
Journal of

Imaging

Article

Unsupervised Local Binary Pattern Histogram
Selection Scores for Color Texture Classification

Mariam Kalakech 1 , Alice Porebski 2,* , Nicolas Vandenbroucke 2 and Denis Hamad 2

1 Faculty of Economics and Business Administration (First Branch), Lebanese University, Hadath,
Beirut 21219, Lebanon; mariam.kalakech@gmail.com

2 LISIC Laboratory, University of the Littoral Opal Coast, 62228 Calais, France;
nicolas.vandenbroucke@lisic.univ-littoral.fr (N.V.); denis.hamad@univ-littoral.fr (D.H.)

* Correspondence: alice.porebski@lisic.univ-littoral.fr; Tel.: +33-3-2138-8560

Received: 11 July 2018; Accepted: 25 September 2018; Published: 28 September 2018
����������
�������

Abstract: These last few years, several supervised scores have been proposed in the literature to
select histograms. Applied to color texture classification problems, these scores have improved the
accuracy by selecting the most discriminant histograms among a set of available ones computed
from a color image. In this paper, two new scores are proposed to select histograms: The adapted
Variance score and the adapted Laplacian score. These new scores are computed without considering
the class label of the images, contrary to what is done until now. Experiments, achieved on OuTex,
USPTex, and BarkTex sets, show that these unsupervised scores give as good results as the supervised
ones for LBP histogram selection.

Keywords: histogram selection; local binary pattern; unsupervised selection score; color texture

1. Introduction

Texture classification is an active research topic in image processing and computer vision. It has
received significant attention in many applications such as content based image retrieval, medical
image analysis, face recognition, or biometrics. The texture classification approaches can typically be
categorized into two subproblems [1,2]: The representation, which aims to characterize an image with a
set of texture features, and the decision, which assigns this image to one of the available texture classes.
This paper focuses on the first subproblem and particularly on feature space dimensionality reduction
techniques. Many approaches perform a reduction of the feature space to transform high-dimensional
data into a meaningful representation of reduced dimensionality [3–5]. By only retaining the most
discriminant features, these approaches aim to improve the classification accuracy, while decreasing
the processing time.

Dimensionality reduction techniques can be divided into two categories [6]. (1) Feature extraction
builds a low dimensional subspace where the new features are usually combinations of the original
features. The main drawback of this strategy is it requires to compute all candidate features during
the classification stage to build the new feature space, which could be time-consuming; (2) Feature
selection strategies select the most relevant original features. Hence, it just requires the computation
of a reduced number of selected features during the classification stage. Among the feature selection
techniques, we were particularly interested in those based on individual ranking. These algorithms
rank the candidate features with respect to a score which measures their relevance. They are relatively
inexpensive in computation time since no subspace procedure generation is used.

In the supervised context, the information about the class distribution is available. Supervised
feature selection scores, such as the Fisher and the Supervised Laplacian scores, use the class labels to
determine the relevance of each feature. However, it would be interesting to see if using a soft way to
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measure the similarity between images could be relevant. A soft value does not use any information
about the class label of the images but measures the similarity in a subtle way, instead of being binary
with just two values (same class or not). This may lead to powerful discriminating information since it
should better reflect the geometric structure of the different classes. The Variance and the Laplacian
scores measure the ability of a feature to keep the intrinsic data structure without considering any
information about the class label of the images [7]. In accordance with this, they could be considered to
be unsupervised. These two different scores, originally designed for the selection of features, have been
successfully used in the context of image classification to select relevant features and improve the
classification accuracy [8]. In this paper, we propose to see if the soft way to measure the similarity
between images used in these two unsupervised scores is relevant for selecting histograms.

To describe the texture, the local patterns contained in an image are usually represented
by histograms, like sum and difference histograms [9], histograms of equivalent patterns [10] or
bag-of-words histograms [11]. A set of cross-channel histograms are then computed to represent a
color texture. Local Binary Pattern (LBP) is a texture descriptor belonging to this scheme [12]. The LBP
operator transforms an image by thresholding the levels of the P neighboring pixels around each
pixel of the image, and coding the result as a binary number. Usually, the histogram of this LBP
image is then used for texture analysis. Many authors have taken an interest in the reduction of this
(2P = Q)-dimensional LBP histogram in order to improve the texture classification performances [13].
Ojala et al. propose to consider the uniform LBP operator, where 59 discriminant pattern types (or bins)
are a priori chosen among the 28 = 256 available ones [14]. Mäenpää et al. consider a method based
on beam search to select a reduced number of discriminant bins [15]. Boosting has become a very
popular approach for feature selection and has been widely adopted for LBP feature selection in
various tasks [13]. Liao et al. introduce the Dominant Local Binary Pattern (DLBP) that considers
the most frequently occurred patterns to improve the recognition accuracy [16]. Because DLBP is
only based on the pattern frequency, information about the type (label) of the selected patterns is lost.
That is the reason why this texture descriptor has been later improved by labelling the most frequent
patterns [17], like in the Labelled Dominant Local Binary Pattern (L-DLBP) [18], the Highest-Variance
Dominant Local Binary Pattern (HV-DLBP) [19] or more recently in the Highest-Rank Dominant Local
Binary Pattern (HR-DLBP) [20]. Guo et al. also propose a labelled model of the DLBP based on the
Fisher separation criteria [21,22]. The most reliable and robust dominant bins are thus determined by
considering intra-class similarity and inter-class dissimilarity.

Many other extensions or variants of the LBP operator have been proposed in recent decades
for gray level images [12]. However, the extensions of this operator applied to color images
remain relatively limited since 2002, wherein the Extended Opponent Color LBPs (EOCLBP) have
been proposed by Pietikäinen et al. [13]. In EOCLBP, the LBP operator is applied on each color
component of a given color space independently and also on pairs of color components according to a
cross-channel strategy. This leads to extract nine different histograms, three within-component and six
between-component LBP histograms, and it could be interesting to wonder whether all the information
contained in these histograms is relevant to discriminate the textures. Paradoxically, reducing the
dimensionality of LBP histograms is much less frequent in the framework of color texture analysis
whereas the dimension of the feature space is higher. A first solution proposed by Chan et al. uses
linear discriminant analysis to project high-dimensional color LBP bins into a discriminant space [23].
A second solution is proposed by Hussain et al., who exploit the complementarity of Histograms of
Oriented Gradients [24], Local Binary Patterns, and Local Ternary Patterns [25] and apply partial least
squares to resolve their visual object detection problem [26]. More recently, Porebski et al. propose
a different approach which selects, out of the nine LBP histograms extracted from a color texture,
those which are the most discriminant [27]. This strategy, which selects histograms in their entirety,
fundamentally differs from all the previous LBP selection approaches which select the bins of the LBP
histograms or project them into a discriminant space. To evaluate the relevance of the LBP histograms,
Porebski et al. propose a supervised approach where an Intra-Class Similarity score (ICS-score) is
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computed for each histogram. This score is based on a measure of the histogram ability to characterize
the similarity of the textures within each different class. Inspired by this approach, Kalakech et al.
propose another score (the ASL-score) based on the supervised Laplacian score designed for feature
ranking and selection [28]. In [29], histogram selection and bin selection schemes have been extended to
the multi-color space domain and compared each other in the framework of color texture classification.
It has been shown that the classification accuracy reached thanks to histogram selection is slightly
higher than the accuracy provided by a bin selection, with a similar classification computation time.
The encouraging results obtained with the two supervised ICS and ASL-score lead us to propose in
this paper two new histogram selection scores: The adapted Variance (AV-score) and the adapted
Laplacian (AL-score) scores. As the names suggest, these scores are respectively adapted from the
unsupervised Variance and Laplacian scores which have been originally designed for the selection of
features and which use a soft way to measure the similarity between images. In this paper, we propose
to extend these scores in order to rank and select LBP histograms extracted from a color image.

First, the traditional unsupervised feature selection scores are presented in Section 2.
The corresponding adapted histogram selection scores are then detailed in Section 3 and the LBP
histogram selection approach is described in Section 4. In order to compare these two new scores each
other and with the results of the state of the art, experiments are performed on benchmark and widely
used databases in Section 5.

2. Feature Selection Scores

In the feature selection context, we dispose a dataset of N color texture images represented in a
D-dimensional feature space. We denote X, the associated data matrix where xr

i is the rth feature value
(r = 1, . . . , D) of the ith color image Ii (i = 1, . . . , N).

X =


x1

1 ... xr
1 ... xD

1
... ... ... ... ...
x1

i ... xr
i ... xD

i
... ... ... ... ...
x1

N ... xr
N ... xD

N

 =


x1

...
xi
...
xN

 =
[
f1 ... fr ... fD

]
.

Each of the N rows of the matrix X represent a color texture xi =
(
x1

i , . . . , xD
i
)
∈ RD, while each

of the D columns of X define the feature fr =
(
xr

1, . . . , xr
N
)T ∈ RN .

2.1. Unsupervised Feature Selection Scores

In the unsupervised context, the Variance and the Laplacian scores are usually used to select
features [7].

2.1.1. Variance Score

The variance score Vr used to evaluate the relevance of each feature fr is defined by:

Vr =
1
N

N

∑
i=1

(xr
i − µr)2 , (1)

where µr is the mean for all images of the feature fr: µr = 1
N ∑N

i=1 xr
i .

The features are sorted according to the decreasing order of Vr in order to select the most relevant
ones, assuming that the feature with the highest variance is the most discriminant one.
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2.1.2. Laplacian Score

Rather than measuring the data dispersion along a feature axis, the Laplacian score examines the
local properties of the data. He et al. propose to compute the Laplacian score Lr of a feature fr as [7]:

Lr =
∑N

i=1 ∑N
j=1

(
xr

i − xr
j

)2
sij

∑N
i=1

(
xr

i − f
r
)2

di

, (2)

where:

•
(

xr
i − xr

j

)2
is the squared Euclidean distance between the rth feature of two images Ii and Ij,

• sij is the similarity measure between Ii and Ij using all the input feature space composed

by the D features. It is defined by: sij = exp
(
−‖xi−xj‖2

2t2

)
, where

∥∥xi − xj
∥∥2 represents the

squared Euclidean distance between xi and xj in the D-dimensional initial feature space [30,31].
The parameter t has to be tuned in order to represent the local dispersion of the data [32],

• di represents a local density measure defined by: di = ∑N
j=1 sij,

• and f
r

is the weighted feature average: f
r
=

∑N
i=1 xr

i di

∑N
i=1 di

.

The different features are sorted according to the ascending order of Lr in order to select the most
relevant ones: The features which respect the pre-defined graph structure minimize the numerator of
Lr and those with a large variance maximize the denominator.

These unsupervised feature selection scores have originally been designed for feature selection.
However, in the framework of color texture characterization, histograms are widely used as texture
descriptors, like the LBP histograms [13]. Because the number of those histograms can be high and
problematic for classification purpose, it would be interesting to select the most discriminant ones to
improve the classification performances. For this purpose, we propose to adapt the traditional feature
selection scores used for feature ranking and selection, in order to rank and select histograms.

3. Histogram Selection Scores

In the histogram selection context, we dispose a dataset of N color textures images. Each image Ii
(i = 1, . . . , N) is characterized by D histograms. The whole data is summarized by the matrix H as:

H =


h1

1 ... hr
1 ... hD

1
... ... ... ... ...
h1

i ... hr
i ... hD

i
... ... ... ... ...

h1
N ... hr

N ... hD
N

 =


h1

...
hi
...

hN

 =
[
h1 ... hr ... hD

]

where hr
i is the rth histogram computed from the ith color texture image Ii. It is defined by

hr
i =

(
hr

i (1), . . . , hr
i (k), . . . , hr

i (Q)
)

where Q is the histogram bin number.
The ith row of H represents a set of D histograms hi corresponding to the image Ii and whose

dimension is (D × Q). For each column, hr =
[
hr

1 . . . hr
i . . . hr

N
]T regroups the values of the rth

histogram across the N images.
The histogram selection scheme evaluates each histogram hr in order to select the most

discriminant one among the D candidate histograms. For this purpose, we propose to adapt the
feature selection scores, presented in Section 2, in order to define histogram selection scores. Distance
and similarity measures are two critical terms used for feature selection. Distance measures are
low when the images are close to each other, contrary to similarity measures whose highest value
indicates that the considered images are similar. To adapt the traditional feature selection scores to rank
and select histograms, it is necessary to consider either a distance measure between histograms or a
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similarity measure between histograms depending on whether the term to adapt has to be maximized
or minimized.

Several measures of similarity and distance between histograms have been used in computer vision
and pattern recognition [33]. Since the objective of this paper is to show the interest of the proposed scores,
we retain two simple measures, the histogram intersection as similarity measure and the Jeffrey distance
as distance measure: the histogram intersection is considered to adapt the similarity term sij which has to
be maximized (the kernel is maximized when the images are similar) and the Jeffrey distance is used to
extend the Euclidean distance which has to be minimized for similar images.

The intersection between the histograms extracted from two images Ii and Ij is defined as follows:

S(hi, hj) =
Q×D

∑
k=1

min(hi(k), hj(k)). (3)

The result of the intersection is the number of pixels of the first image that have a corresponding
pixel in the second image which has the same characteristic (the same specific pattern in the case of
LBP histograms). So the more the considered images are similar, the higher the histogram intersection
is. The histograms being normalized by the number of pixels in the image, the value of this measure
varies between 0 and 1.

The Jeffrey distance between the histograms of two images Ii and Ij is defined as follows:

J(hi, hj) =
Q×D

∑
k=1

hi(k)log

 hi(k)
hi(k)+hj(k)

2

+ hj(k)log

 hj(k)
hi(k)+hj(k)

2

 . (4)

As all distance measures, the value of the Jeffrey distance is low when the images are close to each
other in the histogram space.

In order to clarify the adaptation of the different scores to histogram selection, we summarize the
terms and the scores used in this section in Table 1 where formulas are applied to evaluate the score of
the rth histogram. The left column groups feature selection terms while the right one summarizes the
corresponding histogram selection adaptation. Readers can refer to this table while reading the next section.

3.1. Adapted Variance Score

Using the Jeffrey distance defined in Equation (4), we extend the Variance score of Equation (1) in
order to select histograms rather than features. The Adapted Variance score AVr of the histogram hr is
defined as follows:

AVr =
1
N

N

∑
i=1

J2
(

hr
i , h

r
)

, (5)

where h
r

is the mean histogram that is evaluated by averaging all the bins of the histogram hr across
the N images: h

r
=
(

h
r
(1), . . . , h

r
(k), . . . , h

r
(Q)

)
, with h

r
(k) = 1

N ∑N
i=1 hr

i (k).
The histograms are sorted according to the decreasing order of AVr in order to select the most

relevant ones.
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Table 1. Summary of the terms and the scores used in feature selection and their corresponding
histogram selection adaptation.

Feature Selection Histogram Selection

Dataset Dataset of N color texture images defined
in a D-dimensional feature space

Dataset of N color texture images defined in a (Q× D)-dimensional
histogram space

Data matrix X =
(
xr

i
)
; i = 1, . . . , N; r = 1, . . . , D

xr
i is the rth feature value of the ith image Ii

H =
(
hr

i
)
; i = 1, . . . , N; r = 1, . . . , D

hr
i is the rth histogram extracted from the ith image Ii

Row xi =
(
x1

i , . . . , xD
i
)

hi =
[
h1

i . . . hr
i . . . hD

i
]

with hr
i =

(
hr

i (1), . . . , hr
i (k), . . . , hr

i (Q)
)

Column fr =
(
xr

1, . . . , xr
N
)T hr =

[
hr

1 . . . hr
i . . . hr

N
]T

Selection The most discriminant features fr among
the D available ones

The most discriminant histograms hr among the D available ones

Distance
(

xr
i − xr

j

)2
is the squared Euclidean

distance between the two images Ii and
Ij using the considered feature fr

J2(hr
i , hr

j ) is the squared Jeffrey distance between the two images Ii and
Ij using the considered histogram hr

J(hr
i , hr

j ) = ∑Q
k=1 hr

i (k)log

(
hr

i (k)
hr

i (k)+hr
j (k)

2

)
+ hr

j (k)log

(
hr

j (k)
hr

i (k)+hr
j (k)

2

)
Similarity sij evaluates the similarity between the

images Ii and Ij in the D-dimensional
input space

sij = exp
(
−‖xi−xj‖2

2t2

)
S(hi, hj) evaluates the similarity between the images Ii and Ij in the
(Q× D)-dimensional input space using the histogram intersection

S(hi, hj) = ∑Q×D
k=1 min

(
hi(k), hj(k)

)

Mean µr = ∑N
i=1 xr

i
N hr

=
(

h
r
(1), . . . , h

r
(k), . . . , h

r
(Q)

)
with h

r
(k) = 1

N ∑N
i=1 hr

i (k)

Variance Score Vr = 1
N ∑N

i=1
(
xr

i − µr)2 AVr = 1
N ∑N

i=1 J2
(

hr
i , hr

)
Degree di = ∑N

j=1 sij Di = ∑N
j=1 S(hi, hj)

Weighted average f
r
= ∑N

i=1 xr
i di

∑N
i=1 di

ar = (ar(1), . . . , ar(k), . . . , ar(Q)) with ar(k) = ∑N
i=1 hr

i (k)Di

∑N
i=1 Di

Laplacian Score Lr =
∑N

i=1 ∑N
j=1

(
xr

i−xr
j

)2
sij

∑N
i=1

(
xr

i− f
r
)2

di

ALr =
∑N

i=1 ∑N
j=1 J2(hr

i ,hr
j )S(hi ,hj)

∑N
i=1 J2(hr

i ,ar)Di

3.2. Adapted Laplacian Score

Using the Jeffrey distance and the intersection similarity measure defined in Equations (3) and (4),
we extend the Laplacian score of Equation (2) in order to select the most discriminant histograms.
The Adapted Laplacian score ALr of the histogram hr is defined as follows:

ALr =
∑N

i=1 ∑N
j=1 J2(hr

i , hr
j )S(hi, hj)

∑N
i=1 J2(hr

i , ar)Di
. (6)

The degree Di of the image Ii is defined by: Di = ∑N
j=1 S(hi, hj) and ar is the weighted histogram

average: ar = (ar(1), . . . , ar(k), . . . , ar(Q)), with ar(k) = ∑N
i=1 hr

i (k)Di

∑N
i=1 Di

.

As for feature selection using the Laplacian score, the histograms are sorted according to the
ascending order of ALr in order to select the most relevant ones.

4. LBP Histogram Selection for Color Texture Classification

The adapted scores previously presented are used in a LBP histogram selection approach described
in this section (see Section 4.2). The candidate color LBP histograms are first presented.

4.1. Candidate Color Texture Descriptors

The LBP operator is one of the most successful descriptor used to characterize texture images
due to its ease of implementation, its invariance to monotonic illumination changes, and its low
computational complexity. Many variants of the original LBP operator have been proposed in the
literature since Ojala’s original definition [12]. The goal of this paper being to reveal the relevance
of the proposed histogram selection scores, no further sophisticated texture descriptors are needed.
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That is the reason why the color textures are here characterized thanks to the EOCLBP histograms,
which are a simple extension to color of the original LBP operator. Obviously, the classification results
are expected to be improved using more elaborated descriptors, such as the Improved Opponent Color
LBP [34] or the Median Robust Extended LBP for example [35], which is a gray level descriptor that
has obtained the best overall performance on thirteen texture image sets and which could be extended
to color.

To compute the EOCLBP histograms, each image is first coded in a 3-dimensional color space,
denoted here C1C2C3. The D = 9 LBP histograms are then computed from the so-coded images:
Three within-component LBP histograms ((C1, C1), (C2, C2), and (C3, C3)) and six between-component
LBP histograms ((C1, C2), (C2, C1), (C1, C3), (C3, C1), (C2, C3), and (C3, C2)) are extracted from each
image. As do Ojala et al. when they introduce the original LBP operator, the 3× 3 pixel neighborhood
(P = 8 neighbors) is here considered. A color texture is thus represented by a (9× 256)-dimensional
feature space.

It is well-known that the performance of a classifier is generally dependent on the dimension
of the feature subspace due to the curse of dimensionality [36]. To reach a satisfying classification
accuracy while decreasing the computation time, we propose to reduce the number of candidate
LBP histograms by selecting the most discriminating ones thanks to the histogram selection scores
previously presented.

4.2. Histogram Selection

To evaluate a supervised color texture classification scheme, it is usual to divide the considered
database into a learning and a testing image subset. The learning subset is used to train the classifier
during the learning stage, whereas the testing subset is used during the classification stage to evaluate the
performances of the proposed method. In the histogram selection framework, the learning stage aims to
build a low dimensional discriminating subspace thanks to labelled or unlabelled training data.

Different models are proposed in order to evaluate the relevance of the candidate subspaces [37].
The wrapper model uses the classification accuracy as discriminating power of the candidate subspaces.
When a classifier such as the nearest neighbor is considered, it involves to decompose the learning
subset into a training and a validation subsets. Although this model is time consuming and
classifier-dependent, it gives good results and determines easily the dimension of the selected subspace
by searching the best classification accuracy. On the contrary, filter models evaluate the relevance
of the candidate subspaces without classifying the images. They are less time consuming but the
determination of the dimension of the subspace to be selected is not so easy. To obtain a good
compromise between dimension selection, computation time and classification result, embedded models
are preferred [38]. These approaches combine a filter model to determine the most discriminating
subspaces at different dimensions and a wrapper model to determine the dimension of the selected
subspace [6].

The approach used in this paper is an embedded histogram selection scheme which requires to
split up the initial image database in a training, a validation and a testing image subset, according to a
holdout decomposition. During the learning stage, candidate histograms are generated from training
images and ranked with respect to a score which measures the efficiency of each candidate histogram.
This score can be computed without considering the class label of the images like the unsupervised
selection AV-score and AL-score or by taking the information about the class distribution into account,
like the ASL-score and the ICS-score do.

Once the score has been computed for each of the D candidate histograms, a ranking is performed.
The candidate subspaces—composed, at the first step, of the histogram with the best score, at the
second step, of the two first ranked histograms and so on—are then evaluated to determine the relevant
histogram subspace. For this purpose, a classifier operates in each candidate subspace in order to
classify the validation images. For each subspace dimension d, the classification accuracy is estimated
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as the percentage of the validation images that have been correctly classified. This rate of well-classified
validation images is denoted Rd.

The dimension d̂ of the selected subspace is the one for which the value of Rd is the highest:

d̂ = Q× argmax
1≤d≤D

Rd. (7)

During the classification stage, the relevant histograms previously selected are computed for each
testing image and compared to the training images in the selected histogram subspace to determine
the testing image label. The purpose of this paper being to show the contribution of the two new
histogram selection scores, independently of the considered classifier, its parameters and its metric,
the nearest neighbor classifier associated with the histogram intersection as a similarity measure is
here considered.

5. Experiments

In this section, the proposed histogram selection scores are compared thanks to three benchmark
color texture image sets: Outex-TC-00013, USPTex, and NewBarkTex.

Outex-TC-00013 is composed of 68 color texture images acquired under controlled conditions by
a 3-CCD digital color camera and the size of which is 746× 538 pixels [39]. Each of these 68 textures
is split up into 20 128× 128 disjoint sub-images. Among these 1360 sub-images, 680 are used for the
training subset and the remaining 680 are considered as testing images. The Outex-TC-00013 image
test suite can be downloaded at http://www.outex.oulu.fi/index.php?page=classification.

USPTex set is a more recent database [40]. It contains 191 natural color textures acquired under
an unknown but fixed light source. As for Outex-TC-00013, these images are split up into 128× 128
disjoint sub-images. Since the original image size is here 512 × 384 pixels, this makes a total of
12 sub-images by a texture. For our experiments, this initial dataset of 2292 sub-images is split up in
order to build a training and a testing image subset: 6 images are considered for the training and the
6 others are used as testing images. This decomposition is available at https://www-lisic.univ-littoral.
fr/~porebski/USPtex.zip.

The Barktex database includes six tree bark classes, with 68 images per class [41]. Even if the
number of classes of this database is limited to six, the textures of these different classes are close
to each other and their discrimination is not easy. To build the NewBarkTex set, a region of interest,
centered on the bark and whose size is 128 × 128 pixels, is first defined. Then, four sub-images
whose size is 64× 64 pixels are extracted from each region. We thus obtain a set of 68× 4 = 272
sub-images per class. To ensure that color texture images used for the training and the testing images
are less correlated as possible, the four sub-images extracted from a same original image all belong
either to the training subset or to the testing one [42]: 816 images are thus used as training images
and the remaining 816 as testing images. The NewBarkTex image test suite can be downloaded at
https://www-lisic.univ-littoral.fr/~porebski/NewBarkTex.zip.

These sets do not require to consider specific illuminant or rotation invariant texture descriptors
since the goal of this paper is to reveal the contribution of the proposed histogram selection scores
independently of the texture descriptor invariance to the observation conditions.

Let us note that the considered texture benchmark databases are composed of only two image
subsets according to a holdout evaluation method, whereas the considered histogram selection scheme
needs three subsets as explained in Section 4.2. We thus propose to use one subset as the training subset
and the second both as the validation and testing subset to evaluate the performances of the proposed
scores. Therefore, the dimensionality of the selected feature space will be ideally determined, and the
classification results can be interpreted as optimistic. This solution was nevertheless chosen in order to
achieve the comparison with other works using the same split into training and testing subsets.

Moreover, in order to evaluate the impact of the used color space, four color spaces are considered
for experiments: RGB, YUV, I1 I2 I3, and HSV. These color spaces are respectively representative of

http://www.outex.oulu.fi/index.php?page=classification
https://www-lisic.univ-littoral.fr/~porebski/USPtex.zip
https://www-lisic.univ-littoral.fr/~porebski/USPtex.zip
https://www-lisic.univ-littoral.fr/~porebski/NewBarkTex.zip
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the four color space families (the primary spaces, the luminance-chrominance spaces, the independent
color component spaces, and the perceptual spaces) and do not require to know illumination conditions
like the Lab color space for example [4].

Section 5.1 presents a comparison of the performances achieved by the proposed histogram
selection scores. An analysis of the histogram rank is then done (cf. Section 5.2). Finally, in Section 5.3,
the classification results obtained by the proposed approach are compared with the state of the art.

5.1. Comparison of the Histogram Selection Scores

In this section, four histogram selection scores are compared on Outex-TC-00013, USPTex, and
NewBarkTex sets:

• the unsupervised Adapted Variance score (AV-score),
• the unsupervised Adapted Laplacian score (AL-score),
• the Adapted Supervised Laplacian score (ASL-score) proposed by Kalakech [28],
• and the supervised Intra-Class Similarity score (ICS-score) proposed by Porebski [27].

Figures 1–3 show the rate Rd of well-classified validation images according to the number d of
ranked histograms on Outex-TC-00013, USPTex, and NewBarkTex sets, respectively, and for each
considered color space.
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Figure 1. Classification accuracy Rd according to the number d of ranked histograms on Outex-TC-00013.
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Figure 2. Classification accuracy Rd according to the number d of ranked histograms on USPTex.
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Figure 3. Classification accuracy Rd according to the number d of ranked histograms on NewBarkTex.

These figures show that the accuracy obtained thanks to the unsupervised AL-score globally
outperforms the results obtained by the AV-score, for the three databases and whatever the considered
color space. In the same way, the ASL-score outperforms the ICS-score in the supervised context.
These results confirm the high performances obtained thanks to the Laplacian scores in the context of
feature selection [8]. For histogram selection, the interest of the similarity term to capture the intrinsic
properties of the data is also demonstrated.
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These figures also show that the ASL-score globally gives the highest accuracy, followed very
closely by the unsupervised AL-score. These scores reach a high accuracy with a lower dimensional
histogram subspace. The unsupervised AL-score, which is computed without considering the class
label of the images, globally outperforms the supervised ICS-score, which takes the information about
the class distribution into account. This confirms again the relevance of the similarity matrix used in
the Laplacian scores to perform the selection.

Tables 2–4 show the accuracies Rd̂ obtained with the d̂-dimensional selected LBP histogram
subspaces, by using the different supervised and unsupervised scores on Outex-TC-00013, USPTex,
and NewBarkTex sets, respectively. The accuracy reached without performing any color LBP histogram
selection is also presented. The bold values represent the best rates obtained with each color space and
the boxed values indicate the best rate obtained for each color texture set.

Table 2. Accuracy Rd̂ (%) reached with the d̂-dimensional selected local binary pattern (LBP) histogram
subspace, according to the different supervised and unsupervised scores on the Outex-TC-00013 set
(the dimension of the histogram space is D×Q = 9× 256 without selection).

AV AL ASL ICS Without
Score Score Score Score Selection

Rd̂ d̂ Rd̂ d̂ Rd̂ d̂ Rd̂ d̂ R

RGB 93.25% 8 93.38% 8 93.38% 8 92.94% 9 92.94%
YUV 89.56% 9 91.03% 7 91.03% 7 89.56% 9 89.56%
I1 I2 I3 88.67% 8 88.82% 8 88.97% 6 88.97% 8 88.68%
HSV 90.44% 9 91.91% 5 91.91% 5 91.03% 8 90.44%

Table 3. Accuracy Rd̂ (%) reached with the d̂-dimensional selected LBP histogram subspace, according
to the different supervised and unsupervised scores on the USPTex set (the dimension of the histogram
space is D×Q = 9× 256 without selection).

AV AL ASL ICS Without
Score Score Score Score Selection

Rd̂ d̂ Rd̂ d̂ Rd̂ d̂ Rd̂ d̂ R

RGB 89.53% 9 90.92% 5 91.27% 4 90.58% 7 89.53%
YUV 76.79% 9 93.19% 3 93.19% 3 93.19% 3 76.79%
I1 I2 I3 75.31% 9 92.06% 3 92.06% 3 92.06% 3 75.31%
HSV 83.25% 9 90.40% 3 90.40% 3 88.92% 5 83.35%

Table 4. Accuracy Rd̂ (%) reached with the d̂-dimensional selected LBP histogram subspace, according
to the different supervised and unsupervised scores on the NewBarkTex set (the dimension of the
histogram space is D×Q = 9× 256 without selection).

AV AL ASL ICS Without
Score Score Score Score Selection

Rd̂ d̂ Rd̂ d̂ Rd̂ d̂ Rd̂ d̂ R

RGB 73.16% 9 81.37% 4 81.37% 4 81.37% 4 73.16%
YUV 71.81% 9 79.17% 7 79.17% 7 79.17% 7 71.81%
I1 I2 I3 71.68% 9 79.41% 7 79.41% 7 79.41% 7 71.69%
HSV 70.59% 9 81% 3 81% 3 81% 3 70.59%

These tables confirm the interest of selecting LBP histograms: The selection improves the
classification accuracy by on average 0.52% on OuTex, 7.70% on USPTex and 6.32% on BarkTex,
while reducing the number of considered histograms. We can also see that the performances reached
thanks to the different scores are very close to each other, especially for the OuTex and USPTex
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databases. For the color space that gives the best rates (RGB for Outex-TC-00013 and NewBarkTex and
YUV for USPTex), several scores give the higher performances and the ASL and the AL scores always
appear among the best scores.

For NewBarkTex which is a more challenging set, the AL, ASL, and ICS scores give exactly the
same best accuracy with the same optimal dimension. The difference between these three scores
appears more for subspaces with a little dimension: From Figure 3, we can notice that the ASL and the
AL scores seek faster the better histograms specially for the YUV and I1 I2 I3 color spaces.

It is also interesting to notice that the unsupervised AL-score appears among the best scores
10 times out of 12. It outperforms the other unsupervised AV-score and even the supervised ICS score.
Its performances are remarkable since they are similar or very close to those reached by ASL even
though it does not consider the class label of the images.

5.2. Comparison of the Histogram Ranks

In this section, an analysis of the histogram ranking is done. Table 5 shows the histogram
ranking obtained thanks the considered scores on Outex-TC-00013, USPTex and NewBarkTex sets.
The numbers 1, 2 and 3 represent the three within-component LBP histograms ((C1, C1), (C2, C2),
and (C3, C3)), and the six between-component LBP histograms ((C1, C2), (C2, C1), (C1, C3), (C3, C1),
(C2, C3), and (C3, C2)) are respectively numbered 4, 5, 6, 7, 8, and 9.

Table 5. Histogram ranks using the proposed scores with the different color spaces and for the
three databases.

OuTex USPTex BarkTex

AV-score 2 4 3 6 8 7 1 5 9 5 4 6 8 7 9 2 3 1 3 7 6 8 4 2 5 1 9
AL-score 9 1 5 8 7 6 3 4 2 1 3 2 9 7 8 6 4 5 9 1 5 2 4 8 6 7 3

RGB ASL-score 9 1 5 8 7 6 4 3 2 1 2 3 7 4 9 6 8 5 9 5 1 2 4 8 6 7 3
ICS-score 8 7 1 9 5 3 4 2 6 3 1 2 8 7 9 4 5 6 9 1 5 2 8 4 6 7 3

AV-score 8 4 6 2 7 3 1 9 5 8 7 9 4 5 6 1 3 2 8 6 4 7 2 3 9 5 1
AL-score 5 9 1 3 7 6 2 4 8 3 2 1 4 5 6 7 9 8 3 1 2 5 9 7 4 6 8

YUV ASL-score 1 9 5 6 8 3 7 2 4 3 2 1 4 5 6 9 7 8 3 2 7 4 1 5 9 6 8
ICS-score 3 6 7 8 2 1 4 9 5 3 2 1 5 4 6 9 7 8 3 2 7 4 1 5 9 6 8

AV-score 8 6 7 4 3 2 1 5 9 8 7 9 5 6 4 1 2 3 8 6 4 7 2 5 3 9 1
AL-score 9 5 1 2 4 3 7 6 8 3 1 2 5 4 6 9 7 8 3 2 1 5 9 7 4 6 8

I1 I2 I3 ASL-score 1 9 5 6 8 2 3 4 7 2 3 1 6 4 5 9 7 8 1 3 2 5 9 7 4 6 8
ICS-score 2 4 3 6 7 8 1 9 5 3 2 1 5 4 6 9 8 7 3 2 7 4 1 5 9 6 8

AV-score 3 2 6 8 7 4 1 5 9 6 4 7 9 5 8 1 2 3 8 7 2 4 6 3 1 9 5
AL-score 9 5 1 7 4 3 2 8 6 3 2 1 8 7 4 5 9 6 5 9 1 4 2 3 6 7 8

HSV ASL-score 1 5 9 8 6 7 4 3 2 2 3 1 7 4 9 8 6 5 5 1 9 4 2 3 6 7 8
ICS-score 7 8 6 1 3 4 9 5 2 3 2 7 4 1 8 5 9 6 5 1 9 6 2 4 3 8 7

Each row of this table shows the histogram ranking in the considered color space using the
specified histogram selection score, for the three image sets. For example the first row shows that,
in the RGB color space, using the AV-score and the OuTex database, the first selected histogram is the
number 2 ((C2, C2)), followed by the histogram 4 ((C1, C2)), . . . and finally the histogram 9 ((C3, C2)) is
the last selected. The bold values correspond to the selected histogram subspace for which the best
accuracy is achieved for each of the three color texture sets.

This table shows that the histogram ranking is very variable according to the considered color
space or score. This clearly shows the interest of performing a histogram selection, since we can not a
priori judge the most relevant histogram subspace, even for a same database.
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5.3. Comparison with the State of the Art

In this section, we compare the accuracy obtained using the proposed unsupervised AL-score
with the results reached in the state of the art on the three considered sets. For a fair comparison,
these sets have the same experimental protocol (number of classes, image size, number of images for
each class, total number of images, and accuracy evaluation method), and only the works that apply a
single color space strategy are mentioned. In addition to the nearest neighbor classifier, we propose
also to use the SVM classifier during the classification stage of our approach since the best accuracy
reached in the state of the art on Outex-TC-00013 and NewBarkTex with a single color space strategy
has been reached thanks to this classifier. A one versus one SVM classifier with a linear kernel is here
considered. The results are summarized in Tables 6–8.

Table 6. Comparison between the classification accuracies reached with the Outex-TC-00013 set.

Features Color Space Classifier R (%)

3D-adaptive sum and difference histograms [9] ISH SVM 95.8
3D color histogram [43] HSV 1-NN 95.4
Fractal descriptors [44] RGB LDA 95.0

EOCLBP with selection thanks to the AL-score RGB SVM 94.9
Haralick features [5] RGB 5-NN 94.9

3D color histogram [45] RGB 3-NN 94.7
3D color histogram [46] I-HLS 1-NN 94.5
Haralick features [11] RGB 1-NN 94.1

EOCLBP/C [47] HSV SVM 93.5
EOCLBP with selection thanks to the AL-score RGB 1-NN 93.4

EOCLBP with selection thanks to the ASL-score [28] RGB 1-NN 93.4
EOCLBP [27] RGB 1-NN 92.9

Reduced Size Chromatic Co-occurrence Matrices [4] HLS 1-NN 92.5
Between color component LBP histogram [43] RGB 1-NN 92.5

Color histogram + LBP-based features [48] RGB 1-NN 90.3
Wavelet coefficients [49] L∗a∗b∗ BDC 89.7

Autoregressive models + 3D color histogram [46] I-HLS 1-NN 88.9
Halftoning local derivative pattern + Color histogram [50] RGB 1-NN 88.2

Autoregressive models [46] L∗a∗b∗ 1-NN 88.0
Within color component LBP histogram [43] RGB 1-NN 87.8

Mixed color order LBP [51] RGB 1-NN 87.1
Features from wavelet transform [52] RGB 7-NN 85.2
Color contrast occurrence matrix [53] RGB 1-NN 82.6

Fuzzy aura matrices [54] RGB 1-NN 80.2

SVM: Support Vector Machine, LDA: Linear Discriminant Analysis, BDC: Bayes Decision Classifier.

Table 7. Comparison between the classification accuracies reached with the USPTex set.

Features Color Space Classifier R (%)

Color histogram + LBP-based features [48] RGB 1-NN 95.9
Local jet + LBP [55] Luminance LDA 94.3

Halftoning local derivative pattern + Color histogram [50] RGB 1-NN 93.9
EOCLBP with selection thanks to the AL-score YUV 1-NN 93.2
EOCLBP with selection thanks to the AL-score YUV SVM 87.9

Fractal descriptors [56] Luminance LDA 85.6
Mixed color order LBP [51] RGB 1-NN 84.2
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Table 8. Comparison between the classification accuracies reached with the NewBarktex set.

Features Color space Classifier R (%)

Dominant and minor sum and difference histograms [57] RGB SVM 89.6
EOCLBP with selection thanks to the AL-score RGB SVM 84.9

Fine Texture and Coarse Color Features [58] HSV NSC 84.3
3D-adaptive sum and difference histograms [9] RGB SVM 82.1
EOCLBP with selection thanks to the AL-score RGB 1-NN 81.4

EOCLBP with selection thanks to the ICS-score [27] RGB 1-NN 81.4
EOCLBP with selection thanks to the ASL-score [28] RGB 1-NN 81.4

Mixed color order LBP [51] RGB 1-NN 77.7

NSC: Nearest Subspace Classifier.

From these tables, we can see that the second best accuracy result obtained on the Outex-TC-00013
set (95.4%) is achieved thanks to a simple 3D color histogram, although it only characterizes the color
distribution within the HSV color space, and does not take into account the spatial relationships
between neighboring pixels, as a color texture feature should. This inconsistency is due to the fact
that the Outex-TC-00013, as well as the USPTex sets, present a major drawback: The partitioning
used to build these two sets consists in extracting the training and the testing subimages from a same
original image. However, such a partitioning, when it is combined with a classifier such as the nearest
neighbor classifier, leads to biased classification results [42]. Indeed, testing images are spatially
close to training images. They are thus correlated and a simple 3D color histogram reaches a high
classification accuracy [43]. For the NewBarktex set, the training and the testing subimages come from
different original images to ensure that color texture images are less correlated as possible. The analysis
of the results is thus more efficient and interpretable on this image set. The best accuracy rate (89.6%)
is obtained thanks to the dominant and minor sum and difference histograms [57]. Selecting LBP
histograms thanks to our proposed AL-score allows to get close to this highest rate, particularly
when a SVM classifier is considered to classify the testing images. In this case, the classification
accuracy reaches the promising result of 84.9%. This additional experiment highlights the merit of the
unsupervised AL-score when it is associated with the SVM classifier.

6. Conclusions

We have proposed to adapt the traditional unsupervised feature selection scores in order to rank
and select LBP histograms for color texture classification: The Adapted Variance (AV-score) and the
Adapted Laplacian (AL-score) scores have thus been presented.

For each one of the nine LBP histograms extracted from a color texture, a score is assigned using
one of the proposed adapted scores. The histograms are then ranked in order to select the most
discriminant ones and thus build a low dimensional relevant subspace, in which a classifier operates.

Experiments on Outex-TC-00013, USPTex and NewBarkTex sets have shown the interest of
performing a LBP histogram selection before classifying the different images. This selection improves
the classification accuracy while reducing the dimension of the histogram subspace. The AL-score
outperforms the AV-score and gives performances comparable or even better than the supervised
ASL-score and ICS-score.

For future research directions, we propose to associate the AL-score with a multi color space
approach [29]. Moreover, an additional experimentation can be realized in the short term perspective:
Similarity can be derived from a given distance by kernelization (exponential with Euclidean distance
in the conventional approach of Laplacian score). As the Jeffrey divergence can also be kernelized,
it would be interesting to study the trend of the results considering a kernelized Jeffrey measure as
similarity measure and, more generally, the impact of the distance and similarity measure on the
classification performances.
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