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Abstract: Articulated shapes are successfully represented by structural representations which are
organized in the form of graphs of shape components. We present an alternative representation
scheme which is equally powerful but does not require explicit modeling or discovery of structural
relations. The key element in our scheme is a novel multi scale pixel-based distinctness measure
which implicitly quantifies how rare a particular pixel is in terms of its geometry with respect to all
pixels of the shape. The spatial distribution of the distinctness yields a partitioning of the shape into
a set of regions. The proposed representation is a collection of size normalized probability distribution
of the distinctness over regions over shape dependent scales. We test the proposed representation on
a clustering task.

Keywords: 2D shapes; shape representation; Robust Principal Component Analysis (RPCA);
t-Distributed Stochastic Neighbor Embedding (t-SNE)

1. Introduction

Shape is a distinguishing attribute of an object frequently utilized in image processing and
computer vision applications. Measuring the similarity of objects via their shapes is a challenging
task due to high within-class and low between-class variations. Within-class variations may be due to
transformations such as rotation, scaling, and motion of limbs or independent motion of parts called
articulations. Among within-class variations, articulations pose a particular challenge in the sense that
articulations can not be modeled as global transformation groups. Hence, one can not define proper
global descriptors that are invariant to articulations. Nevertheless, shapes of objects that articulate
(referred to as articulated shapes) can be successfully represented by structural representations which
are organized in the form of graphs of shape components. These components can be branches or critical
points of the shape skeleton, subsets of the shape interior (commonly referred as parts), or fragments
of shape boundary (commonly referred as contour fragments). Among many works in the literature
that address shape similarity via structural representations, some examples are [1–8]. Skeleton based
structural representations are the the most common ones; extensive literature reviews can be found in
several works, e.g., [2,9].

In this work, we develop a novel representation scheme for articulated shapes. The representation
scheme is not structural, i.e., it does not explicitly model components and their relationships. Our main
argument against structural representations is that it is challenging to extract components and
their structural relationships. Moreover, measuring similarity of shapes through their structural
representations requires finding a correspondence between a pair of graphs, which is an intricate
process necessitating advanced algorithms.

The strength of our representation lies in two factors. First, multiple characterizations of the shape
are extracted based on descriptive and complementary shape scales. Second, each point in the shape
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communicates to the remaining points in the shape, thereby gaining an emergent role with respect to
the remaining. We call this emergent role distinctness. The distinctness yields a partitioning of the shape
into a set of regions, and the shape regions are described via size normalized probability distribution
of the distinctness associated with their constituent points. Ultimately, our final representation is
a collection of size normalized probability distribution of the distinctness over regions and over scales.

In order to evaluate the new representation, we use it for shape clustering. The clustering results
obtained on three articulated shape datasets show that our method performs comparable to state of
the art methods utilizing component graphs or trees, even though we are not explicitly modeling
component relations.

Clustering or unsupervised grouping of shapes is a fundamental problem addressed in the
literature. In [10], hierarchical clustering is applied where the closest pair of clusters is merged
at each step. A common structure skeleton graph is constructed for each cluster and the distance
between the clusters is determined by matching their associated graphs. In [11], spectral clustering is
employed for fusing the similarity measures obtained via skeleton-based and contour-based shape
descriptors. In [12], the distance of shapes is measured using a new shape descriptor obtained by
extending a contour-based descriptor to the shape interior and multi-objective optimization is applied
to determine both the number of clusters and an optimal clustering result. In [13], shape is represented
via the distances from the centroid of the shape to the boundary points and a nonlinear projection
algorithm is applied to group together similar shapes. In [14], geodesic path constructed between
differential geometric representations of the shape boundaries is used for hierarchical clustering of
shapes. In [15], elastic properties of the shape boundaries are considered and clustering is applied
based on the elastic geodesic distance with dynamic programming alignment. In [16], a new distance
measure that is defined between a single shape and a group of shapes is utilized in a soft k-means like
clustering of shapes.

2. The Method

2.1. The Proposed Representation and Its Construction

We explain the process in four steps. First, we construct a multi-scale feature for each pixel
where the scales are determined as multiples of a shape dependent number ρ? (Section 2.1.1). As we
consider a large number of scales (say 30), this gives a high dimensional representation. The values at
all pixels are computed simultaneously via a relaxation procedure meaning that the pixels influence
each other. In this respect, ρ? and its multiples implicitly determine the extent of interaction among
neighboring pixels.

Second, we vary how we select the shape dependent number ρ? in order to obtain several high
dimensional representations (Section 2.1.2). The motivation here is to robustly capture the proper
shape scale. A novelty in the way we vary ρ? is the introduction of two complementary base shape
scales (Section 2.1.2).

Third, at each ρ?, we form feature matrix D ∈ Rm×30, where each row represents the feature vector
computed for a shape pixel and m is the total number of shape pixels. D is later decomposed into
a low-rank matrix L and a sparse matrix S. The norm of the corresponding vector in the matrix S is the
key element for our representation, namely distinctness (of the respective shape pixel) (Section 2.1.3).

Fourth, spatial distribution of the distinctness is used to partition the shape into a set of regions
and region-wise normalized distinctness density functions (probability density for distinctness)
are estimated (Section 2.1.4). The collection of regional distinctness density functions form the
final representation.

2.1.1. Construction of the High-Dimensional Feature Space

Consider a planar shape discretized using a grid of dimension n1 × n2. We construct
a 30-dimensional feature vector f x,y ∈ R30 for each shape pixel (x, y), where 1 ≤ x ≤ n1 and 1 ≤ y ≤ n2.
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In order to compute the feature component at each slot k for k = 1, 2, . . . , 30, we first solve a linear
system of equations in which the feature value of each shape pixel ux,y

k is related with the feature values
of its four-neighboring pixels via (1) and we then normalize the obtained values as in (2).

ux,y
k =

ρk
2

4ρk
2 + 1

(
1 + ux−1,y

k + ux+1,y
k + ux,y−1

k + ux,y+1
k

)
(1)

f x,y
k =

ux,y
k

max
1≤x′≤n1,1≤y′≤n2

ux′ ,y′
k

(2)

ux,y
k is solved only for the shape pixels, and it is considered 0 for the pixels outside the shape. ρk is

a scalar parameter which controls the dependence between the feature value of each shape pixel and
the feature values of its four-neighbors.

In Figure 1 (left), we show the features computed for a one-dimensional signal using three
different values of ρk corresponding to 1/10, 1/5, and 1 multiples of the signal length. We normalize
each feature to have the maximum value of 1 (see Figure 1 (right)). We observe that the feature values
monotonically increase towards the center.

Figure 1. Features computed for a one-dimensional signal using three different values of the parameter
ρk (left) and normalized features (right).

By varying ρk, we obtain a collection of features each encoding a different degree of local
interaction between the shape pixels and their surroundings. We determine ρk for k = 1, 2, . . . , 30 as
ρk = k× ρ?/30, where ρ? represents the extent of the maximum interaction between the shape pixels
and their surroundings. We organize the 30 features for each pixel in the form of a matrix D ∈ Rm×30,
where m is the total number of shape pixels.

2.1.2. Complementary Shape Scales and Multiple High-Dimensional Feature Spaces

The question is how to select ρ?. In order to represent different shapes in a common feature space,
we should determine ρ? for each shape individually in terms of a shape scale. But, how do we compute
the proper shape scale? Our solution is to utilize two complementary base shape scales which are
related with thickness of the shape body and the maximum distance between the shape extremities.
The first scale R is computed as the maximum value of the shape’s distance transform, which gives
the distance of each shape point from the nearest boundary. The second scale G is computed as
the maximum value of the pairwise geodesic distances between the boundary points, where the
geodesic distance between a pair of points depends on the shortest path connecting them through the
shape domain.

As shown in Figure 2, R and G provide characteristic shape information which can be used to
define the extent of the local interactions between the shape pixels during the feature space construction.
We construct six different feature spaces, for which ρ? is selected as multiples of R or G.
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Figure 2. R and G correspond to the thickness of the shape body (red) and the maximum distance
between the shape extremities (blue), respectively.

2.1.3. Computing Distinctness

Recall that we organized the feature vectors in the form of a matrix D ∈ Rm×30, where each row
represents the feature vector computed for a shape pixel. The matrix D is decomposed into a low-rank
matrix L and a sparse matrix S via Robust Principal Component Analysis (RPCA), which seeks to
solve the following convex optimization problem:

min
L, S∈Rm×30

||L||∗ + λ ||S||1 such that L + S = D (3)

where ||.||∗ denotes the sum of the singular values of the matrix, ||.||1 is the sum of the absolute values of
all matrix entries, and λ is the weight of penalizing denseness of the sparse matrix S. Various algorithms
are proposed to solve the optimization problem in (3). We use the inexact augmented Lagrange
multipliers method for RPCA [17], which is efficient and highly accurate. We choose λ = 1/

√
m,

as suggested by the available implementation of [17].
The low rank component L is expected to encode correlations among the shape pixels via their

feature values, whereas the sparse component S is expected to encode their discriminations as it
contains the residuals stemming from less frequent feature configurations. Thus, we define the
distinctness of each shape pixel as the norm of the corresponding vector in the matrix S. The shape
pixels whose feature components vary more are found to be more distinct.

The shape articulations are associated with larger distinctness since they are thinner compared to
the shape body and the constant value coming from the shape boundary is propagated faster in these
regions during the feature computation. We use these characteristics of the distinctness to partition
shapes into a set of regions.

2.1.4. The Final Representation

A simple thresholding based on the mean distinctness yields two disjoint sets. With the exception
of isolated tiny regions or thin strips near boundary, the two disjoint sets correspond to central
(below-mean) and peripheral (above-mean) regions, respectively. We will denote them with C and P.
At a large ρ?, P might be a single connected component. As ρ? decreases, C grows. The mean value
based thresholding readily provides quite an intuitive split of the shape domain.

For consistency, we need to eliminate above-mean locations that appear in the inner regions
and below-mean locations that occur in the outer regions. These are misclassified pixels: Whereas
the above-mean locations that appear in the inner regions are misclassified as belonging to P,
the below-mean locations that appear in the outer regions are misclassified as belonging to C.
Thus, we perform an adaptive morphological processing. Specifically, we sequentially dilate P and
then C by adaptively choosing the radius of the structuring element at each pixel as the shortest
distance of the pixel to the nearest boundary. Before the adaptive dilation, a pre-correction step to
correct misclassified the inner pixels is useful. This is because we are performing dilation on P before
C. In our implementation, we detected a misclassified component as the above-mean component of
which minimum distance to the boundary is more than a quarter of the shape radius R. The adaptive
dilation process corrects misclassified locations to a large extent. Whereas the adaptive dilation of P
removes below-mean components in P and merges nearby above-mean components, the adaptive
dilation of the new C (pixels surviving P dilation) merges nearby below-mean components, reducing
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the number of connected components in C. The dilation of C has a side effect. It generally causes the
split of P into subsets corresponding to different limbs. Of course due to boundary roughness (noise
or texture), the process may also create distractive small components.

Hence, a secondary correction process is further useful. The purpose is to eliminate very small
peripheral regions and to force the shape to have a single center unless it is composed of multiple
blobs of comparable size. In our implementation, in the the secondary correction process, below-mean
components that are smaller than 20% of the area of the largest below-mean component are marked as
peripheral, and above-mean components that are smaller than 1% of the shape area are marked as
central. In Figure 3, results for two ρ? values are shown. At the selected scales, surviving regions seem
to be quite intuitive.

Figure 3. Distinctness values (color coded) and the corresponding mean-value based partitioning (gray
vs. black) for three shapes via the feature spaces constructed for ρ? = 3R (top row) and ρ? = (1/2)G
(bottom row). As ρ? decreases, gray regions grow.

The final representation is a collection of regions-wise normalized density functions. A single
distribution is constructed for the central region, whereas separate distributions are constructed for
each of the surviving peripheral regions. The region-wise normalization is performed by making the
cumulative probability equal to the ratio of the respective region area to the total shape area. The scales
are determined by choosing ρ? as 2R, 3R, 4R, (1/1.5)G, (1/2)G, and (1/2.5)G. A demonstration
is given in Figure 4. Notice that ρ? values based on R are increasing as they are multiplied with
factors larger than 1, whereas ρ? values based on G are decreasing as they are divided. This is not
a coincidence: R corresponds to an inner shape scale implying the minimum extent of interaction
required between the shape pixels, whereas G corresponds to an outer scale implying the maximum
extent of interaction.

Figure 4. The final representation as a collection of size normalized probability distributions over
regions over six scales. The first distribution at each scale describes the central region. There is no
ordering between the remaining distributions describing the peripheral regions.
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2.2. Clustering Shapes

We use pairwise dissimilarities derived from our shape representation as features for clustering.
Let the number of shapes in the dataset be N. Then, N × N dissimilarity matrix (whose construction
is described in Section 2.2.1) enables to associate each shape with an N-dimensional feature vector of
which components denote pairwise dissimilarities between the respective shape and all the N shapes
in the dataset. We map all N N-dimensional feature vectors to a plane using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [18], which is a powerful dimensionality reduction tool. It captures the
local structure of the data points in the original dimension and maps them to nearby points in the
reduced dimension space.

In Figure 5, we show the t-SNE mapping result for the dataset [3] where the within category
variations are due to transformations such as rotation, scaling, and deformations of articulations.
We see that the shapes from the same category cluster together and the shapes from the similar
categories (e.g., horse and cat shapes) are close to each other.

Figure 5. t-SNE mapping of the shapes from the dataset [3] where the points with the same color
denote the shapes from the same category.

Given two-dimensional coordinates of the shapes obtained via t-SNE mapping, we once more
compute the pairwise distances; this time, between the points in the plane. Then we apply affinity
propagation [19] to partition the dataset into a number of clusters (which is chosen as equal to the
number of categories in the set). The affinity propagation is a relaxation procedure for exchanging
real-valued messages between the data points until a high-quality set of exemplars and corresponding
clusters gradually emerges. The default affinity is negated Euclidean distance. We experiment with
several other distances.

2.2.1. Measuring Pairwise Shape Dissimilarity

The dissimilarity between a pair of shapes at a given scale is defined as the cost of the optimal
assignment between the shape regions (using the normalized distinctness density functions). We use
Hungarian matching for solving the optimal assignment problem. We do not assume any relation
between the regions of each shape. Hungarian matching aims to find a one-to-one correspondence
between the regions of the two shapes leaving some regions unmatched. The cost of assigning two
regions is simply taken as the distance between their normalized density functions. The cost of leaving
a region unmatched is taken as the norm of its normalized density function. We experimented
with different distance metrics (Section 3), and the norm is computed suitably. For example, if the
metric is city block, the cost becomes the proportion of the unmatched parts area. We define the final
pairwise shape dissimilarity as a weighted average of the dissimilarities deduced from the six scales.
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The dissimilarities via the scales depending on R are weighted as three times the dissimilarities via the
scales depending on G. The non-uniform weighting is due to that R is more reliable than G, since the
shape body is a more stable structure compared to the articulations.

3. Experimental Evaluation

In order to evaluate clustering results, we used Normalized Mutual Information (NMI).
NMI measures the degree of agreement between the ground-truth category partition and the obtained
clustering partition by utilizing the entropy measure. Let nj

i denote the number of shapes in cluster
i and category j, ni denote the number of shapes in cluster i, and nj denote the number of shapes in
category j. Then, NMI can be computed as follows:

2 ∑I
i=1 ∑J

j=1

(
nj

i/N
)

log

( (
nj

i /N
)

(ni/N) (nj/N)

)
−∑I

i=1 (ni/N) log (ni/N)−∑J
j=1

(
nj/N

)
log
(
nj/N

) (4)

where I is the number of clusters, J is the number of categories, and N is the total number of shapes.
Notice that a high value of NMI indicates that the obtained clustering result matches well with the
ground-truth category partition. We experimented with three shape datasets [2,3,5]. These are the
most articulated datasets in the literature. The first dataset [3] consists of 14 shape categories each with
4 shapes, the second dataset [2] consists of 30 categories each with 6 shapes, and the third dataset [5]
consist of 50 categories each with 20 shapes.

The easiest method of estimating a probability density function is constructing a histogram;
an alternative is kernel density estimation (KDE). For comparing probability distributions, a proper
distance should be used. Nevertheless, for simplicity we will use city block distance. To make sure
that our choices for density estimation method and comparison metric are good, we performed
an experiment to compare the chosen combination against the remaining three alternatives. Of course,
for experiments, we also need to choose a metric for the final affinity propagation process.
We considered four different metrics, hence experimented with 2 × 2 × 4 = 16 settings for each
of the 3 datasets (yielding a total of 16× 3 = 48 NMIs (Table 1)). Results support the following
conclusions. First, for probability distribution estimation, there is no significant difference between
the two methods; hence, it is wiser to choose the simpler one, i.e., estimating via histogram (Observe
that NMI values only slightly decrease when kernel density estimation is used). Second, for histogram
comparison, city block distance is a better alternative. For histogram construction, the bin size is set
to 0.01.

A side observation is that all four tested metrics for the affinity propagation seemed to perform
comparably. In the next experiment, we enlarged the set of possibilities to 12. NMIs are reported in
Table 2. With the exception of Cosine distance, the metrics seemed to perform comparably.

Table 1. Comparing (HIS + City block) against the other three options. The experiment is repeated for
four varying choices of metric for affinity propagation.

ChebychevP EuclideanP

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

HIS + City block + p = 2 1.0000 0.9651 0.9203 1.0000 0.9553 0.9172
HIS + Euclidean + p = 2 1.0000 0.9464 0.8953 1.0000 0.9484 0.8958
KDE + City block + p = 2 1.0000 0.9476 0.9025 1.0000 0.9476 0.9053
KDE + Euclidean + p = 2 0.9453 0.9495 0.8817 0.9678 0.9454 0.8868

HIS + City block + p = 1 0.9839 0.9651 0.9205 1.0000 0.9651 0.9177
HIS + Euclidean + p = 1 0.9839 0.9367 0.8953 1.0000 0.9477 0.8941
KDE + City block + p = 1 1.0000 0.9553 0.9015 1.0000 0.9575 0.9027
KDE + Euclidean + p = 1 0.9453 0.9482 0.8872 0.9678 0.9482 0.8901
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Table 2. Normalized mutual information (NMI) values for 6× 2 = 12 different affinity propagation
distances.

p = 2 p = 1

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

EuclideanP 1.0000 0.9553 0.9172 1.0000 0.9651 0.9177
Standardized EuclideanP 0.9839 0.9528 0.9170 0.9839 0.9528 0.9129
MahalanobisP 0.9534 0.9528 0.9142 0.9534 0.9528 0.9091
City blockP 0.9839 0.9560 0.9102 0.9839 0.9651 0.9109
ChebychevP 1.0000 0.9651 0.9203 0.9839 0.9651 0.9205
CosineP 0.9031 0.8428 0.7530 0.9031 0.8504 0.7601

max 1.0000 0.9651 0.9203 1.0000 0.9651 0.9205
mean 0.9707 0.9374 0.8886 0.9681 0.9419 0.8885
std 3.7% 4.7% 6.7% 3.5% 4.5% 6.3%
std excluding CosineP 1.9% 0.5% 0.4% 1.7% 0.7% 0.5%

3.1. Comparison to State of the Art Methods

In Table 3, we compare NMIs of the state of the art methods of which performances are reported for
the considered datasets. The CSD (common structure discovery) [10] employs hierarchical clustering;
a common shape structure is constructed each time two clusters are merged into a single cluster.
Building a common shape structure requires matching skeletons. The method (skeleton+spectral) [11]
combines the skeleton path distance [4] with spectral clustering. The performance of these
two skeleton-based methods decreases for the third dataset which contains unarticulated shape
categories such as face category. For this data set, the highest performance is obtained via the
method (contour+spectral) [11] which uses the shape context descriptor [20]. As the shape context
descriptor [20] is not robust to articulations, its performance is lower for the highly articulated first
and second datasets. We also report averaged NMIs. In each of the two groups, the first column is the
ordinary average whereas the second and third are weighted averages. The weighting is according to
total number of categories and total number of shapes, respectively. Our distinctness based method
accurately clusters the first set. For the second and the third dataset, respectively, NMIs are at least
99% and 95% of the best score.

Table 3. Comparison of our clustering results with the state of the art methods using NMI. The best
scores are marked as bold. Red and blue colors in the last two rows indicate a clustering result of which
NMI is 99% and 95% of the best score.

Set 1 Set 2 Set 3 Avg (Set 1, Set 2) Avg (Set 1, Set 2, Set 3)

CSD [10] 0.9734 0.9694 0.8096 0.9714 0.9707 0.9703 0.9175 0.8850 0.8403
Skeleton+spectral [11] 0.9426 0.9746 0.9154 0.9586 0.9644 0.9670 0.9442 0.9383 0.9253
Contour+spectral [11] 0.9418 0.9264 0.9676 0.9341 0.9313 0.9301 0.9453 0.9506 0.9604
Skeleton+learning [21] - - 0.8722 - - - - - -
IDSC+Ncuts [10,22] 0.5660 0.5423 0.5433 0.5542 0.5498 0.5479 0.5505 0.5464 0.5442
Our method (Euclidean) 1.0000 0.9651 0.9177 0.9826 0.9762 0.9734 0.9609 0.9451 0.9283
Our method (Chebychev2) 1.0000 0.9651 0.9203 0.9826 0.9762 0.9734 0.9618 0.9465 0.9304

Notice that the method in the fifth row (combining Inner Distance Shape Context (IDSC) descriptor
IDSC [22] with normalized cuts) exhibits obviously inferior performance. The NMIs are taken from [10].
IDSC is not a structural method; the core idea is to build histogram descriptors from pairwise geodesic
distance measurements among all boundary points. The expectation is that geodesic distances will be
articulation invariant. There are also several other geodesic distance based shape descriptors, one of
which is the so called eccentricity transform [23]. To compare our distinctness based representation
to the geodesic distance based representation in [23], we performed 36 tests by varying the choice of
metric and the dataset. The results are summarized in in Table 4. Each reported statistics is estimated
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using 6 NMIs. There seems to be a clear performance difference between the two representations.
In order to make sure the observed difference in performance is significant in the sense that it can not be
explainable via within group variation as in use of different metric (as in Table 2), we performed p-test.
Based on the p-test, the probability of observing the observed difference in mean due to within group
variance is calculated to be zero (Table 5). Dataset specific σ values are obtained by pooling the standard
deviations for distinctness (Table 2) and for eccentricity. We used the available implementation of
the eccentricity transform given in [24] and selected the parameters as kh = 200, ks = 100, w = 0.94.
These are the parameter values reported in [23].

An articulated object is a union of parts and junctions. In the literature, some authors define
articulations as transformations that are rigid when restricted to a part. Bending invariant geodesic
distance based measures seem to work in a restricted setting when joints are small compared to parts
and part transformation are rigid. Figure 6 shows few sample shapes on which the geodesic distance
based methods (e.g., [22,23]) are tested.

Table 4. Distinctness versus eccentricity [23]. Each reported statistics is estimated using 6 NMIs. In
each comparison, the higher performance is marked as bold.

Set 1 Set 2 Set 3

Min Max Mean Min Max Mean Min Max Mean

Eccentricity p = 2 0.7332 0.8227 0.7985 0.7588 0.8599 0.8360 0.6143 0.7457 0.7177
Distinctness p = 2 0.9031 1.0000 0.9707 0.8428 0.9651 0.9374 0.7530 0.9203 0.8886

Eccentricity p = 1 0.7309 0.8227 0.7981 0.7582 0.8620 0.8406 0.6088 0.7497 0.7180
Distinctness p = 1 0.9031 1.0000 0.9681 0.8504 0.9651 0.9419 0.7601 0.9205 0.8885

Table 5. p-test for NMI differences. Pooled standard deviations are used.

99% CI 99% CI

Min ∆ Max ∆ Mean ∆ (12 Sample) (1 Sample) p-Value (Mean)

set 1 (σ = 0.0361) 0.131 0.217 0.171 0.024 0.084 0.000
set 2 (σ = 0.0409) 0.084 0.110 0.101 0.027 0.095 0.000
set 3 (σ = 0.0562) 0.139 0.185 0.171 0.038 0.131 0.000

Figure 6. Some sample shapes on which geodesic distance based methods are tested. In the literature,
some authors [22,23] define articulations as transformations that are rigid when restricted to a part.

3.2. Representing Shapes Using a Single Histogram for Distinctness

In our proposed scheme, each shape is represented by a collection of regional histograms.
A simpler alternative is to skip the partitioning step and represent the shape using a single histogram
estimated using all of the distinctness values. In Table 6, we report the clustering performance when
shapes are represented by a single global histogram instead of a collection of regional histograms.
For each of the three sets, the higher performance is marked as bold. Even when the shape is
represented only using a single histogram, the discrepancy outperforms eccentricity.

Table 6. Single histogram distinctness. For each of the three sets, the higher performance is marked
as bold.

Set 1 Set 2 Set 3

Distinctness (single histogram) 0.9678 0.9175 0.8381
Eccentricity 0.8227 0.8620 0.7413
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4. Summary and Conclusions

We proposed a new representation along with a clustering scheme to group articulated shapes
in terms of similarity. The proposed representation is based on a novel multi-scale, pixel-wise
distinctness measure. Our experiments show that the distinctness density (both region-wise or global)
is a robust descriptor. A distinctness based clustering scheme is shown to perform comparably
to the state of the art methods based on structural representations; the scheme even outperforms
as the degree of articulations/deformations increase. In comparison to geodesic-distance based
representations, proposed representation brings significant performance improvement. As a side
property, the spatial distribution of the distinctness provides easy partitioning of the shape domain
into regions. Though at some scales these regions seem to be intuitive, at some other scales they do
not. At some scales, there may be only a single region. We remark that we neither intend to obtain
shape segmentation nor intend to obtain part hierarchy; the key point is that the distinctness implicitly
codes structural relations.
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