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Abstract: Background Estimation is a common computer vision task, used for segmenting moving
objects in video streams. This can be useful as a pre-processing step, isolating regions of interest for
more complicated algorithms performing detection, recognition, and identification tasks, in order to
reduce overall computation time. This is especially important in the context of embedded systems like
smart cameras, which may need to process images with constrained computational resources. This work
focuses on accelerating SuperBE, a superpixel-based background estimation algorithm that was
designed for simplicity and reducing computational complexity while maintaining state-of-the-art levels
of accuracy. We explore both software and hardware acceleration opportunities, converting the original
algorithm into a greyscale, integer-only version, and using Hardware/Software Co-design to develop
hardware acceleration components on FPGA fabric that assist a software processor. We achieved a 4.4×
speed improvement with the software optimisations alone, and a 2× speed improvement with the
hardware optimisations alone. When combined, these led to a 9× speed improvement on a Cyclone V
System-on-Chip, delivering almost 38 fps on 320 × 240 resolution images.

Keywords: background estimation; image segmentation; System-on-Chip; embedded systems;
real-time systems; hardware accelerators

1. Introduction

Many computer vision applications rely on scanning an image by applying a sliding window
across the image, whether it is a simple filter operation or a more complex object detection and
recognition task. The use of multi-scale image pyramids may mean that the entire image is effectively
scanned multiple times. In many scenarios, this is wasteful because the regions or objects of interest
only occupy some of the image space, while the majority of the camera view yields negative results.
Background estimation (also known as background subtraction, background modelling, or foreground
detection) is a popular method of segmenting images in order to isolate foreground regions of interest.
This allows for further analysis with subsequent algorithms, saving computation time by processing a
smaller image and therefore iterating over fewer window positions.

However, using background estimation has two limitations. Firstly, sequential frames in a
video are usually required in order to compare frames to each other and classify similar parts of
the images as background, and there is a general assumption that objects of interest are moving
between frames. This eliminates the applicability of background estimation in some offline image
processing applications where the images contain no notion of time or may be entirely independent,
but for most real-world applications there is some continuous monitoring where multiple frames of the
same view are captured. Secondly, background estimation is not free; it still requires some computation

J. Imaging 2018, 4, 122; doi:10.3390/jimaging4100122 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0002-6239-8443
https://orcid.org/0000-0001-8450-2558
https://orcid.org/0000-0001-8094-5343
http://www.mdpi.com/2313-433X/4/10/122?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging4100122
http://www.mdpi.com/journal/jimaging


J. Imaging 2018, 4, 122 2 of 17

time, and that computation time must be sufficiently low to justify introducing background estimation
before running more complex algorithms.

While computation time is a critical factor for justifying background estimation, most of the literature
focuses on incrementally improving accuracy with new algorithms at any cost. Popular pixel-level
models such as the Gaussian Mixture Model (GMM) [1] have been around for decades, but recent
approaches have included applying adaptive weights and parameters [2,3], deep convolutional neural
networks [4–6], and ensemble models with stochastic model optimisation [7], all of which significantly
increase computation time while only marginally improving accuracy, failing to address the challenges
of real-world implementation.

Instead of blindly pursuing gains in accuracy, once a sufficient level of accuracy has been reached
we should focus on accelerating those approaches, in order to minimise the impact of background
estimation in more complex image processing pipelines with multiple stages. In our previous work,
we applied superpixels to ViBE [8], a popular background estimation algorithm, and incorporated
further optimisations of computation time to develop an algorithm called SuperBE [9]. We were able
to achieve real-time processing with speeds of approximately 135 fps on 320 × 240 resolution images
on a standard desktop PC while maintaining comparable accuracy to other state-of-the-art algorithms.
In this work, we make two contributions by exploring further acceleration in two directions. Firstly,
since the original SuperBE algorithm used RGB images with floating-point mathematics, we target
software acceleration by investigating the effect of reducing the amount of information being processed
by using greyscale and integer-only versions of SuperBE. Secondly, we developed an embedded system
implementation of the algorithm with constrained computational resources for a real-world use case,
targeting hardware acceleration by using Hardware/Software Co-design techniques [10] to partition
the algorithm on a System-on-Chip (SoC) with an ARM processor and connected Field Programmable
Gate Array (FPGA) fabric. In both cases, we present quantitative results justifying our acceleration
strategies, while also detailing the effects on accuracy. The primary intention of the paper is to show
how an algorithm like SuperBE can be accelerated in a variety of ways, in detail, without requiring
software developers to spend excessive amounts of time on learning how to develop hardware.

In Section 2, we present some related works in the area of real-time background estimation and
acceleration of background estimation algorithms, including a summary of the SuperBE algorithm to
provide full context for this paper. In Sections 3 and 4, we provide a detailed description of the software
and hardware acceleration procedures explored in this work, as well as full experimental results
demonstrating the effectiveness of these acceleration strategies in Sections 3.1 and 4.1. We present our
conclusions and ideas for future work in Section 5.

2. Literature Review and Background

2.1. Fast Background Estimation

While basic background estimation algorithms such as frame differences, running averages,
and median filters are very fast, they tend to suffer from an inability to deal with high-frequency
salt and pepper noise as well as low-frequency environmental changes such as lighting variations
over time [11]. First popularised by Stauffer and Grimson [1] in 1999 and improved upon by others
including [12–14], the Gaussian Mixture Model (GMM) remains one of the most popular background
estimation algorithms today, primarily because of its simplicity and wide availability as one of the
default algorithms available in most image processing libraries. In many applications, a GMM approach
is “good enough” for background estimation, even though it still produces a substantial amount of
noise from false positives and negatives. For applications where false positives or negatives are costly,
such as safety-critical systems, acceptable error rates will depend on the requirements of the specific
application and may need to be further reduced. This can somewhat be alleviated through the use
of post-processing filters, but this adds further computation time. On the challenging CDW2014 [15]
dataset, the Zivkovic GMM [12] misclassifies just under 4% of all pixels across the 11 categories and



J. Imaging 2018, 4, 122 3 of 17

53 video sequences. The error rate is also known as the Percentage of Wrong Classifications (PWC).
However, it is important to note that this is an average. Figure 1 shows the difference in segmentation
quality between different levels of PWC on different video sequences. The figure shows that even a 4%
PWC can appear to be poorly segmented, while a 1.3% PWC is perhaps sufficiently accurate, but this
will strongly depend on the end application.

Figure 1. Examples of background estimation with different levels of PWC. In each row, the leftmost
image is the raw image, the middle image is the ground truth, and the right image is the output of
the Zivkovic GMM algorithm [12], with the approximate PWC and name of the sequence from the
CDW2014 [15] dataset on the right.

Current state-of-the-art methods are able to reduce that error rate to less than 2%, but this has
come with a heavy computation cost. Whereas the Zivkovic GMM can achieve around 49 fps on
this dataset on a standard desktop computer, Ref. [6] requires a high-end Graphics Processing Unit
(GPU) to achieve 18 fps, Ref. [16] achieves 8–9 fps on a desktop computer, and Ref. [3] only achieves
2 fps for 320 × 240 video on a high-end i5 CPU. While improving accuracy is important, the trade-off
between accuracy and speed needs to be more carefully considered, as more accurate algorithms are
unlikely to be adopted in the real world if they cannot justify slow computation times. Comprehensive
background estimation survey papers are available in [17–19].

In most background estimation methods, the algorithm works at the pixel level. This means that
for every pixel in the image, a background model is maintained and compared against pixels from
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newer frames to determine whether that pixel should be classified as background or foreground
for the current frame. Colour is generally the feature that is used to describe the pixels and
ascertain differences, although depth/range can also sometimes be used [20]. We also generally
include a model update step to allow the model to adapt over time to changes in environmental
conditions. The computation time is therefore strongly dependent on the number of pixels in
the image, which presents an issue in terms of scalability as imaging technology continues to
improve and image resolutions increase. SuperBE [9] addressed this by incorporating the use of
superpixels (groups of pixels clustered together for colour and spatial coherency) into the popular
background estimation algorithm ViBe [8]. Superpixels have been used in background estimation in
the literature before [21–24], but most works in the literature still have very high computation times,
particularly because superpixel segmentation is relatively expensive.

2.2. SuperBE

Using the SLICO [25] algorithm to generate superpixels, SuperBE essentially reduces the number
of elements that need to be classified in background estimation, based on the assumption that all
of the pixels within a superpixel cluster are very likely to have the same foreground or background
classification. Reducing the number of elements means that fewer background models need to be
maintained, compared against, and updated, decreasing both memory requirements and computation
time. SuperBE is shown in Figure 2, and it can be seen how the superpixels form the main shape of the
output background mask that can then be post-processed to form a contiguous region of interest.

Figure 2. SuperBE on the CDW2014 backdoor sequence, showing the superpixel segmentation (top-left),
the output mask without (top-right) and with (bottom-left) post-processing, and then with the mask
applied to the original image (bottom-right).
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As shown in Figure 3, SuperBE is comprised of two main processes. The first process is model
initialisation, where a single frame is provided to the algorithm so that the background model can be
created for the first time. After pre-processing, we apply superpixel clustering to group the pixels in the
image, identifying the bounds of background objects and grouping similarly coloured areas together.
It is important to note that superpixel clustering is only performed once in the entire algorithm,
during initialisation, and not performed again for each subsequent frame, leading to significant speed
increases in comparison to other superpixel-based algorithms as clustering can be computationally
expensive. This is generally suitable in static surveillance cases, although in scenarios with panning
cameras or dynamically changing backgrounds it may be necessary to re-initialise the algorithm more
regularly. Then, we use the clusters to initialise the background model based on the colour means and
colour covariance matrices of each superpixel. For each superpixel, we store multiple background
samples to maintain robustness over time, although initially they are set to be identical. This helps
compensate for only performing superpixel clustering once at initialisation by allowing for some
variation in the background model when matching.

Figure 3. Flowcharts showing the background model initialisation (left) and frame masking (right)
processes of SuperBE [9].

The second process is frame masking, where subsequent frames in the video sequence
are presented to the algorithm and an output background mask is produced. For each frame,
SuperBE applies the same superpixel segmentation obtained in the initialisation process, and then
classifies each superpixel as background or foreground based on its similarity to the background model
samples in terms of colour means and covariance. For each superpixel, the algorithm iterates through
the background model samples, and checks if the similarity is below a parameterised threshold.
Once enough background model samples have been found to be similar enough to the current
superpixel (based on another parameter), then the algorithm exits that superpixel and classifies it
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as background. This is done to reduce time spent unnecessarily checking excess background model
samples when only a few are required to accurately classify the superpixel as background.

While computing the mean and colour covariance matrix is relatively fast, computing the
similarity of two colour covariance matrices is challenging. In SuperBE, the Jensen-Bregman LogDet
Divergence was used for its computational efficiency, but that computational efficiency only holds
true for complex processors that can compute logarithm operations quickly, making it less suitable for
simpler processors or pure hardware implementation.

If the current superpixel values are sufficiently similar to those in the background model, then the
content of the superpixel has not changed substantially and is probably also background. In this case,
we also conduct a model update step by randomly replacing one of the background model samples with
the values from the current superpixel, so that over time the background model incorporates minor
variation in the background pixels in order to remain robust against low-frequency environmental
changes. The algorithm also updates the background model for a random neighbouring superpixel
with the values from the current superpixel. This helps improve robustness against small spatial
shifts and allows neighbouring superpixels to “invade” each others models in order to erode false
positives over time. These update procedures are relatively computationally light, as they are mostly
comprised of control flow operations and memory reads/writes. The random selection of samples to
be replaced is challenging to emulate in hardware, but it appears that the algorithm does not need
true randomness, and some pseudorandom approach with a relatively uniform distribution should
be sufficient. An optional post-processing step using morphological closing and opening can help
reduce the amount of false positive noise patches and false negative holes in the resultant output mask.
However, these morphological operations are very computationally expensive, as they tend to require
multiple passes across the entire image and need to store multiple copies of the image in order to
perform accurately.

The resulting algorithm is both fast and sufficiently accurate for most applications, reaching 135 fps
on 320 × 240 images on an i7 CPU using only one core, while achieving an error rate of between 0.4–3%
depending on the type of video. However, it is important to investigate how to make the algorithm even
less computationally expensive so that it can still achieve good speeds on resource constrained systems
with less powerful processing capabilities. This is especially important for enabling the development
of useful smart cameras: imaging devices with embedded processing hardware, that either partially or
fully process video streams at the point of image capture. In the subsequent acceleration, we mostly
focus on the frame masking process (on the right of Figure 3), since the model initialisation process is
only executed once and is therefore not an important factor in the long-run execution time. The key
reason to focus on SuperBE is that it is more accurate that algorithms like GMM without introducing
the significant computation costs of more modern background estimation approaches.

2.3. Hardware Implementations

Some literature does exist for describing systems that implement various background estimation
algorithms on hardware platforms with the goal of achieving real-time speeds. Ref. [26] implements
a GMM algorithm on a high-end GPU device, achieving speeds of over 50 fps for high-definition
video. A separate work, Ref. [27], reports that a GPU implementation of GMM has a 5× speed-up
over CPU implementations, reaching 58.1 fps for 352 × 288 resolution images. A competing FPGA
implementation of GMM reported 20 fps at a 1920 × 1080 resolution [28], while a FPGA implemenation
of ViBe achieved 60fps on 640 × 480 resolution images [29]. Alternatively, instead of taking an existing
background estimation algorithm and merely porting it to a hardware device, algorithm designers
could take the hardware architecture into account to leverage memory structures and parallelism.
A method that is highly optimised for hardware using a codebook implementation on an FPGA
achieved 50 fps on 768 × 576 resolution images [30]. Using a simple convolutional filter as the main
processing step in their algorithm, Ref. [31] reports 60 fps on 800 × 480 images, although the simplicity
of their approach is likely to lead to low accuracy on large images.
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Unfortunately, the largest challenge with hardware design has generally been the high level of
skill needed, and the associated high development time and cost required for well-optimised designs.
While pure hardware designs can be very fast, this continuing challenge impedes adoption of faster
hardware systems. This can partly be addressed through the use of Hardware/Software Co-Design.
In these systems, the algorithm is still predominantly software-based and controlled on a standard
CPU, but parts of the processing are offloaded to specialised hardware accelerator components that
can decrease the computation time significantly. Ref. [32] leverages shared memory resources to
compute multi-modal background masks based on a GMM approach on a FPGA, achieving 38 fps
on 1024 × 1024 resolution images. In [33], a kernel based tracking system is implemented on an
FPGA with a soft processor, reporting hundreds of frames per second based on a window size of
64 × 64 pixels with pipelining to process multiple frames at the same time. Ref. [34] implemented
the Mixture of Gaussians (MoG) algorithm using many pipeline stages in hardware with an ARM
processor to achieve real-time background estimation on Full-HD images. Nevertheless, there are
relatively few HW/SW Co-design systems for background estimation published in the literature,
and even fewer using modern background estimation techniques. In a bid to balance higher levels of
accuracy with acceptably fast computation times, we propose to implement SuperBE on an embedded
platform. While SuperBE as an algorithm is more complex and therefore slower than GMM or similar
methods previously accelerated, it has an average PWC of 1.75%, much better than the 4% error rate
expected from GMM (both scores measured on the CDW2014 dataset). In our work, we target a
hard CPU with attached FPGA fabric, using a similar strategy from [10] to partition SuperBE into
software and hardware components with the intention of accelerating computation on an embedded
system. This improves upon the existing literature by accelerating a new algorithm that achieves better
accuracy than most of the existing hardware implementations of background estimation algorithms,
with real-time speeds on an embedded system.

3. Software Acceleration

Our main strategy for reducing computation time is to reduce the amount of information that
needs to be processed while maintaining a sufficiently high accuracy. We produced three new versions
of the algorithm: greyscale-only, integer-only, and a combined greyscale + integer version. In [8], it is
reported that a greyscale variant of their background estimation algorithm is approximately 15% faster
than the RGB version, with a less than one percentage point increase in the error rate. In the context of
SuperBE, each superpixel is described by its colour means and colour covariance matrices. Since there
are three colour channels, this results in three mean values and a 3 × 3 matrix for each superpixel.
In a greyscale version, we still need to describe the superpixel in terms of its mean and variance,
but this becomes much simpler as there is only one channel. While reducing the colour means from
three to one would not have a large impact, replacing the colour covariance matrix calculation and
the covariance matrix similarity calculation with a simple single-variable variance leads to a much
lower computational complexity. By removing the covariance matrix similarity calculation, we also
remove a number of logarithm operators that produce odd results at extreme values, which could lead
to a positive effect on the accuracy. In addition to this, histogram equalisation tends to have less of an
impact on greyscale images than colour images, so we removed this step from greyscale versions of
SuperBE to further reduce computation time.

Since we will eventually target a hardware device, it is also worth considering the effect of
casting/rounding all numbers in an integer-only version of the algorithm. For a standard desktop
CPU, floating-point mathematics is well optimised, so there may not be a large speed improvement.
On many smaller processors used in embedded devices, simpler processor architectures may not
include specialised hardware for floating-point operations, causing these operations to be extremely
costly. Implementing floating-point mathematics on hardware is also much more resource-intensive
than fixed-point mathematics, restricting most designs to fixed-point or integer-based arithmetic [35].
We should expect there to be some increase in error as a result of losing precision, but it is likely to
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be small since background estimation is generally looking for relatively large changes in features.
However, casting or rounding of the numbers is not the only effect of moving towards an integer-only
version of the algorithm; operators such as log and square root also need to be approximated with
integers, which could potentially lead to larger errors in output.

3.1. Software Evaluation

To test the effect of these optimisations, we used the Change Detection Workshop CDW2014
dataset [15], excluding the three categories PTZ, intermittent object motion, and thermal, which were
also omitted in the original SuperBE paper as it is unsuitable for these video types. The tested
video sequences included low framerates, shaky cameras, poor image quality, and a variety of image
resolutions ranging from 320 × 240 to 720 × 576. As shown in Table 1, experiments were conducted
both with and without post-processing, where the reference algorithm was the one provided in the
original SuperBE paper [9]. The main metric that we used for accuracy was the Percentage of Wrong
Classifications (PWC), which is equivalent to the error rate, calculated by dividing the number of
incorrectly classified pixels by the total number of pixels and converting to a percentage. The speeds
given in FPS are normalised for a 320 × 240 resolution image, meaning that we take all of the speeds
from the different image resolutions, and then scale them based on the number of pixels to a 320 × 240
resolution image in order to make a fair comparison between methods. The relative speed for each
version is given relative to the reference version. All experiments were conducted on the same
laptop computer, with a 2.4 GHz i7-4700HQ CPU, 16GB of RAM, running Linux Kubuntu 17.04.
The algorithms are implemented in C++, compiled with -O3.

Table 1. Software Acceleration Results.

Version PWC (%) Speed (FPS) Relative Speed

Without Post-processing
Reference 1.75 53.00 1.00
Integer-only 1.23 81.25 1.53
Grayscale 1.88 184.65 3.48
Grayscale + Integer 2.33 232.39 4.38

With Post-processing
Reference 1.66 28.99 1.00
Integer-only 1.08 37.35 1.08
Grayscale 2.42 53.12 1.83
Grayscale + Integer 2.51 52.12 1.80

As expected, the software optimisations significantly increased the speed of the algorithm. In the
integer-only case, there is an unexpected improvement to the accuracy as well—this was identified
to be due to the approximated log function in the integer version, which was clamped to not return
negative values, whereas the reference version included a log function that would sometimes give
very negative values that could cause misclassification of superpixels. The grayscale version does
increase the error rate, but this is still low enough to be suitable for many applications. It appears that
the grayscale optimisation has a much larger impact on speed than the integer optimisation, which
makes sense since there is substantially less data being processed in the grayscale version, while the
integer version relies on the differences between integer processing units and floating-point processing
units being significant.

It should be noted that with post-processing, the grayscale and grayscale + integer cases have
very similar error rates and speeds, performing far worse than without post-processing. This would
suggest that the current post-processing scheme of morphologically closing and then opening the
background mask may not be as suitable when applied to an output derived from grayscale data.
This is further supported by the fact that the grayscale and grayscale + integer versions have worse
accuracy with post-processing than without. It appears that this post-processing method also does not
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justify itself in terms of computation time, as in the reference and integer-only cases it only reduces the
error rate by about 0.1–0.2% but slows down the algorithm by 45–55%.

For a standard case where SuperBE is being used on a desktop PC or in the cloud, the grayscale
version without post-processing is likely to be sufficient in terms of accuracy while delivering very
fast speeds. If it is desirable to add the integer optimisation on top for hardware implementation,
then the effect on accuracy is relatively limited and likely to be acceptable in exchange for the further
improvement in speed. Based on these results, we targeted the grayscale + integer version without
post-processing for embedded implementation and hardware acceleration. A flowchart of the resultant
simplified algorithm is shown in Figure 4.

Figure 4. Flowchart of the simplified Greyscale + Integer algorithm for embedded implementation.

4. Hardware Acceleration

It is theoretically possible that SuperBE could be entirely implemented in hardware, for example
by describing the algorithm through components in a Hardware Description Language (HDL) and
then synthesising onto a FPGA. However, this is a very time consuming and high-skill task, and some
of the components might not deliver any better performance than if the same functionality was
implemented in software on a CPU. In our approach, we use HW/SW Co-design to achieve the
maximum improvement in speed for the least amount of development time, while maintaining
sufficient accuracy. This involves combining a Hard Processor System (HPS) which executes the
software, with hardware circuits on FPGA fabric. The most important step in partitioning an algorithm
between hardware and software is therefore determining which parts of the algorithm are the most
computationally expensive, so that if accelerated, would have the largest effect on the computation
time. In our case, we used Valgrind with Callgrind to perform execution profiling on the algorithm
across a few thousand frames. The results are shown in Table 2. Note that the values in this table do
not sum to 100% because we have not included steps that cannot be easily accelerated in our system,
such as reading the image in from memory or initialising matrices and vectors.
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Table 2. Runtime Analysis of SuperBE.

Task Percentage Runtime (%)

Gaussian Blurring 4.17
Superpixel Classification

- Mean/Variance Calculation 50.58
- Similarity Calculation 8.35
- Superpixel Classification 0.12

Model Updating 0.17

In addition to a timing analysis, the communication requirements need to be taken into
consideration. In a HW/SW Co-design system, some data communication has to occur between
the Hardware (HW) component and the Software (SW) component, which requires a non-zero amount
of time. In [10], we identified that the communication channels can become the bottleneck that
prevents faster speeds from being achieved. If multiple non-sequential tasks are partitioned onto the
hardware, then data needs to be passed between the HW and SW units multiple times. Therefore,
it is desirable, where possible, to complete a contiguous block of the algorithm together on the HW
accelerator, and then pass the data to the SW processor for completion. Taking the computation and
communication times into account, we decided to accelerate the two earliest stages of the algorithm,
Gaussian blurring and the mean/variance calculation. It makes sense that these are the stages that
may require the most computation time because they process the largest amount of data—after the
mean/variance calculation, the algorithm represents each superpixels with two numbers, rather than
all of the pixel values within the superpixel, essentially reducing the amount of data that needs to
be processed in subsequent steps. We did not accelerate the similarity calculation step because there
would be significant communication and memory overheads, as the background model values would
need to be either transferred between the HPS and FPGA regularly or duplicated and updated on the
FPGA side as well as the HPS side. A high-level block diagram of the hardware partition is shown
in Figure 5, showing the data flow between the HPS and FPGA as well as the different hardware
components. The buffers shown are modular Scatter Gather DMA (mSGDMA) IP blocks from Intel
(Altera) that provide interfacing between the HPS and FPGA, allowing the memory-mapped interface
of the HPS to feed into a streaming First-In-First-Out (FIFO) buffer on the FPGA. Control signals are
omitted, since the only control signal comes from the HPS to the FPGA to tell the components to reset
and start again when a new image is being transferred across.

Figure 5. Top-level architectural diagram of the hardware partition, with arrows representing data flow.

Our target execution platform is the DE1-SoC development board, which has an Altera Cyclone V
5CSEMA5F31C6 System-on-Chip (SOC) device. This device includes a dual-core ARM Cortex A9
(which we refer to as the hard processor system or HPS) and FPGA logic cells, Digital Signal Processing
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(DSP) blocks, and memory resources. A conceptual diagram of the HPS-FPGA system is shown
in Figure 6, where the AMBA AXI bridges between the HPS and FPGA are shown in bold arrows.
These bridges allow two-way communication, so that the master side can send an instruction to request
data and have the result returned on the same bridge. Therefore, communication between the HPS and
FPGA is not single-cycle, creating an overhead for each transaction. We do save some transfer time by
interfacing the FPGA with the external memory (RAM) module so that image data can be read directly,
rather than transferring the data from the RAM to the HPS and then through the HPS-to-FPGA bridge.
We described our hardware components in VHDL, and then synthesised onto the FPGA fabric.

Figure 6. Block diagram showing the software (HPS) and hardware (FPGA) partitions of the Cyclone V
SOC device.

The Gaussian blur was implemented using a sliding window approach based on [10,36], shown in
Figure 7. Essentially, the filter operation is parallelised so that the convolution operator can be applied
to N × N pixels simultaneously, with a Gaussian kernel to create a blurring effect. To further reduce
hardware resource consumption, instead of implementing floating-point multipliers (since a standard
Gaussian kernel has floating-point values), the kernel was approximated with powers of two so that
the appropriate right shifts could be applied to the binary values instead using combinational logic.
While this is not a perfect Gaussian blur, it should sufficiently filter out high frequency noise, while
remaining a single-cycle operation with a small hardware footprint.

The mean and variance calculation was more challenging to implement in hardware, as it needs
to iterate through all of the pixel values within each superpixel. Traditionally, a two-pass method is
used, where the first pass calculates the mean, and then the second pass uses the previously computed
mean to determine the variance. This has a critical drawback in that either we have to transfer the
pixels between the SW and HW subsystems twice (once for each pass) to stream the data through,
or we need a substantial amount of memory on the HW side to store an entire image’s worth of pixels.
Instead, we used the modified Welford algorithm [37,38], shown in Algorithm 1, which can compute
mean and variance in a single pass but may introduce some small error.

This method does require the use of division, which normally requires multiple cycles and
is relatively computationally expensive in comparison to addition or multiplication operations.
To simplify the division operator, we used a multiply-shift approach and a Look Up Table (LUT)
for all possible division values, since we know that the operation is limited to integer values between
1 and 255. Empirically we found that for the image resolutions we were working with, the largest
superpixel contained 165 pixels, so we set a safe upper bound of 255 for the denominator, allowing us
to store a finite number of multiply-shift parameters. Using the LUT, we can approximate any division
operation by multiplying the numbers together and then shifting right, which is the same as dividing by
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a power of two. While this method does introduce some error since it is an integer approximation, it can
be completed in a single pass of all the pixels and is much faster than a standard division operation.

Algorithm 1 Modified Welford algorithm for calculating mean and variance in a single pass

1: n = 0, mean = 0, var = 0, delta1 = 0, delta2 = 0
2: for pixel in superpixel do

3: n += 1
4: delta1 += pixel - mean
5: mean += delta1 / n
6: delta2 = pixel - mean
7: var += delta1 * delta2
8: end for
9: var /= n-1

Figure 7. A block diagram showing a 5 × 5 Gaussian blur operator in hardware, where >> indicates a
right shift and G is a matrix representing the Gaussian kernel.

To summarise the communication requirements between the FPGA and HPS shown in Figure 5,
for each image being processed, the image data input stream receives one value per pixel (the greyscale
intensity of that pixel), the superpixel labels register receives one value per pixel (representing the
superpixel number for that pixel), and the mean and variance outputs register returns two numbers
per superpixel (a mean and a variance). In order to make full use of the communication buses between
the FPGA fabric and HPS, we use the full-size 128-bit bridge, with data packing to concatenate as
much data together before transmission in order to minimise the number of transactions and therefore
the communication overheads. The FPGA was clocked at 50 MHz during testing, with interconnect
logic clocked at 150 MHz, although it could potentially be run at a higher clock frequency depending
on the device.
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4.1. Hardware Evaluation

As shown in Table 3, running SuperBE in software alone (using the HPS only) is much slower than
on a Desktop PC. This is predominantly caused by the fact that the embedded processor is much slower,
running at 800 MHz with a Reduced Instruction Set Computer (RISC) architecture in comparison to
the 2.4 GHz+ CPU on a laptop or desktop. We use the HPS-only version as the reference embedded
benchmark against which hardware accelerated versions should be compared. Firstly, parallelising the
Gaussian blur operator has a negligible effect on speed, as the speed gain through parallelisation in
hardware barely covers the added communication overheads. It is theoretically possible to increase the
throughput of the Gaussian blur component further by instantiating multiple copies of the component
and dividing the image into blocks for processing in parallel [39], but this further increases the
hardware cost and is likely to still be constrained by the communication bandwidth between the HPS
and FPGA.

Table 3. Hardware Acceleration Results.

Version PWC (%) Speed (FPS)

Original Reference, HPS only 1.49 4.18
Grayscale + Integer, HPS only 1.74 18.31
Gaussian Blurring on FPGA 1.55 18.56
Mean/Variance on FPGA 3.22 29.16
Gaussian Blurring + Mean/Variance on FPGA 2.88 37.91

The hardware versions of the mean and variance operations add speed to the system, although this
is at the cost of also introducing significant error, which should be expected since we are using multiple
approximations in that calculation. This is an approximate computing trade-off, where we could have
a higher level of accuracy, but this would require more hardware resources and likely reduce the speed.
The final HW/SW Co-design version with both Gaussian blurring and the mean/variance calculation
accelerated on FPGA in one contiguous block yields a speed of 37.91 fps (normalised for 320 × 240
resolution images), a 2× increase from the HPS-only Grayscale + Integer version. This comes at the
cost of approximately 1% extra error introduced into the system, which is likely to be acceptable for
most purposes. More importantly, we can compare the final version to the original colour SuperBE
algorithm being run on the HPS to find the overall improvement from both the software and hardware
optimisations on the same test platform. The overall 9x speed improvement more than justifies the
1.4% higher error.

In all previous results in this paper, the computation times have been normalised for a 320 × 240
image size. In the first part of Table 4, we show how that time varies as the image resolution becomes
larger, reaching 720p. As the image becomes larger, the computation time will increase, which is
due to the fact that there are more pixels to process when calculating the mean and variance of each
superpixel. As the modified Welford algorithm allows this to be done in one pass, the increase in
computation time is linear, or in other words, this part of the algorithm is O(n) complex. Since this
algorithm is superpixel-based, the classification and model update steps do not increase based on the
image resolution, since the number of superpixels remains relatively similar. However, the resolution
is not the only factor that influences the computation time; the more dominating factor is how much
of the image is foreground, since SuperBE has to spend more time comparing superpixel values to
past model values to confirm that the superpixel is foreground. This is reflected in the second part
of Table 4, where the sequences with a grey background are from the lowFramerate and nightVideos
categories, where the processing time per frame is considerably slower for the same image resolutions
as the first part of the table. This is the primary reason that the normalised 320 × 240 speed is so much
lower than the computation time for the backdoor sequence even though it is also 320 × 240—the more
computationally expensive sequences pull the average computation time up (and therefore push the
fps down).
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Table 4. Average Computation Times on Selected Sequences from CDW2014.

Image Resolution and Sequence ms fps

320 × 240 on backdoor 15.3 65.2
352 × 240 on peopleInShade 16.9 59.3
360 × 240 on bungalows 17.3 58.0
380 × 244 on copyMachine 18.5 54.0
432 × 288 on fountain02 30.8 32.5
540 × 360 on skating 74.6 13.4
645 × 315 on turbulence2 75.7 13.2
720 × 480 on cubicle 69.0 14.5
720 × 576 on PETS2006 89.9 11.1
720 × 480 on blizzard 132.5 7.5
720 × 540 on wetsnow 149.1 6.7
320 × 240 on turnpike 57.0 17.6
480 × 295 on tramStation 97.7 10.2
595 × 245 on streetCornerAtNight 100.6 9.9
640 × 350 on tramCrossroad 166.2 6.0
700 × 450 on fluidHighway 217.4 4.6

5. Conclusions and Future Work

This work presents the acceleration of a background estimation algorithm, SuperBE, in both
the software and hardware worlds, through a systematic approach towards improving speed while
maintaining acceptable levels of accuracy. In software, the main optimisations focused on reducing
the amount of data to be processed by converting the algorithm into greyscale and integer-only
versions, yielding a 4.38× speed improvement over the original algorithm (without post-processing)
at the cost of a 0.6% higher error rate. In hardware, the main optimisations focused on accelerating
the Gaussian blur and mean/variance calculation steps, parallelising these steps and adding more
specialised computation units. This resulted in a further 2× speed improvement within the embedded
implementation. When combined, there is a 9× speed improvement over the original SuperBE
algorithm when executed on an embedded processor. This work shows that Hardware/Software
Co-design is a valid approach for improving the performance of algorithms, without needing to
invest significant resources to develop a pure hardware design. This work also provides evidence
that SuperBE can be accelerated sufficiently to be used in embedded real-time processing contexts,
especially where background estimation is used as a first step in an image processing pipeline to
reduce the workload of subsequent algorithms.

In future work, there is opportunity for improvements to be made to both speed and accuracy if
needed. One of the major challenges with Hardware/Software Co-design is always the introduction of
increase communication time between the hardware and software platforms, which is often assumed
by developed to be free but is actually non-zero and can contribute to a significant portion of the
overall computation time. Further reducing the usage of the HPS-FPGA bridges would decrease the
communication time, which could be done by directly loading images onto the FPGA and completing
preliminary processing there, and then only sending the mean and variance values for each superpixel
back across to the CPU for model comparison and updating. This may be challenging, as the first
frame still needs to be provided to the CPU for model initialisation, as it would be very difficult
to implement superpixel segmentation in hardware. Additionally, the value of doing so would be
limited since it is only executed once, during initialisation. Alternatively, a device with wider or faster
communication buses between the HPS and FPGA systems would reduce the communication and
co-ordination costs. There is also potential for further parallelisation—the SOC CPU has more than one
core, and multiple copies of the hardware components could be made to allow independent superpixels
to be processed simultaneously if more hardware resourcing was available on a larger device. It is
important to consider that most modern cameras provide HD 1080p image resolutions, so some further
acceleration may be necessary to achieve real-time processing of high resolution imagery and video.
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Lastly, accuracy could be improved by further investigating the effect of different data widths in the
hardware components; increasing the bit widths of the mean/variance component would likely make
the results more accurate, but would also consume more hardware resources. Investigating more
suitable post-processing schemes that clean up the output background masks, particularly in hardware,
would also improve accuracy but introduce additional computational complexity.
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