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Abstract: A tuning method was proposed for automatic lighting (auto-lighting) algorithms derived
from the steepest descent and conjugate gradient methods. The auto-lighting algorithms maximize
the image quality of industrial machine vision by adjusting multiple-color light emitting diodes
(LEDs)—usually called color mixers. Searching for the driving condition for achieving maximum
sharpness influences image quality. In most inspection systems, a single-color light source is used,
and an equal step search (ESS) is employed to determine the maximum image quality. However, in the
case of multiple color LEDs, the number of iterations becomes large, which is time-consuming. Hence,
the steepest descent (STD) and conjugate gradient methods (CJG) were applied to reduce the searching
time for achieving maximum image quality. The relationship between lighting and image quality
is multi-dimensional, non-linear, and difficult to describe using mathematical equations. Hence,
the Taguchi method is actually the only method that can determine the parameters of auto-lighting
algorithms. The algorithm parameters were determined using orthogonal arrays, and the candidate
parameters were selected by increasing the sharpness and decreasing the iterations of the algorithm,
which were dependent on the searching time. The contribution of parameters was investigated using
ANOVA. After conducting retests using the selected parameters, the image quality was almost the
same as that in the best-case parameters with a smaller number of iterations.

Keywords: derivative optimization; light control; multi-color source; RGB mixer; robust parameter
design; Taguchi method

1. Introduction

The quality of images acquired from an industrial machine vision system determines the
performance of the inspection process during manufacturing [1]. Image-based inspection using machine
vision is currently widespread, and the image quality is critical in automatic optical inspection [2].
The image quality is affected by focusing, which is usually automatized, and illumination, which is
still a manual process. Illumination in machine vision has many factors, such as intensity, peak
wavelength, bandwidth, light shape, irradiation angle, distance, uniformity, diffusion, and reflection.
The active control factors in machine vision are intensity and peak wavelength, though other factors
are usually invariable. Although image quality is sensitive to intensity and peak wavelength, the
optimal combination of these factors may be varied by the material of the target object [3]. Because
the active control factors are currently manually changed, it is considerably labor intensive to adjust
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the illumination condition of the inspection machines in cases of the initial setup or product change.
However, the light intensity of a light-emitting diode (LED) can be easily adjusted by varying the
electric current. A few articles have been written about auto-lighting by controlling the intensity of a
single-color light source [4–6]. A single-color lighting based on fuzzy control logic is applied to a robot
manipulator [7]. The light intensity from a single-color source is mostly determined using in an equal
step search (ESS), which varies the intensity from minimum to maximum in small intervals.

Color mixers synthesize various colors of light from multiple LEDs. The LEDs are arranged in an
optical direction in a back plane, and an optical mixer is attached to a light output [8]. The color is
varied using a combination of light intensities, which can be adjusted using electric currents. Optical
collimators are the most popular device to combine the lights from the multiple LEDs [9–11]. These
studies aim to achieve exact color generation, uniformity in a target plane, and thermal stability. They
do not focus on the image quality. Optimal illumination can increase the color contrast in machine
vision [12], hence spectral approaches in bio-medical imaging [13,14].

When color mixers are applied to machine vision, the best color and intensity must be found
manually. Because automatic search is applied using the ESS, the searching time is long, which is caused
by the vast number of light combinations. Thus, we have been studying fast optimization between
color and image quality in industrial machine vision [15–17]. Because the above-mentioned studies
were based on non-differential optimum methods, they were stably convergent, but required multiple
calls of a cost function for iterations, leading to a longer processing time. Derivative optimum search
methods are well-known, simple, and easy to implement [18]. The derivative optimum methods are
less stable and more oscillatory, but usually faster [18,19]. In this study, arbitrary N color sources and
image quality were considered for steepest descent (STD) and conjugate gradient (CJG). The optimum
methods are composed of functions, variables, and coefficients which are difficult to determine
for the inspection process. Algorithm parameters also affect the performance of image processing
methods [20], and they can be determined using optimum methods. Thus, a tuning step is necessary
to select the value of the coefficients when applying the methods to inspection machines. The relation
between the LED inputs and the image quality is complex, difficult to describe, and is actually a
black box function. The coefficients are sensitive to convergence, number of iterations, and oscillation,
but the function is unknown. The Taguchi method is one of the most popular methods for determining
the optimal process parameters with a minimum number of experiments when the system is unknown,
complex, and non-linear. The contribution of process parameters can be investigated using ANOVA,
and many cases have been proposed in machining processes [21,22]. The Taguchi method for robust
parameter design was applied to tune the auto-lighting algorithm for achieving the fastest search time
and best image quality in the case of a mixed-color source.

2. Derivative Optimum for Image Quality

2.1. Index for Image Quality

The conventional inspection system for color lighting comprises a mixed light source, industrial
camera, framegrabber, controller, and light control board. Figure 1 shows a conceptual diagram of the
color mixer and machine vision system. The color mixer generates a mixed light and emits it toward a
target object, and the camera acquires a digital image, which is a type of response to the mixed light.
The digital image is analyzed to study the image properties (e.g., image quality) and to determine the
intensity levels of the LEDs in the color mixer. The intensity levels are converted into voltage level
using a digital-to-analog converter (DAC) board. The electric current to drive the LEDs is generated
using a current driver according to the voltage level. The color mixer and the machine vision form a
feedback loop.
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The image quality must be evaluated to use optimum methods. There are various image
indices proposed in many papers; these are evaluated using pixel operations [23,24]. For instance,
the brightness, Ī, is calculated from the conception of the average grey level of an m× n pixel image.

Ī =
1

mn

m

∑
x

n

∑
y

I(x, y) (1)

where the grey level of pixels is I(x, y) and the size of the image is m× n.

Figure 1. System Diagram for color mixing and automatic lighting.

Image quality is one of the image indices, and is usually estimated using sharpness.
Sharpness actually indicates the deviation and difference of grey levels among pixels. There are
dozens of definitions for sharpness, and standard deviation is widely used as sharpness in machine
vision [25]. Thus, sharpness σ can be written as follows.

σ2 =
1

mn

m

∑
x

n

∑
y
(I(x, y)− Ī) (2)

Industrial machine vision usually functions in a dark room so that the image acquired by a camera
completely depends on the lighting system. The color mixer employed in this study uses multiple
color LEDs having individual electric inputs. Because the inputs are all adjusted using the voltage
level, the color mixer has a voltage input vector for N LEDs as follows.

V = (v1, v2, v3, . . . , vN) (3)

As presented in section I, the relationship between the LED inputs and the image quality involve
electric, spectral, and optical responses. This procedure cannot easily be described using a mathematical
model, and the relationship from (1) to (3) is a black box function which can be denoted as an arbitrary
function f , which is a cost function in this study.

σ = f (V) (4)

The best sharpness can be obtained by adjusting V. However, V is an unknown vector. The maximum
sharpness can be found using optimum methods, but negative sharpness ρ must be defined because
optimum methods are designed for finding the minimum. Hence, negative sharpness is a cost function.

ρ = −σ = − f (V) (5)
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The optimum methods have a general form of problem definition using a cost function as
follows [17]:

min
V

ρ = − f (V) for ∀V (6)

2.2. Derivative Optimum Methods

The steepest descent and conjugate gradient methods are representative of the derivative optimum
methods, which involve the differential operation of a cost function written as a gradient.

∇ρ =

(
∂ρ

∂v1
,

∂ρ

∂v2
,

∂ρ

∂v3
, . . . ,

∂ρ

∂vN

)
(7)

The STD iterates the equations until it finds a local minimum; a symbol k is necessary to show
the current iteration. The STD updates current inputs kV by adding a negative gradient to the current
inputs. α is originally determined at ∂ρ(α)/∂α = 0 in STD [18], however it is difficult to obtain using
an experimental apparatus. In this study, the α is assumed to be a constant, α.

k+1V = kV − α∇(kρ) = kV − α(kξ) (8)

The CJG has the same method of updating the current inputs. However, the difference lies in
calculating the index of the updates ξ.

k+1V = kV − α(kξ) (9)

kξ = −∇(kρ) +

∣∣∣∣∣ ∇(kρ)

∇(k−1ρ)

∣∣∣∣∣
2
(k−1)ξ (10)

kξ usually has an unpredictably large or small value, which causes divergence or oscillation near the
optimum. Consequently, the following boundary conditions are given before updating the current inputs.

α kξ =


−ητ kξ < −τ

−η(kξ) −τ <k ξ < τ

ητ kξ > τ

(11)

where η is the convergence coefficient for a limited range and τ is the threshold. The updating of
inputs and the acquisition of sharpness are iterated until the gradient becomes smaller than the terminal
condition ε1, which indicates that auto-lighting finds the maximum sharpness and the best image quality.

|kξ| < ε1 (12)

where ε1 is an infinitesimal value for the terminal condition.
The cost function is acquired using hardware, and the terminal condition considers differential

values. The values are discrete and sensitive to noises; hence, an additional terminal condition, ε2, is
applied as follows:

|kρ− k−1ρ| < ε2 (13)

3. Robust Parameter Design

3.1. System for Experiment

The sharpness and derivative methods were applied to a test system which was constructed in
our previous study [6]. The test system was composed of a 4 M pixel camera (SVS-4021, SVS-VISTEK,
Seefeld, Germany), a coaxial lens (COAX, Edmund Optics, Barrington, NJ, USA), a framegrabber
(SOL6M, Matrox, Dorval, QC, Canada), a multi-channel DAC board (NI-6722, NI, Austin, TX, USA),
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and an RGB mixing light source. Commercial integrated circuits (ICs) of EPROMs were used as sample
targets A (EP910JC35, ALTERA, San Jose, CA, USA) and B (Z86E3012KSES, ZILOG, Milpitas, CA,
USA), as shown in Figure 2. The camera and the ICs were fixed on Z and XYR axes, respectively.
The coaxial lens was attached to the camera, and faced the ICs. Optical fiber from the RGB source was
connected to the coaxial lens and illuminated the ICs. Images of the ICs were acquired and transferred
into a PC through a CAMERALINK port on the framegrabber. Operating software was constructed
using a development tool (Visual Studio 2008, Microsoft, Redmond, WA, USA) and vision library
(MIL 8.0, Matrox, Dorval, QC, Canada). Location of the ICs in an image was adjusted using XYR axes
after focusing was performed using the Z axis. The inputs of the RGB source were connected to the
DAC board. The light color and intensity were adjusted through the board. The STD and CJG for
optimum light condition were implemented into the software.

(a) (b)

Figure 2. Target patterns acquired by maximum sharpness: (a) Pattern A; (b) Pattern B.

3.2. Taguchi Method

The Taguchi method is commonly used to tune the algorithm parameters and optical design in
machine vision [26–28]. A neural network is a massive and complex numerical model, and derivative
optimal methods are frequently applied to its training parameters [29,30]. Taguchi method is useful
to find the learning parameters of neural network and increase learning efficiency in machine vision
system [31]. Considering the non-linear, multi-dimensional, and black box function systems in this
study, we expected that the Taguchi method could be useful in tuning the auto-lighting algorithm.
The performance of the algorithm was largely evaluated using the minimum number of iterations and
the maximum sharpness. Hence, “the smaller the better” concept was applied in case of the number of
iterations and “the larger the better” concept was applied in the case of the sharpness while calculating
the signal-to-noise (SN) ratio. Those SN ratios can be obtained using the following equations [32,33]:

SN = −10log

(
1
w

w

∑
j=1

1
u2

j

)
(14)

SN = −10log

(
1
w

w

∑
j=1

u2
j

)
(15)

where uj is the performance index (e.g., sharpness and iteration), and w is the number of experiments.

3.3. Experiment Design

The selected parameters were initial voltages of red, green, and blue (RGB) LEDs,
V = (vR0, vG0, vB0), the convergence constant η, and the threshold τ. Because the maximum sharpness
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is usually formed in low-voltage regions under a single-light condition, the range of the initial voltage
was less than half of the full voltage. The ranges of η and τ were between 0.0 and 1.0. These five factors
were chosen as control factors. Because all the ranges are divided into five intervals, the level was set at 5.
Therefore, the L25(55) model is organized using five control factors and five levels, as shown in Table 1.
The combination of the experiment is 25, which is quite a small value considering the multiple color
sources and the algorithm parameters. Two sample targets were used for the experiments, as proposed.

Table 1. Control factors and levels for derivative optimum methods.

Factors Code
Level

1 2 3 4 5

VR0: Initial VR A 0.5 1.0 1.5 2.0 2.5

VG0: Initial VG B 0.5 1.0 1.5 2.0 2.5

VB0: Initial VB C 0.5 1.0 1.5 2.0 2.5

τ: Threshold D 0.2 0.4 0.6 0.8 1.0

η: Convergence Constant E 0.2 0.4 0.6 0.8 1.0

4. Results

The maximum sharpness found using the ESS was σmax = 392.76 at V = (0, 0, 1.2) for Pattern
A, and σmax = 358.87 at V = (1.0, 0, 0) for Pattern B. The total step number of combinations for RGB
was 503 = 125, 000. The L25(55) orthogonal arrays for steepest descent and conjugate gradient methods
were constructed as shown in Tables 2 and 3. σmax, kmax, VR, VG and VB were the optimal statuses
found by the steepest descent method by using the selected parameters. Some combinations showed
almost the same sharpness as that of the exact solution, some combinations reached the maximum
after several steps, and some cases failed to converge. These facts show that parameter selection for
a derivative optimum is important because of stability. The SN ratios were calculated using MINITAB
for mathematical operations of Taguchi analysis. Figures 3–6 are the results of Taguchi analysis and show
the trend of the control factors. The variation in the sharpness was very small, whereas the variation in
the number of the iteration was larger, which implied that the parameters were sensitive to iteration.
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Table 2. Orthogonal array of steepest descent method for Patterns A and B.

Run #
Control Factors Pattern A Pattern B

A B C D E σmax kmax VR VG VB σmax kmax VR VG VB

1 1 1 1 1 1 389.43 117 0.98 0.00 0.41 353.88 153 0.53 0.30 0.00
2 1 2 2 2 2 390.50 255 0.00 0.00 1.25 - - - - -
3 1 3 3 3 3 - - - - - 340.47 3 0.00 0.42 0.42
4 1 4 4 4 4 382.4 2 0.00 0.72 0.72 - - - - -
5 1 5 5 5 5 390.43 152 0.00 0.00 1.30 317.63 2 0.00 0.53 0.82
6 2 1 2 3 4 386.09 189 0.52 0.02 0.52 344.02 1 0.52 0.02 0.52
7 2 2 3 4 5 387.22 1 0.20 0.20 0.70 337.22 1 0.20 0.20 0.70
8 2 3 4 5 1 390.40 123 0.00 0.00 1.26 333.35 6 0.00 0.30 0.80
9 2 4 5 1 2 390.36 49 0.00 0.00 1.27 335.65 22 0.00 0.24 0.74

10 2 5 1 2 3 384.64 6 0.00 1.06 0.00 346.93 108 0.00 0.58 0.00
11 3 1 3 5 2 389.01 109 0.75 0.02 0.57 - - - - -
12 3 2 4 1 3 388.87 263 0.78 0.00 0.51 340.46 11 0.42 0.00 0.68
13 3 3 5 2 4 390.36 164 0.00 0.00 1.29 324.30 107 0.00 0.00 0.90
14 3 4 1 3 5 385.88 3 0.41 0.70 0.00 331.85 2 0.30 0.80 0.00
15 3 5 2 4 1 389.21 237 0.99 0.00 0.38 346.91 192 0.00 0.58 0.00
16 4 1 4 2 5 387.71 3 0.80 0.00 0.80 338.46 18 0.40 0.00 0.40
17 4 2 5 3 1 389.18 206 1.04 0.00 0.36 338.25 15 0.30 0.00 0.70
18 4 3 1 4 2 - - - - - 354.62 4 0.72 0.22 0.00
19 4 4 2 5 3 382.32 2 0.80 0.80 0.00 303.61 2 0.82 0.80 0.00
20 4 5 3 1 4 384.95 49 0.24 0.74 0.00 349.91 151 0.24 0.42 0.00
21 5 1 5 4 3 387.90 4 0.58 0.00 0.60 341.62 4 0.58 0.00 0.58
22 5 2 1 5 4 386.36 2 1.28 0.00 0.00 358.14 2 0.90 0.00 0.00
23 5 3 2 1 5 386.78 6 1.30 0.30 0.00 358.26 82 0.90 0.00 0.00
24 5 4 3 2 1 389.05 191 1.08 0.00 0.32 355.32 23 0.66 0.16 0.00
25 5 5 4 3 2 386.50 8 0.58 0.58 0.08 350.51 137 0.34 0.34 0.00
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Table 3. Orthogonal array of conjugate gradient method for Patterns A and B.

Run # Control Factors Pattern A Pattern B

A B C D E σmax kmax VR VG VB σmax kmax VR VG VB

1 1 1 1 1 1 389.28 59 0.99 0.00 0.43 358.49 143 0.95 0.00 0.00
2 1 2 2 2 2 390.58 41 0.00 0.00 1.25 343.00 24 0.48 0.16 0.43
3 1 3 3 3 3 390.43 139 0.00 0.00 1.20 340.21 3 0.00 0.42 0.42
4 1 4 4 4 4 382.42 2 0.00 0.72 0.72 354.05 9 0.80 0.00 0.00
5 1 5 5 5 5 384.66 2 0.00 0.57 0.78 316.46 2 0.00 0.50 0.88
6 2 1 2 3 4 386.07 1 0.52 0.02 0.52 343.92 1 0.52 0.02 0.52
7 2 2 3 4 5 387.16 1 0.20 0.20 0.70 337.14 1 0.20 0.20 0.70
8 2 3 4 5 1 390.40 50 0.00 0.00 1.30 358.43 168 0.98 0.00 0.00
9 2 4 5 1 2 390.54 28 0.00 0.00 1.27 338.89 29 0.24 0.16 0.66

10 2 5 1 2 3 388.64 178 0.74 0.02 0.71 350.01 21 0.48 0.41 0.00
11 3 1 3 5 2 390.42 24 0.00 0.00 1.28 331.95 2 0.70 0.00 0.70
12 3 2 4 1 3 390.50 144 0.00 0.00 1.25 352.28 16 0.58 0.24 0.08
13 3 3 5 2 4 390.37 17 0.00 0.00 1.31 324.42 15 0.00 0.00 0.90
14 3 4 1 3 5 388.16 5 1.48 0.00 0.00 347.42 33 0.00 0.60 0.00
15 3 5 2 4 1 390.39 284 0.00 0.00 1.29 348.20 26 0.11 0.63 0.00
16 4 1 4 2 5 387.61 3 0.80 0.00 0.80 338.48 124 0.40 0.00 0.40
17 4 2 5 3 1 390.43 273 0.00 0.00 1.24 342.81 38 0.28 0.28 0.43
18 4 3 1 4 2 390.43 264 0.00 0.00 1.25 354.42 4 0.72 0.22 0.00
19 4 4 2 5 3 387.57 7 0.95 0.60 0.00 304.10 2 0.80 0.80 0.00
20 4 5 3 1 4 387.84 39 .00 0.27 0.91 349.67 13 0.24 0.42 0.00
21 5 1 5 4 3 387.92 5 0.74 0.08 0.70 338.57 4 0.58 0.00 0.65
22 5 2 1 5 4 384.69 1 1.70 0.20 0.00 358.02 2 0.90 0.00 0.00
23 5 3 2 1 5 387.46 8 0.90 0.30 0.20 357.96 8 0.90 0.00 0.00
24 5 4 3 2 1 389.12 80 0.93 0.00 0.42 358.45 118 0.95 0.00 0.00
25 5 5 4 3 2 386.35 8 0.58 0.58 0.08 350.36 9 0.34 0.34 0.00

(a) (b)

Figure 3. Signal-to-noise (SN) ratios of control factors for Pattern A in the case of steepest descent method:
(a) Sharpness; (b) Iterations.

(a) (b)

Figure 4. SN ratios of control factors for Pattern B in the case of steepest descent method: (a) Sharpness;
(b) Iterations.
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(a) (b)

Figure 5. SN ratios of control factors for Pattern A in the case of conjugate gradient method:
(a) Sharpness; (b) Iterations.

(a) (b)

Figure 6. SN ratios of control factors for Pattern B in the case of conjugate gradient method:
(a) Sharpness; (b) Iterations.

However, the trends of sharpness and the number of iterations were inverse. Sharpness is more
important than the number of iterations because the inspection in a manufacturing process must be
accurate. Hence, we chose the initial voltage in the sharpness, and τ and η in the number of the
iteration. Retest combinations of STD were determined considering figures such as A3B2C5D2E5

and A5B1C1D1E1 for Patterns A and B, respectively. A3B3C3D5E5, and A5B3C1D5E4 were selected
for Patterns A and B in case of CJG. The retest results using A3B2C5D2E5 were σmax = 390.07,
V = (0.00, 0.00, 1.09), and 19 iterations. The combination of A5B1C1D1E1 was σmax = 357.97,
V = (1.02, 0.00, 0.00), and 37 iterations. The retest results using A3B3C3D5E5 were σmax = 383.73,
V = (0.31, 0.30, 0.3), and 16 iterations. The value of this point was 2% lower than the ESS, and the
coordinate is far from the ESS. This indicates a different local minimum compared with the ESS results.
However, when the terminal condition is tightly given, a result similar to the ESS can be obtained
with 74 iterations. The retest results using A5B3C1D5E4 were σmax = 357.09, V = (1.02, 0.02, 0.00), and
37 iterations. Contributions of the parameters in the STD were evaluated using ANOVA, as shown
in Tables 4 and 5. The results of ANOVA were obtained using general linear model in MINITAB.
The η was the most significant factor for Pattern A, but initial point was significant for Pattern B.
Tables 6 and 7 show contributions of the parameters in the CJD. η was the most significant factor for the
sharpness and the iteration. However, initial point was significant for the sharpness, and the iteration
was more significant for the iteration. Hence, convergence constant, η, is the most important and the
initial point is the second to find optimum of color lighting. τ was a minor factor in the experiments.
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Table 4. ANOVA of Pattern A for contribution of steepest descent method.

Control Factors σmax l

Source Parameter DF SS MS Contribution (%) SS MS Contribution (%)

A Initial VR 4 19.548 4.887 14.2 71,168 17,792 24.5
B Initial VG 4 18.847 4.712 13.7 36,910 9228 12.7
C Initial VB 4 34.290 8.572 23.0 65,697 16,424 22.6
D τ 4 17.188 4.297 12.5 43,406 10,851 14.9
E η 4 41.656 10.414 30.3 71,069 17,767 24.5

Error 2 5.806 2.903 4.2 2171 1085 0.7

Total 22 137.335 290,421

Table 5. ANOVA of Pattern B for contribution of steepest descent method.

Control Factors σmax l

Source Parameter DF SS MS Contribution (%) SS MS Contribution (%)

A Initial VR 4 1094.64 273.66 24.0 4027 1007 4.5
B Initial VG 4 916.54 229.13 20.1 40,860 10,215 45.6
C Initial VB 4 1019.66 254.91 22.4 2807 702 3.1
D τ 4 715.99 179 15.7 17,557 4389 19.6
E η 4 516.07 129.02 11.3 10,919 2730 12.2

Error 4 291.90 72.97 6.4 13,524 3381 15.1

Total 24 4554.80 89,694

Table 6. ANOVA of Pattern A for contribution of conjugate gradient method.

Control Factors σmax l

Source Parameter DF SS MS Contribution (%) SS MS Contribution (%)

A Initial VR 4 24.802 6.2 18.5 30,195 7549 14.8
B Initial VG 4 23.749 5.937 17.7 34,288 8572 16.9
C Initial VB 4 8.295 2.074 6.2 9756 2439 4.8
D τ 4 19.159 4.8 14.3 24,720 6180 12.1
E η 4 51.27 12.818 38.2 72,863 18,216 35.8

Error 4 7.054 1.763 5.3 31,656 7914 15.6

Total 24 134.329 203,478

Table 7. ANOVA of Pattern B for contribution of conjugate gradient method.

Control Factors σmax l

Source Parameter DF SS MS Contribution (%) SS MS Contribution (%)

A Initial VR 4 637.8 159.5 14.3 1884.4 471.1 3.3
B Initial VG 4 161.4 40.3 3.6 5903.6 1475.9 10.3
C Initial VB 4 1491.5 372.9 33.4 8974.8 2243.7 15.6
D τ 4 840.4 210.1 18.8 8401.6 2100.4 14.6
E η 4 794.9 198.7 17.8 29,353.6 7338.4 51.1

Error 4 537.4 134.3 12.0 2888 722 5.0

Total 24 4463.4 57,406

Figures 7 and 8 show the convergence of maximum sharpness by employing the STD and
the CJD methods. In the figures, VR, VG, and VB are mapped virtually in Cartesian coordinates.
The starting point is shown in blue, and the color is varied into others during iteration. The terminal
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point is marked with red. The paths shaped smooth curve lines compared to direct and
non-differentiation optimum search methods showing discrete pattern. The starting points of
individual pattern determined using Taguchi method were different, but they approached the
same point.

(a) (b)

Figure 7. Search path formed by steepest descent method using Patterns (a) A and (b) B.

(a) (b)

Figure 8. Search path formed by conjugate gradient method using Patterns (a) A and (b) B.

The sharpnesses in the results were almost the same as that observed in the best-case parameters.
However, the number of iterations was relatively small compared to the average number of
iterations—even the numbers using ESS. One result had almost the same sharpnesses as that of
the exact solution using different voltage. The retest results show that the Taguchi method provides
useful parameters with a small number of experiments. Although the maximum sharpness value
determined by the proposed methods was a little lower than that determined by ESS, the number of
iterations was much smaller. Therefore, the proposed auto-lighting algorithm can reduce the number
of iterations, while the image quality remains almost the same. Furthermore, the Taguchi method can
reduce laborious tasks and the setup time for the inspection process in manufacturing.

5. Conclusions

A tuning method was proposed for the auto-lighting algorithm using the Taguchi method.
The algorithm maximizes the image quality by adjusting multiple light sources in the shortest time,
thus providing a function called auto-lighting. The image quality is defined as sharpness—the standard
deviation of the grey level in pixels of an inspected image. The best image quality was found using two
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differential optimum methods—STD and CJG. The image quality was represented using sharpness,
and the minimum of the negative sharpness was found using the steepest descent and conjugate
gradient methods. These methods are modified for auto-lighting algorithms.

The Taguchi method was applied to determine the algorithm parameters, such as initial voltage,
convergence constant, and threshold. The L25(55) orthogonal array was constructed considering
five control factors and five levels of the parameter ranges. The SN ratio of the sharpness was
calculated using “the larger the better”, and that of the number of iterations was calculated using “the
smaller the better”. The desired combinations were determined after the Taguchi analysis using the
orthogonal array. A retest was conducted by using the desired combination, and the results showed
that the Taguchi method provides useful parameter values, and the performance is almost equal to
that of the best-case parameters. The Taguchi method will be useful in reducing tasks and the time
required to set up the inspection process in manufacturing.
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Abbreviations

STD Steepest descent method
CJG Conjugate gradient method
LED Light emitting diode
RGB Red, green and blue
sRGB Standard red, green and blue
ESS Equal step search
TAE Trial-and-error
SN Signal-to-noise
I(x, y) Grey level of an image pixel
Ī Brightness, average grey level of an image
k Current iteration
m Horizontal pixel number of an image
N Number of voltage inputs for a color mixer
n Vertical pixel number of an image
u the performance index
V Vector of voltage inputs for a color mixer
v Individual voltage input for an LED
w the number of experiments
x Horizontal coordinate of an image
y Vertical coordinate of an image
α Convergence coefficient
ε Terminal condition
η Convergence coefficient for limited range
ρ Negative sharpness, cost function
σ Sharpness, image quality
τ Threshold
ξ Index of update for conjugate gradient method
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