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Abstract: Mobile change detection systems allow for acquiring image sequences on a route of
interest at different time points and display changes on a monitor. For the display of color images,
a processing approach is required to enhance details, to reduce lightness/color inconsistencies
along each image sequence as well as between corresponding image sequences due to the different
illumination conditions, and to determine colors with natural appearance. We have developed a
real-time local/global color processing approach for local contrast enhancement and lightness/color
consistency, which processes images of the different sequences independently. Our approach
combines the center/surround Retinex model and the Gray World hypothesis using a nonlinear color
processing function. We propose an extended gain/offset scheme for Retinex to reduce the halo
effect on shadow boundaries, and we employ stacked integral images (SII) for efficient Gaussian
convolution. By applying the gain/offset function before the color processing function, we avoid color
inversion issues, compared to the original scheme. Our combined Retinex/Gray World approach has
been successfully applied to pairs of image sequences acquired on outdoor routes for change detection,
and an experimental comparison with previous Retinex-based approaches has been carried out.

Keywords: color consistency; local contrast enhancement; Retinex; change detection

1. Introduction

Detecting changes in outdoor scenes is of high importance for video surveillance and security
applications, allowing for identifying suspicious objects or threats such as IEDs (improvised explosive
devices) in route clearance operations or detecting intrusions in secured areas. Image-based change
detection systems on mobile platforms such as vehicles, unmanned aerial vehicles (UAVs), or
unmanned ground vehicles (UGVs), can improve the detection of changes on a route of interest
between a reference and the current time point. Based on the feature correspondences between the two
time points, frames of a reference and a current image sequence that correspond to the same scene are
aligned using a registration approach and can be alternately displayed on a monitor [1]. The alternate
display of reference and current frames allows for visualizing changes, which can be evaluated by a
human operator.

For the alternate display of color images in a change detection system, it is required to enhance
local contrast for improving the visibility in image areas with low contrast (e.g., shadows), and to
compensate lightness and color inconsistencies due to different illumination conditions (e.g., see Figure 1)
in consecutive frames of an image sequence (i.e., achieving intra-sequence consistency), as well as
in corresponding frames of a reference and a current image sequence that depicts the same scene
(i.e., achieving inter-sequence consistency). In particular, achieving inter-sequence lightness/color
consistency allows unchanged areas of corresponding frames of a reference and a current image
sequence to appear constant during the alternate display, whereas changes are blinking and are thus
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better detectable by the observer. In addition, natural color rendition of the computed colors is required
to facilitate the scene understanding. Color rendition describes the fidelity of colors w.r.t. the scene and
the human color perception [2]. However, simultaneously achieving intra-sequence and inter-sequence
color consistency as well as color rendition in real time is a challenging task. Color constancy approaches
compensate the colors of a light source and can be used to achieve color consistency for images
acquired under different illumination conditions. Most color constancy approaches (e.g., pre-calibrated,
Gamut-based, statistical-based, or machine learning approaches) are either computationally expensive,
unstable, or require sensor calibration [3]. On the other hand, certain Retinex-based approaches that have
been previously used for lightness/color constancy, as well as for image enhancement, are automatic,
robust, and suitable for real-time applications.

Figure 1. Two images of the same scene acquired at different time points under different
illumination conditions.

Retinex was proposed by Land as a model of the human vision system in the context of lightness
and color perception [4]. The Retinex model was initially based on a random walk concept to
compute the global maximum estimates of each chromatic channel and to determine the relative
lightness of surfaces of an image [5]. In [6], Land proposed determining the relative lightness
using a local center/surround approach that computes the ratio of the intensity of a pixel and
the average intensity of the surrounding. Jobson et al. [2] extended the center/surround Retinex
with a surround Gaussian function and a log operation, achieving local contrast enhancement and
lightness/color constancy simultaneously; however, the color rendition was often poor. To improve
color rendition, Jobson et al. [7] proposed a nonlinear color processing function to partially restore
the original colors. In [8], Barnard and Funt presented a luminance-based Retinex model to preserve
the chromaticity of the original image. However, the use of the original color information in [7,8]
affects color constancy. Recent extensions of the Retinex model have been mainly proposed for color
enhancement (e.g., [9,10]). For a detailed discussion on Retinex models, we refer to, for example, [11,12].
Moreover, variational approaches related to the original Retinex formulation have been proposed for
local contrast enhancement and color enhancement or color correction (e.g., [13,14]).

In this work, we have developed an automatic real-time local contrast enhancement and
lightness/color consistency approach for the display of images in a mobile change detection system.
Our approach combines the center/surround Retinex model [2] and the Gray World hypothesis [15]
using a nonlinear color processing function previously used for color restoration [7]. Frames of
the different image sequences are processed independently, and thus an image with reference
colors is not required. Our approach takes advantage of the combination of local and global color
processing: Retinex allows for locally achieving lightness/color consistency in unchanged areas of
corresponding images regardless of changes in the depicted scenes, and the global Gray World allows
for improving color rendition compared to Retinex. We have extended the gain/offset function used
by the center/surround Retinex to reduce the halo effect on shadow boundaries. In our approach,
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we have applied the gain/offset function before the color processing function, avoiding color inversion
issues compared to the original scheme in [7]. For Gaussian convolution, we employed stacked integral
images (SII) [16] to reduce computation times and to allow the display of more than 20 frames per
second in the change detection system. A previous version of our approach has been presented
in [17]. We have performed an experimental evaluation of our approach based on image sequences
of outdoor routes acquired by a vehicle-mounted color camera. In addition, a comparison with
previous Retinex-based approaches in the context of color rendition, inter-sequence color consistency,
and change detection has been conducted.

2. Methods

In this section, we first describe the employed center/surround Retinex model and introduce an
extended gain/offset function. Then, we describe the Gray World hypothesis and present the nonlinear
color processing function combining Retinex and Gray World. Finally, we describe the stacked integral
images (SII) scheme for efficient Gaussian convolution.

2.1. Center/Surround Retinex Using an Extended Gain/Offset Function

Our image processing approach is based on the single-scale center/surround Retinex model [2],
previously used for local image enhancement and lightness/color constancy and processes each
channel of an RGB image independently. For each channel Ii (i ∈ {R, G, B}) and for each position
x = (x, y) of an image, a Retinex value Ri (x, c) is computed:

Ri (x, c) = log (Ii (x))− log (F (x, c) ∗ Ii (x)) , (1)

where Ii (x) denotes the intensity of the channel Ii at position x, ∗ is the symbol for spatial convolution,
and F (x, c) is the surround function defined by a Gaussian function:

F (x, c) = Ke−(x2+y2)/c2
, (2)

where c denotes the scale of the Gaussian function and K is a value such that
∫

F (x, c) dx = 1.
The computed Retinex describes the logarithm of the ratio of the intensity of a pixel and

the local mean intensity defined by the surround function, since Equation (1) can be rewritten to
Ri (x, c) = log

(
Ii(x)

F(x,c)∗Ii(x)

)
. The intensity ratios allows for locally enhancing details, in particular for

image areas with uniform intensities and low contrast (e.g., shadows). Simultaneously, the intensity
ratios describe the reflectance of surfaces, and can be used for compensating the illumination in a scene.

The scale c of the surround function in Equation (2) represents a trade-off between the level
of local contrast enhancement and color rendition [2]. Decreasing c stronger enhances details in an
image, and increasing c improves color rendition. The value of c cannot be determined automatically,
and should be chosen based on the image data and the application. For larger image areas with
uniform colors, Retinex computes colors with low saturation (i.e., colors close to gray) regardless of
the colors in the original image.

To map the computed Retinex values from the logarithmic domain to output intensity values
IRet
i (x), we employ a gain/offset function [2]:

IRet
i (x) = A + CRi (x, c) , (3)

where A denotes the offset and C is the gain that regulates the contrast of the output image.
For example, increasing C increases the contrast; however, the halo effect is increased as well.
The function in Equation (3) in conjunction with Equation (1) describes a transfer function that
maps the local intensity ratios Ii(x)

F(x,c)∗Ii(x)
to intensities of the output image (see Figure 2). Note that
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negative values in Equation (3) are clipped to zero, and values larger than 255 are clipped to 255 (for
8-bit images).

Figure 2. Intensity transfer function for the Retinex model using a gain/offset function with A = 127.5
and two contrast gains (C1 and C2). For C1 = C2, the transfer function corresponds to the gain/offset
function with a single gain value.

(a) (b)

Figure 3. Processed images using (a) the original Retinex [2] with a single gain and (b) Retinex [2]
extended with the proposed two gains. Enlarged sections for the marked regions are shown on the
bottom. (a) C = 120; (b) C1 = 80, C2 = 120.

In our approach, we use two different gain values C1 and C2. For each pixel, we choose among
the two gain values based on the value of the intensity ratio Ii(x)

F(x,c)∗Ii(x)
:

C =

C1, if Ii(x)
F(x,c)∗Ii(x)

≤ 1,

C2, otherwise.
(4)

The use of two different gain values allows for regulating the steepness of the upper and the lower
part of the intensity transfer function independently. A lower value for C1 compared to C2 reduces the
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halo effect on shadow boundaries (cf. Figure 3a,b), while retaining the number of bright pixels and
thus avoiding the decrease of contrast. Note that the transfer function in Equation (3) is continuous at

Ii(x)
F(x,c)∗Ii(x)

= 1, since IRet
i (x) = A for any value of C.

2.2. Gray World

In our approach, we also employ the Gray World hypothesis [15]. This global color constancy
method is based on the assumption that the average reflectance in a scene is achromatic, thus the
average intensity values for the three RGB channels should be equal (gray) under a neutral illuminant
(light source). Based on this assumption, any deviation of the average colors of an image from gray is
due to the colors of the illuminant. This deviation can be used to compute the colors IGW

i (x) of a scene
under a neutral illuminant:

IGW
i (x) =

Igray

Ii
Ii (x) , (5)

where Igray denotes the defined gray value and Ii is the average intensity of each channel.

2.3. Color Processing Function Combining Retinex and Gray World

To combine the Retinex model with the Gray World hypothesis, we employed a nonlinear color
processing function previously used for color restoration [7]. This function maps the colors computed
using Gray World (Equation (5)) to the Retinex result. For each channel and for each image position,
we compute a modified Retinex value RGW

i (x):

RGW
i (x) = CGW

i (x) IRet
i (x) , (6)

where IRet
i (x) denotes the computed Retinex value after applying the gain/offset function in

Equation (3) and CGW
i (x) is a nonlinear color processing function defined by:

CGW
i (x) = β (x)

(
log
(

αIGW
i (x)

)
− log

(
∑

j∈R,G,B
IGW
j (x)

))
, (7)

where α (α > 1) denotes the nonlinearity strength that controls the influence of Gray World, and β (x)
controls the brightness levels. Note that Equation (6) is not used for pixels with zero brightness,
i.e., ∑i IRet

i (x) = 0 for i ∈ R, G, B. We determine the value for β (x) automatically for each pixel,
such that using the color processing function in Equation (6) preserves the brightness of the Retinex
result in Equation (3), i.e., ∑i RGW

i (x) = ∑i IRet
i (x):

β (x) =
∑i IRet

i (x)

∑i

((
log
(
αIGW

i (x)
)
− log

(
∑j∈R,G,B IGW

j (x)
))

IRet
i (x)

) . (8)

The differences of using the color processing function in Equation (6) compared to the original
scheme in [7] are three. First, we use the colors computed by Gray World, instead of the original colors.
Note that also different global constancy approaches can be used in Equation (7), for example, Shades
of Gray [18] or Gray Edge [19]. Second, we compute the value of β (x) in Equation (7) automatically for
each pixel, compared to using a fixed value in [7]. This guarantees that the color processing function in
Equation (6) is brightness-preserving and only modifies the chromaticities, compared to the result of
the original Retinex [2] in Equation (3). Third, we apply the gain/offset function (Eqation (3)) before
the color processing function, in contrast to [7] where the order of the two operations is reversed (i.e.,
we use IRet

i (x) in Equation (6), instead of Ri (x, c)). We found that this prevents from color conversion
issues for images that contain saturated colors, compared to the original color processing scheme [7,20].
In Figure 4, we show an example of an image that contains pixels with saturated colors, for example,
pixels of the blue balls with IR = 0 (Figure 4a). For such pixels, the Retinex result in Equation (1) as
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well as the result of the color processing function in Equation (7) are negative. Following the original
scheme and applying the color processing function directly on the Retinex result yields a positive
value, which is mapped by the gain/offset function to a large value for RGW

R (x) (Figure 4c). In contrast,
the gain/offset function in our approach maps the low negative Retinex values to negative image
values in Equation (3) which are clipped to zero, and the subsequent application of the color processing
function in Equation (6) yields a zero value RGW

R (x) = 0 (Figure 4b).

(a) (b) (c)

Figure 4. Example of preventing from color inversion issues for (a) an image containing saturated
colors (b) using our approach, compared to (c) using the original scheme [7] with the gain/offset
function applied after the color processing function. (image credit: J.L. Lisani CC BY)

For image regions with homogeneous colors, the weighting in Equation (6) increases the color
saturation compared to Retinex. The reason is that, for such pixels, the variation of the values of
CGW

i (x) is larger for the different i ∈ R, G, B, compared to the variation of the respective values of
Ri (x, c). Thus, the combination with Gray World and the exploitation of global image statistics
allows for overcoming a main drawback of the center/surround Retinex that uses local image
information only.

2.4. Stacked Integral Images (SII)

To determine the local mean intensity F (x, c) ∗ Ii (x) in Equation (1), we employ stacked integral
images (SII) [16]. This computationally efficient scheme for Gaussian convolution is based on an
integral image defined for each image position x = (x, y) as the cumulative sum of intensity values over
all rows and all columns from position (0, 0) to position (x, y) of a RGB channel:

I Ii (x, y) = ∑
x′≤x,y′≤y

Ii
(
x′, y′

)
, (9)

where I Ii (x, y) denotes the computed integral image value for channel Ii. To construct the integral
image, two additions per pixel are required. For a rectangle area box defined by the positions x1, x2, x3,
and x4, the sum Si (box) of intensities in Ii can be computed using the integral image:

Si (box) = I Ii (x4)− I Ii (x3)− I Ii (x2) + I Ii (x1) , (10)

requiring four pixel accesses and three additions/subtractions, regardless of the size of box.
This significantly reduces computation times compared to iterating over all pixels in box (Nbox pixel
accesses, Nbox − 1 additions, where Nbox denotes the number of pixels in box). The local mean intensity
can be obtained by dividing Si (box) with Nbox. Gaussian convolution using SII is based on the
weighted sum of K stacked boxes of different size [16]:

Ii (x, σ, K) =
K

∑
k=1

wkSi (boxk) , (11)
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where Ii (x, σ, K) denotes the local mean intensity value of Ii defined by a Gaussian kernel centered at
x with standard deviation σ. Note that the weights wk and the size of each boxk depend on σ and on K.
The local mean intensity Ii (x, σ, K) in Equation (11) corresponds to the result of the spatial convolution
F (x, c) ∗ Ii (x) in Equation (1). SII yielded the lowest computation times among different investigated
schemes for Gaussian convolution in [21].

3. Results

We have applied our combined Retinex/Gray World approach for color consistency and
local contrast enhancement to color image sequences acquired on five outdoor itineraries using
a vehicle-mounted camera system (Figure 5). For each itinerary, we have recorded image sequences
at two different time points under different illumination conditions. The five pairs of reference and
current image sequences consist of 786 to 2400 corresponding frames. We have aligned frames of the
reference image sequences w.r.t. the corresponding frames of the current sequences using an affine
homography-based registration approach [22]. For our combined Retinex/Gray World approach, the
same parameter setting was used for all image data (see Table 1). We have chosen the values for C1,
C2, and σ taking into account the contrast in the computed images, the visibility within shadows,
and the halo effect on shadow boundaries. Taking into account the computation times, we used
K = 3, since increasing K did not significantly improve the results. We used α = 125 as suggested
in [7], and the typical values for A and Igray. The computation time for processing images with a
resolution of 1280× 960 pixel on a workstation under Linux Ubuntu 14.04 with a Xeon E5-1650v3 CPU
(3.5 GHz) is 35 ms using an OpenGL-based implementation, allowing the display of more than 20
frames per second in the change detection system. We investigated the performance of our approach
w.r.t. color rendition, inter-sequence color consistency, and change detection. We have also performed
an experimental comparison with previous Retinex-based approaches: the original center/surround
Retinex model [2], a Gray World [15] extension based on an intensity-based Retinex [23], and a
hue-preserving intensity-based Retinex approach [24] (without shadow detection). We have used
the same values for the parameters of the previous Retinex-based approaches that are common with
our approach, except for C = 120 in Equation (3). The Gray World extension and the hue-preserving
extension use an affine function [25] to map the colors computed by Gray World and the original
colors, respectively, to the intensities computed by the intensity-based Retinex [23].

Figure 5. Vehicle-mounted color camera system.

Table 1. Parameter setting for our combined Retinex/Gray World approach.

A in [3] C1, C2 in [4] Igray in [5] α in [7] σ in [11] K in [11]

127.5 80, 120 127.5 125 30/π 3
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3.1. Color Rendition

First, we have evaluated the performance of our approach in the context of color rendition and
the visibility in the processed images. In Figure 6, we show an example of processing an outdoor color
image using our combined Retinex/Gray World approach as well as the three previous Retinex-based
approaches. It can be seen that the original image (Figure 6a) contains large shadows with low local
contrast, and thus visibility is poor. It can be also seen that the colors of the non-shadowed areas
are strongly influenced by the warm colors of the light source. It turned out that the Retinex-based
approaches enhanced local contrast (Figure 6b–e, improving the visibility within shadows. Compared
to the traditional gain/offset function (C = 120) used by the previous Retinex-based approaches,
the extended gain/offset function (C1 = 80, C2 = 120) in our approach reduces the halo effect on the
shadow boundaries. In Figure 6b, it can be seen that the original center/surround Retinex approach
strongly compensated the color of the illuminant. However, color rendition is poor since the processed
image appears grayish (low saturation), particularly in larger areas with homogeneous colors (e.g.,
grass area) due to the local color processing. In contrast, the saturation is higher for smaller objects with
different colors compared to the background, and thus visibility of these objects is good (Figure 6b,
right). The saturation of the processed image applying the Gray World extension is significantly
increased (Figure 6c). However, colors in certain areas of the image that have been more strongly
enhanced w.r.t. the original image (e.g., shadows) appear unnatural. The reason is that for images with
spatially inhomogeneous illumination (e.g., images containing both shadowed and directly illuminated
areas) or for images with unbalanced color distribution (i.e., when the scene has a dominant color) the
assumptions of the Gray World hypothesis do not hold. The hue-preserving Retinex approach avoids
unnatural colors by preserving the original color information, however, the color of the illuminant
is partially preserved as well (Figure 6d). In addition, due to the global decrease of saturation, the
visibility of objects of different color is relatively low (Figure 6d, right). The result of applying our
combined Retinex/Gray World approach is shown in Figure 6e. It can be seen that the colors of the
illuminant have been strongly compensated and that the color appearance represents a combination of
the results of Retinex and Gray World. Compared to Retinex, saturation is increased and the computed
colors appear more natural (cf. the grass area in the images). We have determined the mean saturation
(based on the HSI color model) averaged over 4800 corresponding frames of two image sequences
and found that our approach yields 0.0997, which is an increase of 28% compared to Retinex (0.0776).
Note that the differences in contrast between our approach and Retinex (cf. Figure 6b,e) are due to
the proposed scheme with two gains in Equation (3), and the differences in chromaticities are due to
the color processing function (Equation (6)). Compared to the Gray World extension, our approach
avoids strong unnatural colors (cf. the shadowed areas and the non-shadowed road area in Figure 6c,e).
Compared to the hue-preserving Retinex, saturation is increased, the colors of the illuminant are
strongly compensated, and objects of locally distinctive colors are more visible due to the use of local
color processing (cf. Figure 6d,e, right).
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(a)

(b)

(c)

(d)

(e)

Figure 6. (a) original and processed images applying (b–d) previous Retinex-based approaches and
(e) our approach. Enlarged sections for the marked regions are shown on the right. (a) unprocessed
image; (b) Retinex [2]; (c) Gray World [15] extension; (d) hue-preserving Retinex [24]; (e) new combined
Retinex/Gray World.
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3.2. Inter-Sequence Color Consistency

We have also evaluated our combined Retinex/Gray World approach in the context of
inter-sequence color consistency, that is, the color consistency between corresponding frames of
a reference and a current image sequence recorded on the same itinerary at different time points.
In Figure 7, we show an example of applying our approach to two corresponding frames of the same
scene acquired at different time points with different illumination conditions (Figure 7a). It can be seen
that our approach strongly compensates lightness and color inconsistencies between the two images
(Figure 7c). In contrast, the Gray World extension yields images with visible color inconsistencies
(Figure 7b).

(a) (b) (c)

Figure 7. (a) original and processed images applying (b) the Gray World extension and (c) our approach
for a scene acquired at two different time points. The second image for each example has been registered
w.r.t. the first image (top) and the two images have been combined using a checkerboard (bottom).
(a) unprocessed images; (b) Gray World extension; (c) new combined Retinex/Gray World.

To quantitatively assess inter-sequence color consistency, we have computed the mean RGB
angular error and the mean rg chromaticity endpoint error between corresponding frames of pairs of
reference and current image sequences. These error metrics are typically used in combination with
ground truth images for evaluation of color constancy approaches [26]. Note that, in addition to the
different illumination conditions, changes in the scene and registration errors cause lightness and color
differences as well, and thus influence the error values. However, we assume that the influence of
these factors is similar for each investigated approach and can be ignored. In Figure 8, we show an
example of the mean RGB angular error over time for corresponding frames of two image sequences of
an outdoor route. It can be seen that for all time points our approach yields a lower error compared to
the unprocessed images. The mean error averaged over all time points computes to 2.43◦, which is an
improvement of 46% compared to the respective error (4.51◦) for the unprocessed images. It can be also
seen that our approach outperforms the Retinex approach (3.21◦) as well as the Gray World extension
(3.36◦). The worse performance of Retinex is due to inconsistencies caused by the stronger lightness
halo effect on shadow boundaries and the color halo effect on edges of color change. The reasons for
the worse performance of Gray World are two. First, the unnatural colors in certain areas of images
with inhomogeneous illumination (see also Section 3.1 above) introduce color inconsistencies. Second,
changes in the scene influence the global statistics of an image and affect the computed colors for
unchanged areas, introducing color inconsistencies as well. Our approach yields a lower mean error
also compared to the hue-preserving Retinex approach (2.64◦); however, for certain time points the
error is higher. The reason is that for these time points the hue-preserving Retinex determines colors
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with low saturation due to the global saturation decrease, resulting in small color differences and low
error values, as expected. The mean RGB angular errors and the mean rg endpoint errors averaged
over all time points and over the five pairs of corresponding image sequences are shown in Table 2.
It turns out that our approach yields significantly lower errors compared to the unprocessed images,
as well as compared to Retinex and Gray World. The hue-preserving Retinex yields the lowest errors,
however, due to the lower saturation of the computed images.

We have also used the Shades of Gray [18] and the Gray Edge [19] global color constancy
approaches in Eqution (6), as alternatives for Gray World. For both variants, we used p = 5 for the
Minkowski norm. We applied these two variants to the two corresponding image sequences used
for the example in Figure 8, and we computed the mean RGB angular error over time. The errors for
the combined Retinex/Shades of Gray and the combined Retinex/Gray Edge approaches compute
to 2.6◦ and 2.85◦, respectively, which are an increase of 6.9% and 17.3%, compared to the proposed
Retinex/Gray World approach. The reason for the better performance of Gray World for this image
data is that the image mean used by Gray World is more stable w.r.t. changes in the scenes, compared
to the Minkowski norm and the image derivatives used by Shades of Gray and Gray Edge.
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Hue−preserving Retinex
New combined Retinex/Gray World

Figure 8. Mean RGB angular error over time for corresponding images of two image sequences for our
approach and three previous Retinex-based approaches.

Table 2. Mean errors averaged over corresponding time points of five pairs of image sequences for our
approach and three previous Retinex-based approaches. Percentages indicate the change compared to
the unprocessed image data.

Approach Mean RGB Mean rg
Angular Error Endpoint Error

Unprocessed 4.06◦ 0.029
Retinex [2] 3.32◦−18% 0.027−8%
Gray World [15] extension 3.93◦−3% 0.029−1%
Hue-preserving Retinex [24] 2.39◦−41% 0.016−47%
New combined Retinex/Gray World 2.56◦−37% 0.020−31%

3.3. Change Detection

Finally, we have evaluated our combined Retinex/Gray World approach in terms of change
detection. In Figure 9, we show an example of a pair of images corresponding to a changed scene at
two different time points. However, it is difficult to quantitatively evaluate the performance of image
processing approaches for change detection systems that are based on a human operator. The reason is
that there are different factors influencing change detection that are related to the perception of the
human operator as well as on the properties of the displayed images. Factors related to the images are
lightness and color rendition, local contrast, and lightness and color consistency. In general, images
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with relatively natural lightness and color rendition facilitate the operator to more quickly understand
a scene and focus on areas of interest, compared to, for example, overenhanced images containing too
many details, or, images containing unnatural colors. Changes are better visible when the differences
between the two images for the changed area are larger compared to the differences for the background
(unchanged area), within a spatial neighborhood. Note that the latter criterion is used by image
differencing approaches for automatic change detection [27]. Based on this, we computed the CIELAB
color differences between corresponding images. Note that the CIELAB color differences better describe
the sensitivity of the human eye to color differences, compared to RGB color differences. Then, we
determined the ratio of the mean differences for the changed area to the mean differences for the
background, within a spatial neighborhood around the change. The changed area and the background
have been obtained based on manual segmentation.

An example of the CIELAB color differences for a neighborhood around a change is shown
in Figure 9a (right). It can be seen that the magnitude of the differences for the area of the change
are similar with the magnitudes of the differences for the background, and the ratio computes to
1.3. Applying our approach, the differences for the area of the change increased in contrast to the
differences for the background that decreased (Figure 9b, right), compared to the respective differences
for the unprocessed images. The ratio of the mean differences computes to 11.2. This is a significant
increase compared to the unprocessed images, and, therefore, the change is potentially better detectable
by a human operator. In Table 3 we show the ratio of CIELAB color differences for six examples of
changed objects in different scenes, applying our approach as well as the three previous Retinex-based
approaches. It can be seen that our approach yields the largest ratio for most changes, as well as the
largest mean ratio.

(a)

(b)

Figure 9. (a) original and (b) processed images applying our approach for a scene with a change.
The second image has been registered w.r.t. the first image. On the right, the magnitudes of the CIELAB
color differences between the two images are visualized with the contour of the segmented change.
(a) original images; (b) new combined Retinex/Gray World.
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Table 3. Ratios of the mean CIELAB color differences for changed areas to unchanged areas within
a spatial neighborhood around the change. Our combined Retinex/Gray World approach and
three previous Retinex-based approaches have been applied to six pairs of corresponding images
of changed scenes.

Changed Objects

Approach Traffic Pole Stone Stone2 Barrel Fake Stone Car Mean

Unprocessed 1.3 3.6 3.6 1.3 0.8 0.6 1.9
Retinex [2] 9.5 11.7 4.5 2.6 21.7 8.8 9.8

Gray World [15] extension 8.0 11.3 4.7 2.1 20.3 5.5 8.6
Hue-preserving Retinex [24] 11.1 13.1 4.5 4.0 17.9 6.6 9.6

New combined Retinex/Gray World 11.2 28.4 5.1 2.9 22.1 8.4 13

4. Discussion

From the results, it turns out that our combined Retinex/Gray World approach enhances local
contrast and reduces inter-sequence color inconsistencies between corresponding images acquired
under different illumination conditions, taking advantage of the combination of local and global color
processing. The advantages of the local center/surround Retinex are that the computation of the colors
of a pixel is neither influenced by information of distant image regions with different illumination nor
by changes in other regions of the image. The advantage of the global Gray World is the generally
higher color saturation. Simultaneously, our approach overcomes typical issues of both local and
global color processing.

The experimental comparison showed that our approach yields better results than previous
Retinex-based approaches. Compared to the center/surround Retinex that often computes grayish
colors due to the use of local image information only, our approach increases the saturation and
improves color rendition. Our approach outperforms Retinex also in the context of color consistency,
since the color halo effect on the edges of color change is reduced. Compared to Gray World, which
yields strong unnatural colors for areas of images with inhomogeneous illumination, our approach
determines more natural colors. This improves color rendition and, in addition, improves color
consistency as well, since unnatural colors introduce color differences between corresponding images.
The second reason for the worse performance of Gray World that influences color consistency is that
changes in a scene affect the computed colors of the whole image. Compared to a hue-preserving
Retinex approach, objects of locally distinctive color are better visible due to the local color processing.
In addition, our approach yields images with higher saturation, compared to the hue-preserving
Retinex, which is based on the global saturation decrease.

Furthermore, the proposed gain/offset function allows for reducing halo effect on shadow
boundaries, without decreasing the contrast in other areas of an image. In future work, we plan
to further reduce the halo effect on shadow boundaries, using, for example, an edge-preserving
filter or a guided filter (e.g., [9,10]). This is, however, a challenging task, due to the high
computational complexity of these processing schemes. Another alternative could be to extend a
previous shadow-based Retinex approach [24] by improving the consistency of the employed shadow
detection method.

5. Conclusions

We have presented an automatic approach for local contrast enhancement and color consistency
for the display of images in a mobile change detection system. Our approach is based on the
center/surround Retinex model for local contrast enhancement and lightness/color constancy, and on
the Gray World method for global color constancy. We employed a nonlinear color processing function
to combine Retinex and Gray World and to take advantage of both local and global color processing. We
proposed a gain/offset scheme that uses two gains, in order to reduce lightness halo effect on shadow
boundaries and to improve visibility within shadows. The use of stacked integral images (SII) for
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Gaussian convolution allows for achieving low computation times and using the proposed approach
in real-time applications. We have successfully applied our approach to color image sequences
acquired from outdoor itineraries using a vehicle-mounted camera, and an experimental comparison
demonstrated that our approach outperforms previous Retinex-based approaches and Gray World
w.r.t. color rendition, inter-sequence color consistency, and change detection.
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the paper.
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