
Journal of

Imaging

Article

Laser Scanners for High-Quality 3D and IR Imaging
in Cultural Heritage Monitoring and Documentation

Sofia Ceccarelli 1, Massimiliano Guarneri 2,*, Mario Ferri de Collibus 2, Massimo Francucci 2,
Massimiliano Ciaffi 2 and Alessandro Danielis 3

1 Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy; sofia.ceccarelli3@gmail.com
2 FSN-TECFIS-DIM, ENEA, 00044 Frascati (RM), Italy; mario.ferridecollibus@enea.it (M.F.d.C.);

massimo.francucci@enea.it (M.F.); massimiliano.ciaffi@enea.it (M.C.)
3 ENEA Guest, 00044 Frascati, Italy; alessandro.danielis@gmail.com
* Correspondence: massimiliano.guarneri@enea.it; Tel.: +39-06-9400-5553

Received: 24 August 2018; Accepted: 1 November 2018; Published: 5 November 2018
����������
�������

Abstract: Digital tools as 3D (three-dimensional) modelling and imaging techniques are having an
increasing role in many applicative fields, thanks to some significative features, such as their powerful
communicative capacity, versatility of the results and non-invasiveness. These properties are very
important in cultural heritage, and modern methodologies provide an efficient means for analyzing
deeply and virtually rendering artworks without contact or damage. In this paper, we present two
laser scanner prototypes based on the Imaging Topological Radar (ITR) technology developed at the
ENEA Research Center of Frascati (RM, Italy) to obtain 3D models and IR images of medium/large
targets with the use of laser sources without the need for scaffolding and independently from
illumination conditions. The RGB-ITR (Red Green Blue-ITR) scanner employs three wavelengths in
the visible range for three-dimensional color digitalization up to 30 m, while the IR-ITR (Infrared-ITR)
system allows for layering inspection using one IR source for analyses. The functionalities and
operability of the two systems are presented by showing the results of several case studies and
laboratory tests.
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1. Introduction

Artistic and cultural heritage (CH) is essential for present and future generations as a proof of
human genius over the past eras, and its preservation has a key role in transmitting cultural and
historical roots of nations around the world [1–3]. The safeguard and the communication of global CH
are therefore more than an exclusively humanistic issue, being involved in many scientific activities of
national and international institutions. The numerous variables involved in CH Conservation Science,
such as the conservation status, material composition and the surrounding conditions, require the
development of specific and multidisciplinary applicative solutions, both in terms of instrumentation
and methodology [4]. In the actual digital era, imaging techniques and 3D (three-dimensional)
modelling are widely employed in CH for recording and remote investigations, becoming common
practice used in archaeological sites for contactless surveys [2,5–7]. The digital information achieved
with these methodologies has an important usefulness, not only for historical reconstructions and
dissemination purposes, but also for monitoring and diagnostic studies, allowing for investigations
and comparisons of conservation status over time. Many methods are nowadays available for gaining
these purposes and differ for factors, such as acquisition timing, resolution, accuracy and typology of
achievable results [5,6,8–12]. Despite the variety of systems, functionalities and properties, it is
well-known that one single method is insufficient for the complete 3D color digitalization of a
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medium/large-sized object or site. Indeed, the complementary use of Image-Based Modelling (IBM)
methods, such as photogrammetry, is a common practice with the Range-Base Modelling (RBM) ones,
i.e., laser scanning, for the achievement, even at great distances, of accurate and detailed 3D textured
models [9,10,13]. The general workflow of a 3D modelling process consists of the application of
active methods for the object geometry acquisition (point cloud) and passive ones for color mapping
(texture), in order to obtain photo-realistic 3D models, using an integrated approach between laser
scanning and photogrammetry [14]. The resulting products are 3D textured reproductions of the
object/site, where the color transposition is strongly dependent on the surrounding illumination
conditions and the elaboration is often a time-consuming process [8,15–18]. 3D models are often
combined to multispectral imaging for a deeper knowledge of the artefact in a visually appealing
modality, aimed at the comprehension of artistic techniques, preparatory drawing, pentimenti or
details regarding the supports through non-invasive layering inspections [19–23]. The systems used
for imaging analysis can be divided into two main categories: cameras with external filters for
obtaining multiple images [24–26] or laser-based instruments using one or more wavelengths for
single layer inspections one at a time [27]. The choice of the approach depends on several factors,
such as project requirements, parameters to analyze (underdrawings, superficial varnish, support),
environmental working conditions and economic and human resources. The integrated approach
between several technologies can be desultory, requiring often a greater amount of time than using a
single technique, both in acquisition and in post-processing procedures. Furthermore, the dependence
on external parameters, such as lighting conditions, can influence the reliability of acquired data.
In this paper, we address these topics by illustrating the Imaging Topological Radar (ITR) technology,
developed at the ENEA Research Center of Frascati (RM), as an acquisition method of highly detailed
images for 2–3D color digitalization and layering analysis of medium–large targets, independently
from the surrounding illumination conditions. The technology is exploited by two laser scanner
systems, which use n-laser sources for contactless examination of several materials, from marble
to wood and pigments, even at great distances without scaffoldings [28,29]. The technique and the
post-processing data elaboration allow acquiring distance, color and underdrawings’ information
from the backscattered optical signals from the scanned object. The ITR tools have been employed
in different contexts with many conservative issues and/or necessities, such as nuclear inspections,
post blasting simulations and CH analyses. Examples of applications on peculiar artworks will be
shown with the aim to show the utility of ITR data in Conservation Science.

2. ITR Technology and Systems

The DIM laboratory (Diagnostics and Metrology) of the ENEA Research Center has been working
on laser applications for over two decades, developing several prototypes for many fields, from forensic
science to CH studies [29,30]. In this paper, we present two laser scanners based on the use of
n-laser stimuli as light sources for contactless acquisition of backscattered information: the RGB-ITR
(Red Green Blue-Imaging Topological Radar) and the IR-ITR (Infrared-Imaging Topological Radar).
The ITR systems are based on the double amplitude modulation (AM) range-finding technique,
where the laser beam is exploited as the carrier wave of a radiofrequency signal, which modulates
the beam intensity [31,32]. The double modulation of the laser sources combined with the lock-in
technique allows estimating the amplitude and phase-shift information of the back-reflected signals
from the target simultaneously. The estimation of the amplitudes’ information, proportional to the
matter/laser interaction at a specific optical wavelength, contributes to the color (RGB-ITR version) or
grey-level intensity (IR-ITR version) reconstruction of the target, while the phase-shift information
to estimate the distance occurred between the scanner and the investigated surface. The amplitude
and phase-shift information is actually stored point-by-point, collecting electronic signals in a range
between 1 × 10−4 and 0.1 Volts. Structural digitalization of the surfaces is elaborated from the distance
measurements, determined indirectly from the phase delay ∆ϕ of the collected back-reflected signal
with respect to the reference modulating wave, as expressed by the formula [33]:
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d =
ν ∆ϕ

4π fm
, (1)

where fm is the modulation frequency and ν is the velocity of light in the transmitting medium.
For laser optical powers where the shot noise dominates over all other noise sources in the detection
process (typically, a few nW at the output of the detection fiber), the accuracy of distance measurements
can be shown to increase with the modulation frequency fm [33] according to the following expression:

σR ∝
1

m fmSNRi
. (2)

where σR is the “intrinsic” error (i.e., the minimum attainable error in optimal experimental conditions),
m is the modulation depth and SNRi is the current signal-to-noise ratio:

SNRi =

√
Pητ

h f Γ
, (3)

which depends on the laser optical frequency f , the integration time τ, the detector’s quantum
efficiency η, the overall optics merit factor Γ and the collected power P. Here, h stands for the Planck
constant. Efficient noise rejection is obtained by using narrow field-of-view, interferential filtering
and low-noise detection electronics. Because of phase periodicity, the AM technique is affected by the
so-called “folding” ambiguity: the system returns the same distance value for target points, of which
relative separation along the line of sight is a multiple of half the modulation wavelength. In order
to overcome this problem, the laser probe is modulated at two different frequencies with values
taken far apart from each other. The lower modulation frequency is calculated by the corresponding
measurement range encompassing the whole scene of interest. Low-frequency measurements are
then used to remove the ambiguity that affects the corresponding high-frequency, employed for more
accurate measures. By using this technique of double AM, it is possible to achieve sub-millimetric
accuracy on targets at distances or heights from a few tenths up to 30–35 m, without the need of
scaffolding [28,31]. The ITR hardware is composed of two physically separate modules but optically
connected by means of optical fibers: the optical head and the electronic components. In particular,
the scanning module, i.e., the optical head, of the two instruments basically includes the launching
and receiving optics, and it consists of a lens system for the collimation and focalization of the lasers to
the center of a double-motorized mirror. The latter sweeps the beam onto the target according to a TV
raster-like positioning, differently from the rotative movement of commercial scanners, and collects
the back-reflected beam. The returning signals are detected by low-noise photodiode detectors and
analyzed by means of lock-in amplifier units, which are also used to modulate the laser sources.
The data are processed with custom software through MATLAB® interface (see Section 2.3), and the
resulting models and images can be exported into the most common file formats, thanks to the feature
of the software. Figure 1 shows a schematic explanation of the ITR system operability.

The parameters of the ITR scanners for defining their accuracy and resolution are: the laser
spot size, which determines the minimum area of the collected pixel; the signal/noise ratio for
estimating the distance measurement; the minimum angular step of the motorized mirror, responsible
for the movement of the laser beam; the single pixel distance between the device and the target,
which determines the spatial resolution between one point and the neighbors [34]. Due to construction
limits of the optical heads of the systems, the actual rotation movement of the scanning mirrors is
1.4 × 5.4 rad (80◦ × 310◦), with a maximum point-to-point precision of 0.035 mrad. The pixel distance
accuracy is 350 µm at 10 m of distance between system and target, while the spatial resolution is
700 µm. The average spot diameters measured at the same distance range are less than 1 mm for the
RGB-ITR and 4–5 mm for the IR-ITR. The two ITR systems differ in number and wavelength of the
laser sources, achieving two types of results: the RGB-ITR scanner (see Section 2.1) employs three
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wavelengths in the visible spectrum to obtain high-quality 3D color models of the object, while the
IR-ITR instrument (see Section 2.2) uses a single infrared source for layering analyses of the surface.
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Figure 1. Scheme of the ITR technology: by the use of custom software, the scanning process is remotely
controlled by a laptop connected to the electronic components. The laser beam (infrared (IR) or in
the visible range-RGB) is generated by laser sources, modulated and amplified by lock-in techniques.
Through optical fibers, the lasers are carried inside the optical head, where a system of lenses collimates
and focalizes the ray on the center of a movable scanning mirror, which drives the incident laser beam
on the surface’s object and collects the backscattered beam, elaborated with custom software.

2.1. RGB-ITR Scanner

The RGB-ITR scanner (Figure 2) enables the simultaneous recording of range and color information
by the phase-shift between the back-reflected signal and the reference modulating wave, and the
elaboration of back-reflected RGB triplets from the scanned object, respectively. At the moment, the
system uses three laser sources with wavelengths in the visible range corresponding to red, green and
blue (660 nm, 517 nm and 440 nm), respectively [31].
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Figure 2. RGB-ITR (Red Green Blue-Imaging Topological Radar) scanner prototype in a laboratory
environment, set up with the optical head on a tripod and the electronic components in the
tower configuration.
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Firstly, the three laser beams are overlapped by dichroic filters in a single white incident ray with
a laser spot diameter of 1–2 mm at distances greater than 10 m and an overall power are calculated by
the following formula:

Power density
(

mW
mm2

)
= Laser power/Spot area = 3 mW/0.785 mm2 = 3.821 mW/mm2, (4)

where 3 mW correspond to the laser power of the three wavelengths in the visible range and the spot
area is referred to a 1 mm-dimeter laser spot. A 40 mm-focus achromatic lens focuses the launching
beam onto the target by means of a rotating mirror, while a 150 mm-focus lens is used for collecting and
focusing the backscattered beams, split again into the three original red, green and blue components
by means of an optical demultiplexer. The signals, in the ranges for each channel of about 0.1–100 mV,
are detected by three low-noise avalanche photodiode detectors and analyzed by means of three
lock-in amplifier units, which are also used to modulate the laser sources. Although all the beams
are modulated, only the red and blue backscattered signals are exploited for high-frequency and
low-frequency range determination, respectively. Typical modulation frequencies are 190–200 MHz
for red, 1–10 MHz for blue and 3 MHz for green. The color information reconstruction is actually
obtained by the use of just three narrow wavelengths, mainly due to the optical setup limit of the
actual RGB-ITR scanner. For an accurate color estimation, an ad-hoc calibration procedure and several
algorithms were implemented: as seen above, the amplitude information is stored in Volts, while the
color spaces are usually described by non-dimensional normalized triplet of coordinates, like in the
case of RGB, L*a*b* and HSV spaces. Moreover, all the optical signals collected by the scanner depend
not only on the nature of the surface matter, but also by the quadratic dependency of the distance:
to compensate these effects and normalize the data stored by the scanner, a calibration procedure is
introduced. This calibration procedure consists of illuminating a certified white target by the three
optical wavelengths, conveniently placed on a tripod and moved long all the linear range covered
by the scanner for digitalizing the surface: every single calibration step is composed by moving the
tripod every 0.5 m and collecting the back-reflected signals of the three wavelengths from the reference
target. At the end of the procedure, the three distinct calibration curves (amplitude vs. distance) are
used for normalizing the data collected on the investigated surface: the normalization coefficients are
calculated by using, as a lookup-table, the three calibration curves interpolated by three distinct spline
curves. The normalized amplitude values are calculated by dividing the single amplitude value for its
equivalent normalization coefficient, also expressed in Volts, following Equation (5):

R(λi) =
scene_amplitude_in_Volts

normalization_coe f f icients_in_Volts
(5)

The color information is also affected by the angular effect between the incident laser beams and
every single illuminated portion of the surface: to balance this effect, the normalized color information
is weighted by the equivalent cosine of the angles between the incident laser beam and surface normal
versors (Lambert’s Law), following Equation (6) [35,36]:

R(λi) =
R(λi)

cos ϑi
(6)

Finally, the single point RGB triplet is obtained by using Equation (7):

Y = K·∑
λ

S(λi)·R(λi)·ycm f (λi)∆λ (7)

where S(λi) is a CIE illuminant, at the moment, set as energy equivalent and weighted by experimental
values, R(λi) is the normalized reflectance factor, ycm f (λi) is one of the three CIE standard observer
color-matching functions (xcm f (λi), ycm f (λi), z(λi)), Σλ represents summation across wavelength λ,
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∆λ is the measurement wavelength interval, and K is a conventional normalizing constant defined
as [35,37]:

K =
100

∑λ S(λi)·ycm f (λi)·∆λ
. (8)

Finally, the calibrated RGB data is merged with range information converted into
Cartesian coordinates expressed in physical units and the geometrical information is rearranged.
The post-processing elaboration is carried out through the ITR software in order to produce high-quality
3D digital models of the scanned surface [34].

2.2. IR-ITR Prototype

The ITR monochromatic laser scanner (Figure 3a) is employed for inspections under a superficial
layer with a thickness of up to some hundreds of microns by the processing of backscattered data.
This system uses an IR source with a wavelength of 1550 nm and a power of some tenths of mW/mm2.
The optical setup of this system consists of an aspherical lens for focusing the launching laser beam
and a receiving doublet lens (50 mm in diameter, and 150 mm in focal length) for the detection of
receiving signals from up to 10 m of distance, with a laser spot size of 4–5 mm and a power density of
less than 1 mW/mm2, as can be calculated by Equation (9):

Power density
(

mW
mm2

)
= Laser power/Spot area = 10 mW/12.56 mm2 = 0.796 mW/mm2 (9)
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(b) a detail of the launching fiber, directly connected to the IR laser source, and the IR detector.

The modulation frequency in this case is 3 MHz and the principle of operation is the same as that
of the RGB-ITR scanner. In this case, an IR detector (Licel APD Inasga, Figure 3b) is directly connected
with the optical receiving channel and the lock-in amplifier. The Licel APD (Avalanche PhotoDiode)
module combines a Si APD, TE cooler, temperature controller, low-noise amplifier and XYZ positioner
in a single compact module. The laser control is carried out through a laptop equipped with suitable
software, while the scanning procedure is remotely commanded with ITR custom software.

2.3. Custom Software

The scanning procedure and the post-processing elaborations are controlled by the use of custom
software developed in MATLAB® framework: ScanSystem and itrAnalyzer. The features of these
tools allow setting scanning parameters based on working needs and, on the other hand, to obtain
high-quality images from data elaboration.
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2.3.1. ScanSystem

The ITR data acquisition process is driven by the custom ScanSystem tool, which allows
setting scanning parameters, acquire calibration data and checking the functionality of the electronic
component. With a motion controller, the software enables the movement of the laser spot onto the
surface in order to fix vertical and horizontal limits and arranges the area to be scanned. Among
the parameters controlled by the software, there are acquisition velocities (vertical and horizontal),
angular resolution (calculated at each scan), number of points in terms of pixels per row. Furthermore,
a single scan can be divided into multiple scripts, in order to reduce the angular span for construction
limits of a scanning module or logistic reasons. The same software is used to achieve calibration data,
recording reflectance signals from a white target reference at each fixed step along the distance range.
The file extension of a scan project is .prj (Simulink Project), elaborated with itrAnalyzer in MATLAB®

environment, while the calibration dataset is saved as Excel file (.xls).

2.3.2. itrAnalyzer

Data elaborations are carried out with itrAnalyzer software, which enables several operations
on ITR data, imported in MATLAB® as matrices. The main features of this specially developed tool
are 2–3D buildings of models, color and profile analyses, registration of meshes and calibrations,
while among the second-level functionalities, it allows for image enhancement for the study of hidden
details, color correction and smoothing. This software can be considered as the link between RGB-ITR
raw data and commercial software for 3D modelling and photo manipulation.

3. Case Studies

The Imaging Topological Radar technology has been widely employed in CH investigations
during the last twenty years with several different purposes. We report significative applications
carried out in the last three years both in situ and in laboratory case studies, showing the versatility of
the techniques on different materials and situations.

3.1. In Situ Acquisitions

Since 3D color digitalizations were considered among the requests and necessities, the RGB-ITR
scanner has been employed. We show case studies where the scanner prototype has proved to be
efficient in terms of acquisition timing, quality results and good response to specific/critical conditions.
In particular, the color laser scanner has been engaged in the following sites:

• Saint Brizio Chapel, Orvieto Cathedral (Viterbo, Italy);
• Greek Chapel, Priscilla Catacombs (Rome, Italy);
• Tower room, Saint Sebastian Gate, Aurelian Walls (Rome, Italy);
• Egyptian wood sarcophagus (Milan, Italy).

3.1.1. Saint Brizio Chapel in Orvieto Cathedral

In the right aisle of the Orvieto Cathedral, there is what is considered to be one of the jewels of the
Early Renaissance: the Saint Brizio Chapel (Figure 4a). This masterpiece dates back to the 15th century
and shows the excellent skills of Italian painters, in terms of both painting techniques and realization
of the topic [38]. The chapel was totally painted with the frescoes by Luca Signorelli [39], considered
the master and precursor of Michelangelo. The peculiarities of the site are the high illumination due
to the presence of three large windows and the gold glazing of some part of the paintings, factors
that produce distortions in color transposition in most of the image-based acquisition methods [40].
The work inside the chapel was aimed at the 3D color digitalization of the frescoes, which was never
done before with scanner techniques and important for structure and fresco monitoring over time.
For the acquisition process, the RGB-ITR system (Figure 4b) was set up in the center of the room,
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moving only the optical head in different stations in such a way as to allow the laser beam to scan the
entire surface. The required time for data acquisition was about 26 h, comprehending night and day
periods, without interdiction to visitors.J. Imaging 2018, 4, x FOR PEER REVIEW  8 of 18 
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3.1.2. Greek Chapel in Priscilla Catacombs

The funerary complex of Priscilla Catacombs, dating back to between the 2nd and the 5th
centuries, extends for more than 8 km under Rome at several levels of depth excavated in tuff
stones. Around the cemeterial galleries, there are several important iconographic testimonies of the
paleo Christian age, from inscriptions and paintings to cubicula and small rooms. Among the latter,
the Greek Chapel (Figure 5) is one of the most significative representations of the Testament inside
the complex. The little chapel, which takes its name from two Greek inscriptions inside it, stands
out for the colored decorations and religious scenes, unique and particular for the historical period
and artistic skills [41]. The hypogeum structures are critical ambient for the pictorial elements, which
can be affected by biological attack, saline efflorescence, material swelling or cracking [42,43]. Due to
the particular thermo-hygrometric conditions of the Priscilla catacomb environment, such as low
temperature (~14 ◦C) and high humidity (~98%), procedures of the monitoring and documenting
of the state of health were as important as urgent in order to keep alterations, detachments and the
general conservation status under control. However, uncontrolled microclimatic parameters can be
damaging also to electronic components, built for operation in ideal thermo-hygrometric conditions
(T~15 ÷ 35 ◦C, RH-relative humidity~35 ÷ 75%) [44]. In this case, the solution to the hygrometric
problems, i.e., condensation, was solved, covering the electronic components with a PVC (polyvinyl
chloride)-protective sheet.

Due to the several architectonic elements, the complete 3D digitalization of the room required
several stations, placing the electronic components in two positions and moving the scanning module
along the chapel. For these reasons, the area was divided into multiple scans for a total of approx. 190 h.
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Figure 5. The Greek Chapel inside the Priscilla Catacombs in Rome (Italy): photographic images of the
RGB-ITR system during the scan (Photo: S. Ceccarelli).

3.1.3. Tower Room in Saint Sebastian Gate of the Aurelian Walls

The city of Rome has many remains of ancient protection walls, dating back to the Roman imperial
age. This important proof of the military strength of the Roman army surrounds several areas of the city
and comprehends monumental gates, such as the Saint Sebastian one (Figure 6a). The architecture is
typical of this type of structure, even if it has undergone several remakes over the centuries: one central
arch between two lateral towers was developed into three floors [45,46]. The room of the right tower is
particularly interesting from a historical and artistic point of view, because of the presence of charcoal
drawings and inscriptions as testimonies of soldiers’ lives in a military establishment in the late
19th century (Figure 6b). These inscriptions, illegible from the ground, have been the main object
of the ENEA work, through 3D modelling and image enhancement of RGB-ITR data for the content
extrapolation and reconstruction. The data acquisition process was carried out in 10 days, moving
the system in seven different stations for the complete digitalization of each architectural structure
(columns, vault).
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Figure 6. (a) Saint Sebastian monumental gate, which is part of the Aurelian Wall and the location
of the Walls Museum in Rome (Italy). The red dashed square indicates the digitalized tower room;
(b) detail of the interiors of the right tower with the RGB-ITR in working position. (Photo: S. Ceccarelli).

3.1.4. Egyptian Wooden Sarcophagus

The Egyptian anthropoid sarcophagus of Peftjauyauyaset (Figure 7a) belongs to the XXVI dynasty
(7th–6th century BC) and is precious evidence of crafting skills of the Late Period of ancient Egypt.
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This fragile artefact, coming from the Archaeological Museum of Milan, is made of Lebanon
cedar wood, covered with painted plaster and intaglio carvings. The sarcophagus is completely
decorated, both internally and externally, with polychromatic drawings and hieroglyphics. The general
conservation status is particularly exceptional for what concerns the wooden structure and the
decorations. The 3D models of the two part of the sarcophagus were requested from the restorers
as documentation material before restoration. The digitalization process had to deal with a set of
problems, such as reduced distances between object and system (<3 m), complex structures made of
concavities and convexities, multiple materials and several incisions. The RGB-ITR system was placed
at a fixed station (Figure 7b), while the two parts of the sarcophagus were moved to three different
positions in order to scan entirely the artwork.
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Figure 7. Digitalization of Egyptian wooden sarcophagus of Peftjauyauyaset: (a) the artefact in one of
the three positions during the scan. The decorations are clearly evident both internally and externally,
where also incisions characterize the artefact; (b) acquisition conditions with the RGB-ITR laser scanner.
(Photo: S. Ceccarelli).

3.2. Laboratory Tests

Due to its very prototypal status, the IR scanner was tested in a laboratory environment on two
painted samples. The first canvas (Figure 8a) presents three bands (blue, orange and light green) made
with watercolor. From a naked-eye observation, an underlying drawing can be noticed although the
different elements are not clearly visible. The second canvas (Figure 8b) has a wave motif, with a color
gradient from black to greenish. The materials are acrylics, but from the direct observation of the
work, the painting technique is not evident. The laboratory experiment (Figure 8c) was carried out,
illuminating with IR-ITR scanner one canvas at a time at two different distances (at 10 m (Figure 8a)
and at 5 m (Figure 8b)), in order to compare the quality of the results at a different distance range.
By using a Thorlabs detector card [47], the IR laser beam was visualized on the canvas and the scanning
area was defined through the ScanSystem software.
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Figure 8. Laboratory test with the IR-ITR scanner on painted samples: (a) canvas painted with
three watercolor bands. The presence of drawings under the pictorial film is evident, but not clearly
discernible; (b) acrylic painting on canvas, where the shading technique is not immediately evident;
(c) laboratory conditions for tests on the watercolor canvas placed at a 10 m distance from the IR-ITR
scanner. (Photo: S. Ceccarelli).

4. Results

The reported results were achieved using the instruments for a minimum of one hour to a
maximum of one week, with post-processing phases duration from less than hours for preliminary
3D modelling up to several days for the complete merging of multiple scans or image enhancement.
In Table 1, the main scanning parameters and difficulties of each case study reported in this paper
are summarized.

Table 1. Scanning parameters and critical issues of the case studies considered in this work.

Target Acquisition
Time

Minimum Angular
Step

Distance
Target/System Critical Issues

The San
Brizio Chapel

~26 h
(day and night) 0.14 mrad 4 ÷ 9 m Excessive brightness

The Greek Chapel ~190 h
(day and night) 0.07 ÷ 0.035 mrad 3 ÷ 6 m High humidity and reduced

working space

The Saint
Sebastian Gate

~130 h
(day and night) 0.14 ÷ 0.07 mrad 5 ÷ 11 m Excessive brightness and

small inscriptions

Egyptian
sarcophagus

~70 h
(day and night) 0.07 mrad Less than 3 m Irregular surface and

reduced distance

Watercolor canvas 1 h and 45 min 0.035 mrad 10 m Unknown layering
and watercolor

Acrylics canvas 40 min 0.035 mrad 5 m Unknown layering and
acrylic colors

4.1. 3D Modelling and Image Enhancement

The digitalization of the San Brizio Chapel was carried out during day and night hours,
independently from the high illumination that characterizes the room and strongly defeats
photographs, as can be noticed in Figure 9.
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Figure 9. The San Brizio Chapel: photograph acquired with a Canon digital camera. The picture is
highly illuminated due to the presence of three wide windows inside the chapel. (Photo: S. Ceccarelli).

The final 3D model was built from the merging of multiple scans acquired with a very partial
overlapping along the edges, in order to give reference points during the registration process,
carried out by picking the same points in the two textures to register, as shown in Figure 10.J. Imaging 2018, 4, x FOR PEER REVIEW  12 of 18 
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Figure 10. Procedure for the registration of textures by picking similar points for the elaboration of
the 3D model of the San Brizio Chapel. (Elaboration carried out by ENEA team with the custom
software itrAnalyzer).

Figure 11 shows the complete model of the chapel, providing a truthful transposition of colors in
a 3D reconstruction without saturations or shadows.
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Figure 11. 3D model of the San Brizio Chapel obtained with the RGB-ITR scanner. The colors are
uniform without shadows, unlike photographs (Figure 9). (Elaboration carried out by ENEA team with
the custom software itrAnalyzer).

The 3D modelling of the Greek Chapel required tens of scans, dividing the room into multiple
sub-areas. The single scans were calibrated and then all registered with each other using itrAnalyzer
software for the building of the final 3D model, partially shown in Figure 12.
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Figure 12. 3D partial model of the Greek Chapel reporting truthful colors. (Elaboration carried out by
ENEA team with the custom software itrAnalyzer).

In the case study of the Saint Sebastian tower, in addition to the 3D modelling (Figure 13a),
the post-processing phases on RGB-ITR data included the application of ‘affine’ algorithm for letter
detection and background removal (Figure 13b). The research has provided a partial reconstruction
of the inscriptions contents through the extrapolation of single letters [48]. Further elaborations are
needed for automatic word reconstructions based on letter recognition.
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Figure 13. Tower room of the Saint Sebastian Gate: (a) image of part of the 3D model of the room;
(b) detail of background removal elaboration for the reconstruction of inscriptions’ contents [48].
(Elaboration carried out by ENEA team with the custom software itrAnalyzer).

The sarcophagus digitalization has represented an interesting instrumental challenge, both in
terms of material and shape. The several concavities and convexities of the artefact requested different
object positioning and multiple scans, translated into the registrations of several textures. Since
the study is still ongoing, the results are not complete but promising, having achieved accurate
digitalization of colors, materials and irregularities (Figure 14b), not well appreciable with laboratory
artificial illumination (Figure 14a).J. Imaging 2018, 4, x FOR PEER REVIEW  14 of 18 
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Figure 14. Egyptian sarcophagus: (a) photographic image of the inferior part of the anthropomorphous
sarcophagus (Photo: S. Ceccarelli); (b) part of the 3D model of the ancient wooden artefact achieved with
the RGB-ITR system (Elaboration carried out by ENEA team with the custom software itrAnalyzer).
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4.2. Infrared Imaging

The laboratory test on a three-color canvas has shown interesting details of the drawings
underlying the superficial painting, barely visible to the naked eye (Figure 15a). Indeed, the IR
image has clearly revealed different elements under the three watercolor bands (Figure 15b), providing
an efficient means of investigation for preparatory drawings.
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Figure 15. IR-ITR experiment: (a) photographic image of a watercolor canvas (Photo: S. Ceccarelli);
(b) IR-ITR image where the underdrawings’ details are clearly visible (dashed shapes indicate the
underdrawings elements in correspondence of the visible image), (Elaboration carried out by ENEA
team with the custom software itrAnalyzer).

The scan on the acrylic canvas (Figure 16a) has provided details on the painting technique,
revealing how the nuances of the black waves have been realized before the definitive and visible
drawing (Figure 16b).
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Figure 16. IR-ITR experiment: (a) photographic image of an acrylic-colored canvas (Photo: S. Ceccarelli);
(b) IR-ITR image where the lines and shades are different from the visible image, revealing changes
from the original drawing and the realization technique (dashed shapes indicate the different elements
in relation to the visible image), (Elaboration carried out by ENEA team with the custom software
itrAnalyzer).
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5. Conclusions

Image techniques and 3D modelling are nowadays widely employed in the CH Conservation
Science, which disclose a modern, non-invasive and engaging analysis tool. Several commercial
systems are available on the market for 3D modelling, but they often require the complementarity with
other techniques with limitation in terms of illumination conditions and spatial resolution. Likewise,
close-range imaging, such as filter-wheel cameras, has distance and object size constraints. In this
paper, two prototypal laser scanners using n-laser stimuli have been presented in order to demonstrate
the quality, efficacy and the versatility of this methodology in this application field as a unique means
for 3D digitalization and IR layering inspections. The color laser scanner, called RGB-ITR, has been
used for 3D modelling and in-depth analyses from high-quality image enhancement, proving to handle
critical surrounding conditions greatly, such as high humidity and great lighting, and irregular material,
such as wooden anthropoid sarcophagi. The IR system, called IT-ITR, has been tested on laboratory
samples, attesting validity for inspection under layers of different painting materials (acrylic and
watercolor) at up to 10 m of distance from the system, contrary to close-range instruments. The results
have shown the potentialities of the two laser scanners and their versatility in terms of environmental
circumstances and materials, two important but unstable factors in the CH field. The ITR images can be
used for conservation purposes for their high detailing and re-usability over time. Future plans include
the implementation of laser sources, even using the same scanner, in order to achieve a multispectral
scanner as a multipurpose system for applications in a wider range of materials and not exclusively
limited to CH. The research group is working on a new version of this scanner, which will host
7 wavelengths—one in the near ultraviolet spectrum (380 nm), four in the visible spectrum (441, 530,
580, 660 nm) and two in the infrared (800, 1500 nm) spectrum—with the aim to develop a multispectral
(up to several ten meters) high-density point cloud remote sensor
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