptable and scalable for different video sizes. It is capable of processing high definition (HD) videos
(1920 × 1080 resolution color videos) in real-time at the frame rate of 74 frames per second.

4.2. Motion Detection Results

For robust and real-time testing of the implemented system, the system was run for
different real-world scenarios (both indoor and outdoor) under different lightening conditions.
The real-world scenarios are broadly classified into two categories, i.e., static background situations
and pseudo-stationary background situations. Figure 22 shows examples of real-world situations
of static background scenarios captured by the camera. In all cases in Figure 22, the background is
static and moving objects are present in the scene. Motion detected by our implementation in different
frames is shown just below the respective images. It can be clearly seen that only moving objects have
been detected by the implemented motion detection system.

J. Imaging 2017, 3, 20 26 of 28

J. Imaging 2017, 3, 20 26 of 28

(a) (b)

(c) (d)

Figure 22. (a)–(d): Moving objects in video scene and corresponding motion detected outputs for
static background scenarios.

Scenarios of pseudo-stationary background with moving foreground objects are considered in
Figure 23. In the first case (Figure 23a), despite the moving fan in the background, only moving
objects in the foreground are detected. In the second case (Figure 23b–d), the movements of leaves of
trees in the background (irrelevant motion) have been eliminated and only relevant motion is
detected.

(a) (b)

(c) (d)

Figure 23 (a)–(d): Moving objects in video scene and corresponding motion detected outputs for
pseudo-stationary background scenarios.

The test scenarios (Figures 22 and 23) for both indoor and outdoor cases are considered under
varying lighting conditions. Results of the tests show that the system is robust enough to detect only
the relevant motion in a live video scene and eliminates the continuous unwanted movements in the
background itself. All the above color frames are of PAL (720 × 576) and were taken at a frame rate of
25 fps. These frames and their results are extracted from live video streams produced by the
implemented system.

If a motion threshold is not crossed in a video frame, the frame is rejected at this stage and if a
motion threshold is crossed in a video frame, the frame is selected for further processing. This
filtering of frames of interest reduces the communication and processing overheads of an automated
video surveillance system for remote video surveillance scenarios.

Figure 22. (a–d): Moving objects in video scene and corresponding motion detected outputs for static
background scenarios.

Scenarios of pseudo-stationary background with moving foreground objects are considered in
Figure 23. In the first case (Figure 23a), despite the moving fan in the background, only moving objects
in the foreground are detected. In the second case (Figure 23b–d), the movements of leaves of trees in
the background (irrelevant motion) have been eliminated and only relevant motion is detected.

J. Imaging 2017, 3, 20 26 of 28

(a) (b)

(c) (d)

Figure 22. (a)–(d): Moving objects in video scene and corresponding motion detected outputs for
static background scenarios.

Scenarios of pseudo-stationary background with moving foreground objects are considered in
Figure 23. In the first case (Figure 23a), despite the moving fan in the background, only moving
objects in the foreground are detected. In the second case (Figure 23b–d), the movements of leaves of
trees in the background (irrelevant motion) have been eliminated and only relevant motion is
detected.

(a) (b)

(c) (d)

Figure 23 (a)–(d): Moving objects in video scene and corresponding motion detected outputs for
pseudo-stationary background scenarios.

The test scenarios (Figures 22 and 23) for both indoor and outdoor cases are considered under
varying lighting conditions. Results of the tests show that the system is robust enough to detect only
the relevant motion in a live video scene and eliminates the continuous unwanted movements in the
background itself. All the above color frames are of PAL (720 × 576) and were taken at a frame rate of
25 fps. These frames and their results are extracted from live video streams produced by the
implemented system.

If a motion threshold is not crossed in a video frame, the frame is rejected at this stage and if a
motion threshold is crossed in a video frame, the frame is selected for further processing. This
filtering of frames of interest reduces the communication and processing overheads of an automated
video surveillance system for remote video surveillance scenarios.

Figure 23. (a–d): Moving objects in video scene and corresponding motion detected outputs for
pseudo-stationary background scenarios.

The test scenarios (Figures 22 and 23) for both indoor and outdoor cases are considered under
varying lighting conditions. Results of the tests show that the system is robust enough to detect only
the relevant motion in a live video scene and eliminates the continuous unwanted movements in
the background itself. All the above color frames are of PAL (720 × 576) and were taken at a frame
rate of 25 fps. These frames and their results are extracted from live video streams produced by the
implemented system.

If a motion threshold is not crossed in a video frame, the frame is rejected at this stage and if a
motion threshold is crossed in a video frame, the frame is selected for further processing. This filtering
of frames of interest reduces the communication and processing overheads of an automated video
surveillance system for remote video surveillance scenarios.

J. Imaging 2017, 3, 20 27 of 28

5. Conclusions

In this paper, we have proposed and described the design and implementation of a standalone
system for motion detection in real-time. To address the issue of large on-chip memory requirement of
original clustering based motion detection scheme, a new memory efficient motion detection algorithm
has been proposed and the corresponding dedicated hardware architecture has been designed and
implemented on FPGA. The new memory efficient architecture uses approximately 41% less FPGA
Block RAMs (on-chip memory) as compared to proposed and implemented architecture for original
clustering based motion detection scheme. The complete system, including camera interface, memory
efficient motion detection architecture, and display interface has been implemented on Xilinx ML510
(Virtex-5 FX130T) FPGA Board. As demonstrated on video sequences, the new memory efficient system
robustly and automatically detects motion in real-world scenarios (both for the static backgrounds
and the pseudo-stationary backgrounds) in real-time for standard PAL (720 × 576) size color video.
The implemented system can be effectively used as a standalone system for motion detection and
filtering of frames of interest in a remote video surveillance scenario for reducing communication
requirements and processing overheads.

Acknowledgments: The financial support of Department of Electronics & Information Technology
(DeitY)/Ministry of Communications and Information Technology (MCIT), and the Government of India is
gratefully acknowledged.

Author Contributions: Sanjay Singh, Atanendu Sekhar Mandal, Chandra Shekhar, and Anil Vohra conceived the
design. Sanjay Singh implemented the design, analyzed the results, and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Radke, R.J.; Andra, S.; Kofahi, O.A.; Roysam, B. Image Change Detection Algorithms: A Systematic Survey.
IEEE Trans. Image Process. 2005, 14, 294–307. [CrossRef] [PubMed]

2. Rosin, P.L. Thresholding for Change Detection. In Proceedings of the Sixth International Conference on
Computer Vision, Bombay, India, 4–7 January 1998; pp. 274–279.

3. Rosin, P.L.; Ioannidis, E. Evaluation of Global Image Thresholding for Change Detection. Pattern Recognit. Lett.
2003, 24, 2345–2356. [CrossRef]

4. Smits, P.C.; Annoni, A. Toward Specification-Driven Change Detection. IEEE Trans. Geosci. Remote Sens.
2000, 38, 1484–1488. [CrossRef]

5. Bruzzone, L.; Prieto, D.F. Automatic Analysis of the Difference Image for Unsupervised Change Detection.
IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [CrossRef]

6. Colwell, J.E.; Weber, F.P. Forest Change Detection. In Proceedings of the 15th International Symposium on
Remote Sensing of the Environment, Ann Arbor, MI, USA, 11–15 May 1981; pp. 839–852.

7. Malila, W.A. Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat.
In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA,
3–6 June 1980; pp. 326–336.

8. Singh, A. Review Article: Digital Change Detection Techniques using Remotely-Sensed Data. Int. J.
Remote Sens. 1989, 10, 989–1003. [CrossRef]

9. Stefano, L.D.; Mattoccia, S.; Mola, M. A Change-Detection Algorithm Based on Structure and Color.
In Proceedings of the IEEE Conference on Advanced Video and Signal-Based Surveillance, Miami, FL,
USA, 22 July 2003; pp. 252–259.

10. Hsu, Y.Z.; Nagel, H.H.; Rekers, G. New Likelihood Test Methods for Change Detection in Image Sequences.
Comput. Vis. Gr. Image Process. 1984, 26, 73–106. [CrossRef]

11. Skifstad, K.; Jain, R. Illumination Independent Change Detection for Real World Image Sequences.
Comput. Vis. Gr. Image Process. 1989, 46, 387–399. [CrossRef]

12. Elfishawy, A.S.; Kesler, S.B.; Abutaleb, A.S. Adaptive Algorithms for Change Detection in Image Sequence.
Signal Process. 1991, 23, 179–191. [CrossRef]

http://dx.doi.org/10.1109/TIP.2004.838698
http://www.ncbi.nlm.nih.gov/pubmed/15762326
http://dx.doi.org/10.1016/S0167-8655(03)00060-6
http://dx.doi.org/10.1109/36.843048
http://dx.doi.org/10.1109/36.843009
http://dx.doi.org/10.1080/01431168908903939
http://dx.doi.org/10.1016/0734-189X(84)90131-2
http://dx.doi.org/10.1016/0734-189X(89)90039-X
http://dx.doi.org/10.1016/0165-1684(91)90072-Q

J. Imaging 2017, 3, 20 28 of 28

13. Jain, Z.S.; Chau, Y.A. Optimum Multisensor Data Fusion for Image Change Detection. IEEE Trans. Syst.
Man Cybern. 1995, 25, 1340–1347. [CrossRef]

14. Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B. Wallflower: Principles and Practice of Background
Maintenance. In Proceedings of the Seventh International Conference on Computer Vision, Kerkyra, Greece,
20–27 September 1999; pp. 255–261.

15. Clifton, C. Change Detection in Overhead Imagery using Neural Networks. Appl. Intell. 2003, 18, 215–234.
[CrossRef]

16. Durucan, E.; Ebrahimi, T. Change Detection and Background Extraction by Linear Algebra. In Proceedings
of the IEEE 2001 Custom Integrated Circuits Conference, San Diego, CA, USA, 6–9 May 2001; Volume 89,
pp. 1368–1381.

17. Li, L.; Leung, M.K.H. Integrating Intensity and Texture Differences for Robust Change Detection. IEEE Trans.
Image Process. 2002, 11, 105–112. [PubMed]

18. Liu, S.C.; Fu, C.W.; Chang, S. Statistical Change Detection with Moments under Time-Varying Illumination.
IEEE Trans. Image Process. 1998, 7, 1258–1268. [PubMed]

19. Cavallaro, A.; Ebrahimi, T. Video Object Extraction based on Adaptive Background and Statistical Change
Detection. In Proceedings of the SPIE Visual Communications and Image Processing, San Jose, CA, USA,
20 January 2001; pp. 465–475.

20. Huwer, S.; Niemann, H. Adaptive Change Detection for Real-Time Surveillance Applications. In Proceedings
of the Third IEEE International Workshop on Visual Surveillance, Dublin, Ireland, 1 July 2000; pp. 37–46.

21. Stauffer, C.; Grimson, W.E.L. Learning Patterns of Activity using Real-Time Tracking. IEEE Trans. Pattern
Anal. Mach. Intell. 2000, 22, 747–757. [CrossRef]

22. Butler, D.E.; Bove, V.M.; Sridharan, S. Real-Time Adaptive Foreground/Background Segmentation.
EURASIP J. Appl. Signal Process. 2005, 2005, 2292–2304. [CrossRef]

23. Chutani, E.R.; Chaudhury, S. Video Trans-Coding in Smart Camera for Ubiquitous Multimedia Environment.
In Proceedings of the International Symposium on Ubiquitous Multimedia Computing, Hobart, Australia,
13–15 October 2008; pp. 185–189.

24. Singh, S.; Shekhar, C.; Vohra, A. FPGA-based Real-time Motion Detection for Automated Video Surveillance
Systems. Electronics 2016, 5, 10. [CrossRef]

25. Genovese, M.; Napoli, E. ASIC and FPGA Implementation of the Gaussian Mixture Model Algorithm for
Real-time Segmentation of High Definition Video. IEEE Trans. Very Larg. Scale Integr. 2014, 22, 537–547.
[CrossRef]

26. Rodriguez-Gomez, R.; Fernandez-Sanchez, E.J.; Diaz, J.; Ros, E. FPGA Implementation for Real-Time
Background Subtraction Based on Horprasert Model. Sensors 2012, 12, 585–611. [CrossRef] [PubMed]

27. Genovese, M.; Napoli, E. FPGA-Based Architecture for Real Time Segmentation and Denoising of HD Video.
J. Real Time Image Process. 2013, 8, 389–401. [CrossRef]

28. Genovese, M.; Napoli, E.; Petra, N. OpenCV Compatible Real Time Processor for Background Foreground
Identification. In Proceedings of the International Conference on Microelectronics, Cairo, Egypt,
19–22 December 2010; pp. 467–470.

29. Jiang, H.; Ardö, H.; Öwall, V. A Hardware Architecture for Real-time Video Segmentation Utilizing Memory
Reduction Techniques. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 226–236. [CrossRef]

30. Kristensen, F.; Hedberg, H.; Jiang, H.; Nilsson, P.; Öwall, V. An Embedded Real-Time Surveillance System:
Implementation and Evaluation. J. Signal Process. Syst. 2008, 52, 75–94. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/21.414528
http://dx.doi.org/10.1023/A:1021942526896
http://www.ncbi.nlm.nih.gov/pubmed/18244616
http://www.ncbi.nlm.nih.gov/pubmed/18276338
http://dx.doi.org/10.1109/34.868677
http://dx.doi.org/10.1155/ASP.2005.2292
http://dx.doi.org/10.3390/electronics5010010
http://dx.doi.org/10.1109/TVLSI.2013.2249295
http://dx.doi.org/10.3390/s120100585
http://www.ncbi.nlm.nih.gov/pubmed/22368487
http://dx.doi.org/10.1007/s11554-011-0238-1
http://dx.doi.org/10.1109/TCSVT.2008.2009244
http://dx.doi.org/10.1007/s11265-007-0100-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Motion Detection Algorithm
	VLSI Implementation of Proposed Memory Efficient Algorithm
	Motion Detection VLSI Architecture
	Input Buffer Memory
	Motion Computation Enable Unit
	Parameter Memory
	Block Centroid Computation Module
	Minimum Centroid Difference Computation Module
	Initialization-Update-Replace Module
	Motion Detection Flag Computation
	Output Buffer Memory
	Control Signals

	Results and Discussions
	Synthesis Results
	Motion Detection Results

	Conclusions

