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Abstract: It is a challenging topic to perform pattern reconstruction from a unit-width skeleton, which
is obtained by a parallel thinning algorithm. The bias skeleton yielded by a fully-parallel thinning
algorithm, which usually results from the so-called hidden deletable points, will result in the difficulty
of pattern reconstruction. In order to make a fully-parallel thinning algorithm pattern reconstructable,
a newly-defined reconstructable skeletal pixel (RSP) including a thinning flag, iteration count, as
well as reconstructable structure is proposed and applied for thinning iteration to obtain a skeleton
table representing the resultant thin line. Based on the iteration count and reconstructable structure
associated with each skeletal pixel in the skeleton table, the pattern can be reconstructed by means
of the dilating and uniting operations. Embedding a conventional fully-parallel thinning algorithm
into the proposed approach, the pattern may be over-reconstructed due to the influence of a biased
skeleton. A simple process of removing hidden deletable points (RHDP) in the thinning iteration
is thus presented to reduce the effect of the biased skeleton. Three well-known fully-parallel
thinning algorithms are used for experiments. The performances investigated by the measurement
of reconstructability (MR), the number of iterations (NI), as well as the measurement of skeleton
deviation (MSD) confirm the feasibility of the proposed pattern reconstruction approach with the
assistance of the RHDP process.

Keywords: hidden deletable point (HDP); image processing; pattern reconstruction; reconstructable
skeletal pixel (RSP); skeleton; thinning

1. Introduction

The purpose of thinning is to remove a large number of unwanted points for extracting the
isotropic thinned skeleton, which shall retain the pattern’s geometrical shape features for computers to
efficiently perform image-related tasks, such as character recognition [1,2], fingerprint identification [3],
posture recognition [4], retinal image analysis [5], and so on. Over the past half-century, many
thinning algorithms have been proposed and can be roughly divided into two main categories:
rule-based thinnings (iterative schemes) [6–26] and distance-based skeletonizations (non-iterative
schemes) [27–36].

Rule-based thinning applies the thinning templates iteratively to remove the contour points until
the unit-width skeleton is obtained. In accordance with the operating manner, rule-based thinning
algorithms can be further divided into sequential [6] and parallel [7–26] thinning. For the sequential
thinning, the thinning operation of a contour point depends on its neighboring points’ thinning
results. The contour points can be removed as long as they are not interior, end and isolated points,
in which the removal shall maintain pattern connectivity (for example, eight-connectivity for pattern
pixels should be maintained if a (8, 4) binary picture is considered.). On the other hand, parallel
thinning can operate the points simultaneously, and one thinning iteration may contain more than
one sub-cycle (may also be named as a sub-iteration [7] or pass [12]) or subfield [13,26]. Sub-cycles
used in an iteration are often adopted for developing a sub-cycle-based parallel thinning, where the
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operator/reduction may be changed with a period of 2, 4 or 8. For example, two-sub-cycle thinning
removes symmetrically and iteratively the contour points from two opposite erosive directions until
the thinned result converges to be of unit-width. If a thinning algorithm uses one sub-cycle, it is
a fully-parallel algorithm. For a one-sub-cycle thinning as defined by Chen and Hsu [9], a contour
point whose erosive direction is the same as its neighboring points can always be removed regardless
whether the current iteration count is even or odd. Otherwise, if its erosive direction differs from
one of its neighboring points, its removal is dependent on whether the current iteration count is odd
or even like the checking in the two-sub-cycle scheme for the preservation of line connectivity. For
a subfield-based (or subfield-sequential) algorithm, the binary picture is partitioned into more than
two (say k) subfields, which are alternatively activated. During a given iteration step, k successive
parallel reductions associated with these subfields are performed, and some pattern pixels in the
active subfield can be designated for removal [13,26]. In order to generate the suitable deletion
rules for parallel topological algorithms, some sufficient conditions for topology-preserving parallel
reductions were proposed by Németh et al. [22]. Based on the sufficient conditions, fifty-four 2D
parallel thinning and shrinking algorithms were constructed; and a four-sub-iteration scheme with
intermediate deletion directions and the iteration-level endpoint checking in subfield-based algorithms
were also introduced [22].

A comprehensive survey on thinning methodologies has been reported by Lam and Suen [11].
From the viewpoint of order dependence, the resultant thin line depends on the order of pixels
examined in sequential thinning algorithms, whereas that depends on the order of the sub-iterations
in parallel thinning algorithms. In order to avoid any kind of order dependence, Ranwez and
Soille introduced the concept of order independent homotopic thinning and thus presented an order
independent homotopic marking algorithm for thinning [17]. Palágyi further presented a class of
equivalent deletion rules and related methods to bridge the order-independent sequential, fully-parallel
and subfield-based algorithms [26]. Based on the framework of critical kernels [37], Bertrand and
Couprie introduced the notion of crucial pixel to study the framework of digital topology, in which the
link between critical kernels, minimal non-simple sets and P-simple points is clarified for thinning
algorithm design [21].

For distance-based skeletonization [27,29], the local point with the maximum distance is defined
as the skeletal point where distance transformation is performed by finding the shortest distance from
the point to its nearest background point. It is the well-known medial axis transformation (MAT)
thereafter. A good survey on skeletonization theories, methodologies and their applications can be
found in the articles of Saha et al. [35,36]. In accordance with the original MAT definition [27], three
important properties in skeletonization are addressed as follows after the investigation of the theory of
skeleton and its representation for continuous objects [28,29].

1. The connectivity of the derived skeleton is preserved as long as the original object is connected.
2. The original object can be exactly reconstructed from its skeleton.
3. The geometry of the skeleton is invariant under picture rotation.

However, while considering the digitized plane, the distance-based skeletons are usually discrete,
disconnected, as well as not of unit-width. This means that the three properties mentioned above are
not easily maintained due to the effect of discrete metrics as investigated by the literature [31,38,39].
In order to render the advantage of the low boundary noise effect from the MAT and overcome the
disconnected issue, a MAT-based thinning has been proposed by Chen and Chao [40]; who also argue
a new challenge of “is it possible that the original line pattern can be completely restored with the
thinned result?” Up to now, this issue is not easy for a conventional rule-based thinning algorithm
since no reconstructable information is preserved, but the line connectivity during the thinning
process. Therefore, the goal of this paper is to propose a pattern-reconstructable strategy embedded in
a rule-based thinning so that a good thinning result can be maintained, as well as the original pattern
can be reconstructed from the built thin line information (in MAT-based skeletonization, the pattern
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can be reconstructed from its MAT by a re-expansion process as mentioned by Peleg and Rosenfeld [30],
whereas the pattern reconstruction from the built thin line containing the iterative and reconstructable
information is considered in this article).

Since Jang and Chin proposed a reconstructable parallel thinning [12] in 1993, there have been
very few reconstructable methods regarding rule-based parallel thinning presented and discussed.
Jang and Chin’s method is based on a hybrid approach of a fully-parallel thinning algorithm and
morphological skeleton transformation (MST). It first identifies a set of disjoint feature pixels containing
the required information of reconstruction by means of morphological operations. Then, based on
fully-parallel thinning, an iterative boundary removal procedure is adopted for producing a unit-width
skeleton. Finally a labeling process is used to encode the resultant skeleton with three information
(namely reduced feature pixel, feature pixel and the unit-width pixel obtained by thinning) for pattern
reconstruction. Even though the resultant skeleton is connected, unit-width and reconstructable, this
method is somewhat complicated for application. The reason is that “skeletons generated by the
algorithm vary with different MST structuring templates chosen by the user for the extraction of
feature pixels” as discussed by Jang and Chin [12]. Due to the extra feature pixels involved in the
traditional skeletal pixels, noisy branches are very easily yielded. Such a phenomenon may easily be
observed in a high-resolution pattern. For example, given a binary pattern shown in Figure 1a and
performed by the MST-based algorithm, Figure 1c shows the completely reconstructed pattern from
the thinned result shown in Figure 1b, where a number of noisy branches are yielded apparently.

(a) (b) (c)

Figure 1. Illustration of Jang and Chin’s MST-based reconstructable parallel thinning. (a) Feature pixels
obtained from the MST, (b) the final skeleton containing reduced feature pixels, feature pixels and the
unit-width pixels to ensure pattern reconstruction, as well as (c) the reconstructed pattern.

In order to avoid the unwanted branches as suffered by Jang and Chin’s method [12], in this study,
we present a pattern-reconstructable strategy and hidden-deletable-point removal method embedded
in a fully-parallel thinning, where the former can extract the reconstructable information during the
fully-parallel thinning process, and the latter can help with reducing the effect of the bias skeleton, thus
further improving the reconstruction. Note here that a deletable point, but not be removed in a thinning
iteration, is defined as hidden deletable point (HDP), which is usually accumulated in the portion
of the L-corner and T-junction, thus yielding the phenomenon of the bias skeleton in a fully-parallel
thinning [10,14]. The fundamental principles of designing the presented method are briefly introduced
as follows. Basically, in the thinning process, for every iteration, it is of great importance for checking
the line connectivity. Let 1-pixel and 0-pixel denote the pattern and background pixel, respectively, in
this paper. In order to examine that a 1-pixel P is a deletable point (C(P) = 1) or has been a skeletal
point (C(P) = 0) in the thinning iteration, a checking function C(P) based on the local connecting
function defined by Chen and Hsu [9] is reformulated in Section 2 and used in our approach. To
make the pattern reconstruction possible, the trajectory of thinning should be recorded. For a 1-pixel
P first becoming a unit-width skeletal point, e.g., at the (j)-th iteration, it is regarded as a landmark
on the thinning trajectory, and its eight neighbors at the (j− 1)-th iteration will be recorded as the
reconstructable information. A RSP (reconstructable skeletal pixel) matrix will be built for storing
the thinning flag (The thinning flag F is a trigger-once flag. Initially, it is set to zero. Once a 1-pixel P
becomes a skeletal pixel, F(P) is set to one eventually during the thinning process.) (F), iteration count
(I) and reconstructable information (R). The RSP matrix will be updated after a thinning iteration
until the thinning result is not changed, as the flowchart depicted in Figure 2a, where the resultant
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thin line information is further reduced in a so-called skeleton table, which contains all of the skeletal
point’s coordinates, iteration count I and reconstructable R information. In order to overcome the
effect of bias skeleton, an HDP removal process can also be involved in the presented flowchart. In this
way, both the effect of the bias skeleton and the number of thinning iterations can be further reduced.
In accordance with the produced skeleton table, its original pattern can be reconstructed by means of
uniting all dilation results for all skeletal pixels with their I and R information, as the flowchart given
in Figure 2b.

(a) (b)

Figure 2. Flowchart of the proposed approach for digital pattern (a) thinning and (b) reconstruction.

The rest of this paper is organized as follows. In Section 2, followed by the fundamental definitions,
the checking function is formulated, and the RSP information is defined. The RSP updating in
a fully-parallel thinning, pattern reconstruction based on skeleton table, as well as HDP removal in
thinning iteration are also detailed in Section 2. Section 3 shows experimental results and comparisons.
The measurement of reconstructability (MR) [12], the number of iterations (NI) and the measurement
of skeleton deviation (MSD) [40] are used for analyses and discussions. The conclusions and future
works are finally drawn in Section 4.

2. Proposed Method

In order to facilitate a clear presentation for our method, some definitions shown in [9] are adopted
here and given first. Let W × H binary images be composed of two-level pixels; one is the background
pixel (or 0-pixel), and the other is pattern pixel (or 1-pixel). For a pixel P(x, y), let N(n), n = 0, 1, ..., 7
be its eight neighbors as depicted in Figure 3. In this 3× 3 designation, let Se and So denote the sets
of integers {0, 2, 4, 6} and {1, 3, 5, 7}, respectively; and Sx be the union set Se ∪ So. Moreover, let
K(P) = ∑7

n=0 N(n) be the sum of the eight neighbors, which is equal to the total number of 1-pixel
neighbors. We can re-index from 0 to K− 1 for these 1-pixel neighbors in clockwise order and derive
a set of integers Sb = {b|0, 1, ..., K− 1}. Thus, a mapping function B : b 7→ n is defined to be B(b) = n.
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Based on these definitions, according to the systematic design of thinning algorithms [9], for the n-th
1-pixel neighbor, its connecting set Sc(n) is defined by:

Sc(n) =

{
{n + 1}, if n ∈ So

{n + 1, n + 2}, if n ∈ Se
(1)

Based on the Sc, for any two consecutive elements in Sb, take the connecting set Sc(B(b)) of the
former element and the location B(b + 1) of the latter; the connecting operator ⊗ is expressed by:

Sc(B(b))⊗ B(b + 1) =

{
1, if B(b + 1) ∈ Sc(B(b))
0, otherwise

(2)

Thus, a local connecting (LC) for pixel P is defined by:

LC(P) =
K−1

∑
b=0

Sc(B(b))⊗ B(b + 1) (3)

N(7) N(0) N(1)
= P(x− 1, y− 1) = P(x, y− 1) = P(x + 1, y− 1)

N(6) P(x, y) N(2)
= P(x− 1, y) = P(x + 1, y)

N(5) N(4) N(3)
= P(x− 1, y + 1) = P(x, y + 1) = P(x + 1, y + 1)

Figure 3. Definition of eight neighbors for a pixel P.

In the thinning iteration, the most important thing is that the removal of a 1-pixel P cannot destroy
the line connectivity, which can be examined by a checking function C(P). In this study, based on the
original definition [9], our checking function is reformulated as below:

Cj(P) =

{
1, if LC(P) = K− 1 (> 0)
0, otherwise

(4)

where Cj(P) = 1 tells that the 1-pixel P is possibly removed (or removable) at the (j)-th iteration.
Otherwise, it cannot be removed and has become a skeletal point at this iteration. In the following,
the result of the checking function is also named the C-value for convenient presentation.

In order to let the digital pattern be reconstructable from the thinning result, the trajectory
of thinning is recorded in our approach. For a 1-pixel first becoming a skeletal point at the (j)-th
iteration, for example, it is considered as a landmark on the thinning trajectory as mentioned in
Section 1. The reconstructable information at the (j − 1)-th iteration for this landmark should be
included, that is for a landmark, its eight neighbors at the (j − 1)-th iteration will be recorded as
the reconstructable information. Therefore, in this study, a 16-bit data format shown in Figure 4
is newly defined to represent an RSP-pixel, which consists of the thinning flag (F, bit f ), iteration
count (I, bits i6-i0) and reconstructable information (R, bits r7-r0). Each bit indicates the binary value,
0 or 1. The RSP-pixel will be updated in each thinning iteration until the final unit-width thin line is
obtained. Here, F = 1 represents that the 1-pixel has become a skeletal point. I and R can be expressed
respectively as follows for converting the value from binary into decimal.

I =
6

∑
k = 0

ik × 2k (5)
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R =
7

∑
k = 0

rk × 2k (6)

For convenience of presenting our approach, the RSP matrix can also be represented by three
W × H matrices (F, I and R).

f i6 i5 i4 i3 i2 i1 i0 r7 r6 r5 r4 r3 r2 r1 r0

Figure 4. Definition of 16-bit data format for a reconstructable skeletal pixel (RSP)-pixel.

2.1. RSP Updating in a Rule-Based Thinning

In general, a rule-based thinning applies the thinning templates iteratively to remove the contour
points until the unit-width thin line is obtained. For illustrating how to update the RSP matrix in
a fully-parallel thinning, a series of iteratively thinning results is given in Figure 5, which are yielded
by Chen and Hsu’s method [9] combining with the process of removing HDPs (which will be presented
in Section 2.3). Note here that the pixels removed in a thinning iteration are numbered in Figure 5e,
which will be helpful for the later presentation.

(a) T0 (b) T1 (c) T2

(d) T3 (e)

Figure 5. (a) Input digital pattern. The thinning results at the 1st, 2nd and 3rd iteration are shown in
(b–d), respectively. The numbers in (e) illustrate the points removed at the related thinning iteration.

The mechanism of updating the RSP information for 1-pixel P is presented as follows. Let the
RSP matrix be initially set to be null. Let Tj−1 and Tj be the intermediate thinning results at the
(j− 1)-th and (j)-th iteration, respectively. For a 1-pixel P ∈ Tj, with the same order as given in Figure 3,
let N̂(n), n = 0, 1, ..., 7 be the P’s eight neighbors ∈ Tj−1 and rn, n = 0, 1, ..., 7 be the reconstructable
information Rj(P) for updating. Note here that the pixel N̂(n) ∈ Tj−1 could have been a final
skeletal point if Cj−1(N̂(n)) = 0 according to the definition of Equation (4). For a neighbor N̂(n),
the corresponding rn = 1 if it is of 1-pixel and Cj−1(N̂(n)) = 1 (this means that the 1-pixel neighbor
N̂(n) could be possibly removed at the next iteration). Otherwise, rn = 0 means that the neighbor N̂(n)
is 0-pixel or has already been a skeletal point satisfying Cj−1(N̂(n)) = 0. This can thus be expressed by:

rn =

{
1, if N̂(n) = 1 and Cj−1(N̂(n)) = 1
0, otherwise

(7)

For 1-pixel P, if Fj−1(P) = 0 and Cj(P) = 0, its reconstructable information (rn, n = 0, 1, ..., 7) is
updated as Rj(P), the iteration information (in, n = 0, 1, ..., 6) updated as Ij(P) = j− 1, as well as Fj(P)
is set to 1 (this means that the 1-pixel P has become a skeletal point). Otherwise, Fj(P) remains 0.
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Consider the intermediate thinning results T2 and T3 as illustrated in Figure 5c,d, for a 1-pixel
P ∈ T3 denoted in Figure 6b; its eight neighbors ∈ T2 are shown in Figure 6a confined by a dotted
square. The current iteration count for thinning is j = 3. By means of the checking function in
Equation (4), we have C2(N̂(2)) = 0, C2(N̂(4)) = 1, C2(N̂(5)) = 1 and C3(P) = 0 as the numeric
presentation in Figure 6c. Because the thinning flag F2(P) = 0 and C3(P) = 0, in this case, the
reconstructable information is updated as r7r6r5r4r3r2r1r0 = 00110000 by Equation (7) or further
represented as R3(P) = 48 according to Equation (6). The iteration information (j − 1 = 2) is
i6i5i4i3i2i1i0 = 000010 or I3(P) = 2 according to Equation (5). Moreover, since F2(P) = 0 and
C3(P) = 0, the 1-pixel P becomes a skeletal point, and F3(P) is set to 1. Note here that for a 1-pixel P,
once F(P) becomes 1, its RSP-pixel updating will not be performed at the following iterations since the
necessary reconstructable information of the skeletal pixel, RSP(P), should be kept at this landmark.
Based on the RSP-pixel data format given in Figure 4, in this illustration, RSP(P) is finally updated as
(1 000010 00110000), which can also be represented in decimal as (1 2 48) according to Equations (5)
and (6).

(a) (b)

(c)

Figure 6. Illustrations of a 1-pixel P ∈ T3 in (b) and its eight neighbors ∈ T2 confined by a dotted
square. The current iteration count for thinning is 3. According to the Equation (4), (c) presents the
C-value calculated for the three 1-neighbor N̂(2), N̂(4), and N̂(5) ∈ T2 in (a) and that calculated for
the 1-pixel P ∈ T3 in (b).

Based on the operational mechanism presented above, the procedure of updating the RSP matrix
in a fully-parallel thinning is summarized as follows.

RSP Updating: Procedure of Updating the RSP Matrix in a Rule-Based Thinning

1. Null a RSP matrix.
2. Consider the (j)-th iteration in a fully-parallel thinning process. Do Steps 3–5 for each 1-pixel P

satisfying Fj−1(P) = 0 and Cj(P) = 0.
3. Update Rj(P) according to Equation (7).
4. Update Ij(P)← j− 1.
5. Set Fj(P)← 1. This is a landmark that the 1-pixel P first becomes a skeletal pixel.
6. Perform Steps 2–5 until the thinning result is not changed. The binary F matrix also represents

the final thinning result indeed.
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Following the current example, a series of thinning details for each pixel change is given in
Figure 7 to illustrate the behavior of RSP updating. Consider a 9 × 9 digital pattern as given in
Figure 5a; let T0 be the original pattern, and the RSP matrix is set to be null initially, as shown in
Figure 7a. After the first thinning iteration, we have the thinning result T1 as shown in Figure 7b,
where T0 is confined by a dotted line, and thus, the removed pixel can be easily inspected for reference.
There is not any RSP-pixel to be updated in this iteration since the corresponding C-value for every
1-pixel is 1, i.e., all of them are possibly further removed at the next thinning iteration. Figure 7c–h
shows the updated RSP information for each 1-pixel P satisfying to C(P) = 0 in the thinning result T2

(that is, they become skeletal pixels at this thinning iteration), where the reconstructable information
R(P) is numbered for reference, and the current iteration count is j = 2. Note here that for the 1-pixel
at (3, 2), (2, 3) and (3, 3), their RSP information is not updated here since their C values are 1. Figure 7i
shows the update RSP pixels with gray squares at this thinning iteration. After updating the RSP
matrix in T2, we have just obtained the six skeletal pixels (4, 2), (5, 2), (6, 2), (2, 4), (2, 5), (2, 6), whose C
values are 0, and thus, their updates of RSP information stop here.

Consider the next thinning iteration (j = 3) for the current illustration; let the updated RSP matrix
and the thinning result T2 be redisplayed in Figure 8a,b, respectively. Figure 8c,d shows respectively
the updated RSP information for the 1-pixel (2, 3) and (3, 2) having zero C value in T3. Note here
that the 1-pixel (3, 3) in the T2 has been removed in T3. The RSP matrix is finally updated as shown
in Figure 8e. The thinning and its RSP updating process stop here for the current illustration. The
RSP matrix can be decomposed into F, I and R matrices as shown in Figure 8f,g,h, respectively. This
information will be useful for pattern reconstruction as presented in the next subsection.

(a) (b) (c)

(d) (e) (f)

Figure 7. Cont.



J. Imaging 2017, 3, 29 9 of 23

(g) (h) (i)

Figure 7. Illustrations of RSP updating from T1 to T2. (a) Null RSP matrix initially. That is, the RSP
information is set to be (0 0 0)10 in decimal or (0 000000 00000000)2 in binary. (b) Thinning result T1,
where the original pattern is regarded as T0 and confined by a dotted line for reference. (b–h) show
the updated RSP information for each 1-pixel P satisfying C(P) = 0 in T2, where the reconstructable
information R(P) is numbered. (i) The updated RSP pixel is denoted with a gray square.

(a) (b) (c)

(d) (e)

Figure 8. Cont.
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(f) F (g) I (h) R

Figure 8. Illustrations of RSP updating from T2 to T3. (a) The RSP matrix at j = 2, where six
skeletal pixels have been identified. (b) Thinning result T2. (c,d) show respectively the updated RSP
information for the 1-pixel (2, 3) and (3, 2) having zero C value in T3. (e) The updated RSP pixel is
denoted with a gray square. The RSP matrix can be decomposed into F, I and R matrices, as shown in
(f,g,h), respectively.

2.2. Pattern Reconstruction Based on the Skeleton Table

By observing the obtained RSP information, the thinning result can be further represented by
a skeleton table, which records only the final skeletal pixels with their coordinates, I and R information
as listed in Table 1. The thin line is easily redrawn based on the coordinates in the skeleton table.
More importantly, the digital pattern can be further reconstructed based on their I and R information.

According to the RSP-pixel updating as presented in Section 2.1, for each skeletal pixel P, its
non-zero neighbors labeled in R(P) and iteration count I(P) for obtaining its reconstructable structure
have been recorded. Therefore, the area of the reconstructed partial pattern for P, denoted as Ȧ(P), can
be easily performed by just dilating I(P) times the non-zero neighbors r ∈ R(P) with a 3× 3 structure
element (SE) and expressed by:

Ȧ(P) =
⋃

∀r(=1)∈R(P)

(r⊕ SE)I(P), (8)

where (r ⊕ SE)I(P) represents that morphological dilations are performed I(P) times for each
1-neighbor r ∈ R(P) with the SE as given below. Then, the union of all dilation results yields
the partial reconstructed pattern Ȧ(P).

SE =

 1 1 1
1 1 1
1 1 1

 (9)

Table 1. The final 8 skeletal pixels, recorded with their coordinates, I and R information, form
a skeleton table.

Skeletal Pixels Coordinates I R

1 (3, 2) 2 48
2 (4, 2) 1 255
3 (5, 2) 1 255
4 (6, 2) 1 255
5 (2, 3) 2 6
6 (2, 4) 1 255
7 (2, 5) 1 255
8 (2, 6) 1 255
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Based on such a pattern reconstruction mechanism, the original pattern can be approximately
reconstructed by the following union operation and denoted as Arec, whereas the original pattern is
denoted as Aorg for the calculation of pattern reconstructability presented in Section 3.

Arec ≈
⋃

∀P∈skeleton table
Ȧ(P), (10)

Figure 9 illustrates how to obtain the Ȧ(P) for all pixels in the skeleton table listed in Table 1.
Note here that the reconstructable information 1-neighbor r ∈ R(P) is displayed by a gray square.
Except that morphological dilations are performed twice for the cases of Figure 9a,e, it is performed
only once for others. The final reconstructed pattern Arec shown in Figure 9i is obtained by the union
of all partial patterns (Ȧ)s and is the same as the original digital pattern given in Figure 5a. The whole
procedure of our pattern reconstruction from the skeleton table can be simply summarized as follows.

(a) Ȧ(3, 2) (b) Ȧ(4, 2) (c) Ȧ(5, 2)

(d) Ȧ(6, 2) (e) Ȧ(2, 3) (f) Ȧ(2, 4)

(g) Ȧ(2, 5) (h) Ȧ(2, 6) (i) A

Figure 9. Illustrations of pattern reconstruction from the skeleton table. Reconstructed partial pattern
from (a) RSP(3, 2), (b) RSP(4, 2), (c) RSP(5, 2), (d) RSP(6, 2), (e) RSP(2, 3), (f) RSP(2, 4), (g) RSP(2, 5)
and (h) RSP(2, 6). Here, the reconstructable information 1-neighbor r ∈ R(P) is displayed by a gray
square. (i) shows the final reconstructed pattern A with the union of these partial patterns (Ȧ)s.

Pattern Reconstruction: Procedure of Pattern Reconstruction from the Skeleton Table

1. Null a W × H binary array, and input the skeleton table.
2. Find Ȧ(P) according to Equation (8) for each pixel P ∈ skeleton table.
3. Find the union Arec according to Equation (10) and put it in the array. The pattern is

thus reconstructed.
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2.3. Removal of Hidden-Deletable Points in the Thinning Iteration

So far, we have presented how to yield the RSP information during a fully-parallel thinning
process and to reconstruct the pattern based on the RSP information. In these illustrations, the used
thinning result in each iteration is indeed obtained by means of two processes: the original fully-parallel
thinning [9] and the process of removing hidden deletable points (RHDP) newly presented in this
section. In the following, we will first examine the effect of our approach without the assistance of the
RHDP process, then introduce the so-called hidden deletable point (HDP) and, finally, present our
RHDP process.

Reconsider the digital pattern in Figure 5a and perform the fully-parallel thinning [9] on it
without the assistance of the RHDP process; the original thinning results in each iteration, denoted by
Torg

i , i = 1, 2, 3, 4, are shown in Figure 10. Compare them to Figure 5; the results are rather different,
and the final thin line is biased obviously. In addition, it takes more thinning iterations (4 versus 3).
Figure 10e shows the reconstructed pattern (gray squares) with the presented pattern reconstruction
approach, where the result is over-reconstructed. In Chen’s early study [14], this phenomenon results
from the so-called HDP effect. Contrary to the complicated vector analysis presented in [14] for
detecting the HDPs, in this paper, a simple and feasible way for the removal of HDPs is newly
presented as follows.

(a) Torg
1 (b) Torg

2 (c) Torg
3

(d) Torg
4 (e) Reconstruction

Figure 10. (a–d) The original thinning results at the 1st, 2nd, 3rd and 4th iteration by means of the
fully-parallel thinning without the assistance of RHDP process. (e) Gray squares show the reconstructed
pattern with our approach. It is obviously over-reconstructed due to the HDP effect.

Recall that Tj denotes the intermediate thinning result at the j-th iteration in Section 2.1. Let T∗j be
the intermediate thinning result obtained from Tj−1 with only the original algorithm performed. Let δj
be the set of deleted points obtained by performing the set difference between Tj−1 and T∗j . Let β j be
the boundary of Tj−1 obtained by first eroding Tj−1 with SE in Equation (9) and then performing the
set difference between Tj−1 and its erosion (Tj−1 	 SE). Therefore, we have:

δj = Tj−1 \ T∗j (11)

β j = Tj−1 \ (Tj−1 	 SE) (12)
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Note here that δj ⊆ β j. Let τj be the set of points ∈ β j, but /∈ δj; thus, we have:

τj = β j \ δj (13)

It also implies that β j = δj ∪ τj. Now, consider β j as an image array with the same size of original
image. If the 1-pixel P ∈ τj in the β j-image satisfies Cj(P) = 1, then it is regarded as an HDP, and the
corresponding pixel ∈ T∗j will be removed further. After performing such an HDP removal process as
summarized below, the new thinning result Tj can be obtained as used in Section 2.1.

RHDP: Process of Removing HDPs

1. Given the intermediate thinning result Tj−1.
2. Find δj, β j and τj according to Equations (11)–(13), respectively.
3. For each pixel P ∈ τj, do Step 4.
4. If the pixel P in the β j-image satisfies Cj(P) = 1, then the corresponding pixel ∈ T∗j is an HDP

and removed from T∗j .
5. Update Tj ← T∗j for the next thinning iteration.

Figure 11 illustrates how to transform T∗1 into T1 via the RHDP process. Given T0 as shown
in Figure 5a, the next thinning result T∗1 purely obtained by Chen and Hsu’s method [9] is given in
Figure 11a. Thus, we have δ1 as shown in Figure 11b according to Equation (11). Based on Equation (12),
the boundary of T0 is shown in Figure 11c and denoted by β1, which can be further displayed as in
Figure 11d by labeling the δ-point and τ-point. Since the τ points, (1, 1), (5, 4) and (4, 5), belong to
HDPs by means of performing the checking function in Step 4 of RHDP, they can be further removed
from T∗1 , and the new thinning result T1 is thus obtained as shown in Figure 11e, which is the same as
in Figure 5b.

(a) T∗1 (b) δ1 (c) β1

(d) β1 = δ1 ∪ τ1 (e) T1

Figure 11. Illustrations of transforming T∗1 into T1. With T0 in Figure 5a, (a) shows the next thinning
result T∗1 purely obtained by Chen and Hsu’s algorithm [9]; (b,c) shows the corresponding δ1 and β1.
To clarify, let the δ- and τ-points be marked on the β1-image, as shown in (d). According to the Step 4
of RHDP, the three τ points, (1, 1), (5, 4) and (4, 5), are HDPs. They can be further removed from T∗1 ,
and the new thinning result T1 is thus obtained as shown in (e).
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3. Results and Discussion

The proposed algorithm is implemented by Microsoft Visual Studio 6.0 C++ and run on a laptop
computer with Intel R© CoreTM i5 2.6 GHz CPU (Intel, Santa Clara, CA, USA) and 4 GB RAM. Let Aorg

be the original pattern and Arec be the reconstructed pattern obtained by Equation (10). In order to
evaluate the reconstruction ability of the proposed approach, a measurement of reconstructability
(MR) [12] is used and expressed as below.

MR(Aorg, Arec) = 1− Area(Aorg \ Arec) + Area(Arec \ Aorg)

Area(Aorg)
(14)

Here, Aorg \ Arec represents the set of pixels ∈ Aorg, but /∈ Arec, and vice versa. The range of MR
is between zero and one. The MR increases with the accuracy of reconstructability, where MR = 1
represents that the pattern is reconstructed completely. Since the HDPs removed or not in a thinning
iteration will significantly affect the thinning result and number of iterations (NI), the measurement of
skeleton deviation (MSD) [40] and NI are also adopted for our performance evaluations. To evaluate the
MSD, we can give an original thin line pattern Pline, generate its thick-line pattern Pthick by a thickening
procedure [14] and perform the Pthick by a thinning algorithm to obtain the skeleton result Pskeleton.
Then, the MSD can be computed as follows.

MSD(Pline, Pskeleton) = ∑
∀q∈Pline

DE(q, Pskeleton) (15)

where DE(q, Pskeleton) represents the minimum Euclidean distance between q and Pskeleton. In this
evaluation, the lower MSD means that the adopted thinning algorithm has a better performance to
reduce the bias skeleton.

Reconsider the original digital pattern as given in Figure 1a; by performing the proposed approach
on it, the resultant skeletons are shown respectively in Figure 12a without and Figure 12b with the
assistance of the RHDP process. The former shows a biased skeleton taking 20 thinning iterations,
whereas the latter shows a bias-reduced skeleton taking 14 thinning iterations. In the phase of pattern
reconstruction, the reconstructed results are shown in Figure 12c (MR = 0.817) and Figure 12d (MR =
0.994), respectively. Here, we can find that the biased skeleton may result in the over-reconstructed
pattern, as shown in Figure 12c. Accordingly, based on these results, not only the feasibility of our
pattern reconstruction mechanism is confirmed, but also the developed RHDP process can effectively
help to obtain the bias-reduced skeleton and reconstruct the pattern more closely.

(a) 20 iterations (b) 14 iterations

(c) MR = 0.817 (d) MR = 0.994

Figure 12. The thinning result obtained (a) without and (b) with the assistance of RHDP. (c,d) show the
corresponding reconstruction result, where the original pattern pixels and the reconstructed pixels are
marked by “black region squares” and “gray frame squares” respectively.
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3.1. Experiments with a Set of Unit-Width Letters

For investigating additionally the skeleton deviation with MSD, original thin lines should be
given initially as ground truths. In this study, we built seven unit-width letters, “A”, “E”, “H”, “L”,
“M”, “R” and “T” as shown in Figure 13a. By means of the thickening procedures [14], the thickened
results shown respectively in Figure 13b are obtained and will be used for the following investigations
of MR, NI, as well as MSD. Since the proposed approach is designed for the fully-parallel thinning
algorithms as depicted in the flowcharts of Figure 2, three fully-parallel thinning algorithms, namely
CH [9], AW [16] and Rockett [20], are used for comparisons and discussions. Figure 14a,b shows
their thinning results without and with the RHDP process, respectively. It is obvious that the biased
skeletons of Figure 14b are much less than those of Figure 14a. Note here that in the same test situation,
the three algorithms have a similar performance due to such a thinning algorithm based on the similar
design rules. This phenomenon can also be reported in the measurements of NI and MSD as listed in
Tables 2 and 3, respectively. Table 2 shows that the average NI with the RHDP process is approximately
27% less than that without the RHDP process. Table 3 shows that the average MSD with the RHDP
process is approximately 42% less than that without the RHDP process. Note here that since the
Rockett algorithm [20] is the improved version of AW [16], the Rockett algorithm (MSD = 190.7) is
a little bit better than AW’s algorithm (MSD = 206.9) by the presented method without using the RHDP
process. As a result, this experiment confirms that our RHDP process embedded in a thinning iteration
can effectively reduce not only the bias skeleton effect, but also the number of iterations.

Table 2. NI measurements for the results given in Figure 14 by applying the presented approach with
three fully-parallel thinning algorithms. The average NI with the RHDP process is 27% less than that
without the RHDP process.

Without RHDP With RHDP

Pattern CH [9] AW [16] Rockett [20] CH [9] AW [16] Rockett [20]

“A” 20 20 20 15 15 15
“E” 19 19 19 13 13 13
“H” 21 21 21 14 14 14
“L” 19 19 19 14 14 14
“M” 21 21 21 18 18 18
“R” 22 22 22 16 16 16
“T” 21 21 21 14 14 14

Average 20.4 20.4 20.4 14.9 14.9 14.9

Table 3. MSD measurements for the results given in Figure 14 by applying the presented approach
with three fully-parallel thinning algorithms. The average MSD with the RHDP process is 42% less
than that without the RHDP process.

Without RHDP With RHDP

Pattern CH [9] AW [16] Rockett [20] CH [9] AW [16] Rockett [20]

“A” 295.1 328.3 288.1 221.9 218.1 218.1
“E” 116 124 116 24 22 22
“H” 120 120 120 12 12 12
“L” 40 40 40 25 23 23
“M” 469.9 512.6 469.9 342.4 348.4 348.4
“R” 238.8 263.6 240.9 162.8 164.5 164.5
“T” 60 60 60 6 6 6

Average 191.4 206.9 190.7 113.4 113.4 113.4

The Rockett [20] is the improved version of AW [16]; it can be seen that the Rockett algorithm is a little bit
better than AW’s algorithm.



J. Imaging 2017, 3, 29 16 of 23

(a)

(b)

Figure 13. (a) Seven unit-width letters used as ground truths for MSD measurements. (b) Thickened
digital patterns from (a) used for the investigations of MR, NI and MSD.

CH [9]

AW [16]

Rockett [20]
(a)

CH [9]

AW [16]

Rockett [20]
(b)

Figure 14. Thinning results (a) without and (b) with the RHDP process are obtained by the three
fully-parallel thinning algorithms involved in the proposed approach for comparisons. The biased
skeletons of (b) are much less than those of (a).

By means of performing the proposed pattern reconstruction approach depicted in Figure 2b
on the skeleton tables of the thinning results shown in Figure 14, the corresponding reconstruction
results are displayed in Figure 15. It can be seen that the reconstruction results of Figure 15a are
over-reconstructed, whereas those of Figure 15b are closer to the originals. Table 4 reports that the
average MR with the RHDP process is increased 12.5% compared to that without the RHDP process.
This evaluation further confirms that the proposed approach with the assistance of the RHDP process
(MR = 0.981) is very feasible for realizing the pattern reconstruction in a fully-parallel thinning.

CH [9]

AW [16]

Rockett [20]
(a)

Figure 15. Cont.
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CH [9]

AW [16]

Rockett [20]
(b)

Figure 15. Reconstruction results (a) without and (b) with the RHDP process are obtained by
the three fully-parallel thinning algorithms involved in the proposed approach for comparisons.
The reconstruction results of (a) are over-reconstructed, whereas those of (b) are closer to the originals.

Table 4. MR measurements for the results given in Figure 15 by applying the presented pattern
reconstruction approach with three fully-parallel thinning algorithms. The average MR with the RHDP
process is increased 12.5% compared to that without the RHDP process.

Without RHDP With RHDP

Pattern CH [9] AW [16] Rockett [20] CH [9] AW [16] Rockett [20]

“A” 0.695 0.700 0.700 0.982 0.982 0.982
“E” 0.927 0.927 0.927 0.988 0.988 0.988
“H” 0.900 0.900 0.900 0.981 0.981 0.981
“L” 0.931 0.931 0.931 0.975 0.975 0.975
“M” 0.878 0.878 0.878 0.976 0.976 0.976
“R” 0.751 0.754 0.754 0.992 0.992 0.992
“T” 0.911 0.911 0.911 0.974 0.974 0.974

Average 0.856 0.857 0.857 0.981 0.981 0.981

3.2. Experiments with Some Patterns in the MPEG7 CE-Shape-1 Dataset

Some patterns (“Deer”, “Fly”, “Bird”, “Chicken”, “Device” and “glass’) from the MPEG7
CE-Shape-1 dataset [41] are used for further experiments and comparisons of the NI and MR
measurements. Figure 16a shows the thinning results obtained by applying Jang and Chin’s MST-based
reconstructable parallel thinning algorithm [12]. It can be observed that many unwanted branches are
yielded in the final skeletons resulting from the fact that the feature points should be retained in the
thinning process in order to completely reconstruct the whole pattern as shown in Figure 16b.

(a)

(b)

Figure 16. (a) Thinning results and (b) reconstruction results of some patterns from the MPEG7
CE-Shape-1 dataset are obtained by Jang and Chin’s MST-based reconstructable parallel thinning
algorithm. To completely reconstruct the whole pattern, the feature points obtained by MST are retained
in the thinning process, and thus, many unwanted branches are yielded in the resultant skeletons.
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Again, the three fully-parallel thinning algorithms, CH [9], AW [16] and Rockett [20], involved
in the proposed approach are used for comparisons and discussions. Figure 17 shows the obtained
thinning and reconstruction results by the proposed approach without using the RHDP process.
The phenomenon of over-reconstruction is very obvious. By means of the assistance of the RHDP
process in the presented approach, Figure 18 demonstrates that the reconstruction results are near the
original ones. In the NI and MR measurements, Table 5 reports that the average NI with the RHDP
process is 28% less than that without the RHDP process, whereas Table 6 reports that the average MR
with RHDP process is increased 28.4% compared to that without the RHDP process. The performances
of these experiments are similar to those presented in Section 3.1. It is accordingly concluded that the
feasibility of the pattern reconstruction mechanism developed for a fully-parallel thinning algorithms
has been confirmed, and the bias skeleton phenomenon usually appearing in a fully-parallel thinning
algorithm can be effectively reduced by involving the proposed RHDP process.

(a)

(b)

(c)

Figure 17. Results of some patterns from the MPEG7 CE-Shape-1 dataset are obtained by the three
fully-parallel thinning algorithms involved in the proposed approach without the RHDP process
for comparisons. Here, the thinning and reconstruction results are placed on the first and second
row, respectively. The phenomenon of over-reconstruction is very obvious. (a) CH [9]; (b) AW [16];
(c) Rockett [20].
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(a)

(b)

(c)

Figure 18. Results of some patterns from the MPEG7 CE-Shape-1 dataset are obtained by the three
fully-parallel thinning algorithms involved in the proposed approach with the RHDP process for
comparisons. Here, the thinning and reconstruction results are placed at the first and second
row, respectively. The reconstruction results are near the original ones. (a) CH [9]; (b) AW [16];
(c) Rockett [20].

As a discussion, even the reconstruction result obtained by the proposed approach with the RHDP
process is very close to the original pattern; the over-reconstructed situation is avoided; however
the complete reconstruction is not easily achieved. For example, referring to Figures 15b and 18,
the unreconstructed portions usually appear in the convex boundaries. This phenomenon results
apparently from the thinning templates and morphological structure elements adopted being of
a square form, and the reconstruction result depends strongly on the thinning result. Therefore, it can
be regarded as a new research direction in the near future by applying the hexagonal structure [42] to
the proposed algorithms for overcoming such a phenomenon.
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Table 5. NI measurements for the thinning results given in Figures 17 and 18 by applying the presented
approach with three fully-parallel thinning algorithms. The average NI with the RHDP process is 28%
less than that without the RHDP process.

Without RHDP With RHDP

Pattern CH [9] AW [16] Rockett [20] CH [9] AW [16] Rockett [20]

Deer 31 31 31 25 25 25
Fly 39 39 39 31 31 31
Bird 52 52 52 30 29 29

Chicken 62 61 61 44 44 44
Device 26 25 25 21 21 21
Glass 36 36 36 26 26 26

Average 41.0 40.7 40.7 29.5 29.3 29.3

Table 6. MR measurements for the reconstruction results given in Figures 17 and 18 by applying the
presented pattern reconstruction approach with three fully-parallel thinning algorithms. The average
MR with the RHDP process is increased 28.4% compared to that without the RHDP process.

Without RHDP With RHDP

Pattern CH [9] AW [16] Rockett [20] CH [9] AW [16] Rockett [20]

Deer 0.751 0.759 0.759 0.981 0.981 0.981
Fly 0.772 0.773 0.773 0.981 0.979 0.979
Bird 0.541 0.543 0.543 0.989 0.989 0.989

Chicken 0.664 0.670 0.670 0.978 0.978 0.978
Device 0.712 0.713 0.713 0.988 0.988 0.988
Glass 0.755 0.755 0.755 0.994 0.994 0.994

Average 0.699 0.702 0.702 0.985 0.985 0.985

4. Conclusions and Future Works

In order to make a fully-parallel thinning algorithm capable of pattern reconstruction from the
resultant skeleton, in this paper, an RSP-updating mechanism embedded in a thinning iteration has
been presented for recording the necessary information of the thinning flag, the iteration count, as
well as the reconstructable structure, thus obtaining a useful skeleton table (also the thinning result).
Based on the information of the iteration count and the reconstructable structure for each skeletal
pixel in the skeleton table, the pattern can be reconstructed by means of the dilating and uniting
operations. In this approach, the reconstruction result is strongly related to the thinning result. If the
thinning result reflects more likely the original pattern, the reconstructed pattern will be closer to
the original one. For a fully-parallel thinning algorithm, there unfortunately exists a bias skeleton
effect, in particular on the portions of the T-junction and L-junction. Such a biased skeleton usually
results from the HDPs and will yield the over-reconstructed result using the proposed approach.
Therefore, in this paper, a process of removing HDPs (RHDP) has also been presented and embedded
in a thinning iteration to further reduce the bias skeleton effect. With the assistance of the RHDP
process, the resultant thinning can more likely reflect the original pattern, and thus, the reconstructed
pattern is closer to the original one using the proposed approach. Three well-known fully-parallel
thinning algorithms investigated by means of the proposed approach with the assistance of the RHDP
process confirm that 98% reconstructability (without the over-reconstructed phenomenon) can be
achieved. In addition, the number of thinning iterations with the RHDP process can be reduced by
about 25% compared to that without the RHDP process. Even the experimental results have confirmed
the feasibility of our pattern reconstruction mechanism and RHDP process in a fully-parallel thinning
algorithm; the complete (100%) reconstruction is difficult to achieve using the developed approach.
The reason given is that the thinning templates and morphological structure elements adopted here
are of a square form, and the reconstruction result depends strongly on the thinning result. In other
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words, the limit is due to the different eight-neighbor distances in a square grid as argued recently by
Chen and Chao [40]. According to the equal six-neighbor distances in a hexagonal grid as reported by
He and Jia [42], how to apply the hexagonal structure in the fully-parallel thinning algorithm design
and the proposed approach could be a good topic and will be considered as our future works.
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Abbreviations

The following abbreviations are used in this article:

AW Ahmed and Ward [16]
CH Chen and Hsu [9]
HDP Hidden deletable point
MAT Medial axis transformation
MR Measurement of reconstructability
MSD Measurement of skeleton deviation
MST Morphological skeleton transformation
NI Number of iterations
RHDP Removing hidden deletable points
RSP Reconstructable skeletal pixel
SE Structure element
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