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Abstract: This article addresses methods for detection of orientation-modulation data embedded
in color dispersed-dot-halftone images. Several state-of-the-art methods for detection of
orientation-embedded data in printed halftone images have been proposed, however they have only
been evaluated independently without comparing with each other. We propose an improved detection
method, which is using Principal Component Analysis (PCA) components as oriented-feature
extractors, and a probabilistic model for the print-and-scan channel for maximum likelihood detection.
The proposed detector and four state-of-the-art detectors are compared with each other in terms of
correct detection rate, using a comprehensive testing set of printed natural images captured with three
different devices. The proposed detector achieves highest correct detection rate using fewer feature
extractors than the other methods, and it is significantly more robust to non-calibrated devices used
for capturing the printed images. This is mostly due to the improved PCA-based oriented-feature
extractors that are responsive to the embedded orientations and robust and insensitive to the other
visual content.

Keywords: halftoning; watermarking; watermark detection; orientation modulation; data hiding;
data embedding; dispersed-dot; direct binary search

1. Introduction

Techniques for embedding hidden data in to-be-printed content have been studied for the past
few decades. Such embedded data may be used in different ways and applications, including:
authentication of a document content, as additional layer of protection against document copy-attack,
or simply as digital identifiers in applications where barcodes or Quick Response (QR) codes are
actively used nowadays. The printing process normally introduces significant amount of distortion
to data embedded in continuous-tone images, so techniques that do not account for the properties
of the printing channel may not be optimal in rate/distortion terms. A typical printing workflow
includes a step named halftoning, which is the process of converting a continuous-tone (contone),
normally 8-bits per colorant channel input image, to a binary, 1-bit per colorant channel, halftone
image [1]. Binarized halftone images can be easily handled by most off-the-shelf printers as they are
binary devices themselves—during the printing process, at any addressable location on the printing
substrate, the printer either deposits a colorant dot or not. The halftoning step can be seen as a heavy
quantization that could have severe impact on previously embedded data. In order to increase the
robustness of embedded data in to-be-printed images, the data embedding can be done during or after
the halftoning step.

Methods for data embedding in halftones have been proposed for different underlying
halftoning algorithms. A selected overview include data hiding techniques based on ordered
dither halftoning [2,3], error diffusion halftoning [4–6], direct binary search (DBS) halftoning [7–9],
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or clustered-dot halftoning [10–12]. Most of these methods embed data by enforcing certain criteria
on isolated printer dots (halftone pixels or halftone cells), which makes the extraction of embedded
data sensitive to synchronization/focus—the data extraction from prints is effectively possible using
scanners and very difficult using consumer cameras or smartphone cameras. Guo et al. [13] proposed
a data hiding method in dispersed-dot DBS halftones, which embeds oriented features in an arbitrary
halftone block that may contain hundreds or few thousands halftone pixels. This method is named
orientation modulation (OM), it offers flexibility regarding the printed size and the strength of the
embedded oriented features, and hence, the capture device used for data detection/extraction. This OM
method was later extended to color images by embedding oriented features in the chromatic channels
only [14], and it is based on the color direct binary search (CDBS) halftoning algorithm [15]. The data
capacity of such CDBS-OM embedded data, depending on the size and strength of the oriented
embedded features, ranges from few dozens to few hundreds bits per square inch of printed image
area [14]. This opens the possibility of using CDBS-OM watermarked images in many camera-based
applications where existing barcode or QR-codes are used, such as: marketing/advertising, ticketing,
packaging, IDs and passports, documents and certificates, or supply chain management.

This work is focused on the detection of CDBS-OM embedded data in chrominance channels of
color printed images. The originally proposed method [14] uses PCA-based oriented feature extractors
in a simple correlation-based detector that does not use any knowledge about the print-and-scan
channel. Other relevant detection strategies are using reconstruction error from sparse dictionaries
learned for each orientation [16], least means squares (LMS) filters as oriented feature extractors [13],
or image moments as orientation descriptors [10]. The last two detectors use a probabilistic model
for the print-and-scan channel, the last three detectors have been proposed and evaluated for
monochromatic printed images only, and all four detectors have been evaluated using only scanned
images. The aim of this work is to propose an efficient and robust method for detection of CDBS-OM
embedded data in color printed images captured using wider range of capture devices, and evaluate
its performance on a large image dataset with respect to relevant state-of-the-art detection methods.
The proposed method is using PCA-based oriented feature extractors, and maximum likelihood (ML)
detection based on a probabilistic model for the print-and-scan communication channel. We show
that PCA can be used to reduce the number of oriented feature extractors, which decreases the
computational complexity of the detector. The comparison with the state-of-the-art detectors shows
that the proposed PCA-based feature extractors, together with a probabilistic model for the data
communication print-and-scan channel and ML detection, achieve the highest correct detection rate
and they are significantly more robust to the scan/capture part of the print-and-scan channel.

2. Materials and Methods

2.1. Data Embedding Using Orientation Modulation Based on CDBS Halftoning

The color direct binary search algorithm is an iterative, dispersed-dot type, halftoning algorithm
that minimizes the difference between the perceived contone image and the perceived halftone image.
These perceived images are obtained by converting the contone and the halftone to the color space
used for difference minimization and filtering them with point-spread functions (PSFs) that model the
low-pass nature of the human visual system [15]. During the iterations over all of the halftone pixels,
two types of halftone changes are evaluated: a ‘toggle’—the current halftone pixel is changed to all the
other possible values, and a ‘swap’—the current halftone pixel is swapped with all the pixels from a
pre-defined (usually 3 × 3) neighborhood. These potential halftone changes are evaluated in terms of
the impact on the minimization cost—the difference between the perceived images. The change that
causes the largest cost decrease is accepted and the halftone is updated with the change. This process
is repeated for every halftone pixel in several iterations until no halftone pixel changes may further
decrease the cost.
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The data embedding in CDBS-OM is performed by embedding oriented features in the
chrominance channels of the block-segmented halftone. This is achieved by orienting the chrominance
point-spread functions that are used for obtaining the perceived images in the CDBS halftoning
method. The flowchart of this process is shown on Figure 1 where modulating the orientation of the
chrominance PSFs according to the to-be-embedded watermark data is shown within the whole CDBS
iterative framework. For analytical formulations of the CDBS and the oriented PSFs, the reader is
referred to [14]. Briefly, the embedding is performed by segmenting the halftone into M × N blocks
and using one of the n different oriented PSFs (according to the n-ary to-be-embedded data) for each
block in each of the two chrominance channels during the CDBS iterations. These oriented PSFs
enforce the orientation of the perceived error during the iterations. The resulting halftone texture
is coarser in the orientation of the point-spread function, but it is smoother in the perpendicular
orientation. That can be easily detected in frequency domain because of lower energy concentration in
the smoothening spatial orientation. In order to embed oriented features in the chrominance channels
using the CDBS-OM method, the iterative minimization needs to be performed in an opponent color
space. In this work, we use the YyCxCz color space [17]. We also use the 2 × 2 dot-centered printer
model [18] to predict the printer output using 2 × 2 halftone cells.

Figure 1. Flowchart of the CDBS-OM data embedding method.

Figure 2 shows an example of two different oriented features embedded in the two chrominance
channels of the same halftone block—they can be seen both in spatial and in frequency domain.
The embedded oriented features (oriented at 45◦ and 135◦) are obtained via CDBS-OM using two
different oriented PSFs for the red-green (Cx) and the blue-yellow (Cz) chrominance channels of the
halftone block.

Figure 2. (a) Watermarked CMY halftone block; (b) PSF used for embedding the oriented feature in the
red-green Cx channel, shown in spatial and frequency domain; (c) Same as (b) but for the blue-yellow
channel Cz.

2.2. State of the Art Detection Methods for OM Embedded Data

This subsection briefly describes relevant state-of-the-art methods for detecting embedded
oriented features in printed images. In the evaluation section of this paper, we compare all of them to
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our proposed detection method. Given that some of these methods were not originally proposed for
color images or for dispersed-dot halftones, here we also specify their extension to our scenario.

2.2.1. LMS Trained Filters

The originally proposed orientation modulation method for data hiding in dispersed-dot halftones
uses LMS trained filters as oriented feature extractors [13]. The LMS-filters are trained from the
magnitude of the Discrete Fourier Transform (DFT) of the watermarked halftone blocks, and a separate
LMS-filter is trained for each of the embeddable orientations. In the training process for orientation θ,
a gradient-based approach is used for minimizing the squared difference between the trained LMS-filter
and the training halftone blocks for the orientation θ, while maximizing the squared difference from
all the other embeddable orientations. The extracted feature is the cross-correlation score (the scalar
product) between the LMS-filters and the testing halftone block. These single-number features are
extracted for each possible (embeddable) orientation and they are used for maximum likelihood (ML)
detection of the embedded orientation:

θd = arg max
θ

∏
i

p
(

xθi

∣∣θ); xθi = ∑
m,n

H(m, n)·uθi (m, n) (1)

In Equation (1), θd is the detected orientation in the testing block, uθi(m, n) is the LMS-filter for
orientation θi, H(m, n) is the magnitude of the discrete Fourier transform of the testing block, xθi is the
extracted feature—their cross-correlation score, and p

(
xθi

∣∣θ) is the probability density of the extracted
feature using LMS-filter for orientation θi when the embedded orientation is θ.

This detection method was originally proposed for grayscale dispersed-dot halftones. We extended
them to the CDBS-OM color halftones in the following way: the LMS-filters are trained from the
block-DFT representation of the chrominance channels of the CDBS-OM halftones; then a joint decision
is made for the detected data in the two chrominance, red-green (indexed as ‘rg’) and blue-yellow
(indexed as ‘by’), channels:

θr, θb = arg max
θrg,θby

∏
i,j

p
(

xθi

∣∣∣θrg, θby

)
·p
(

xθj

∣∣∣θrg, θby

)
(2)

In Equation (2), θr and θb are the detected orientations in the two chrominance channels of the
testing block, xθi and xθj are extracted features (cross-correlations score), i and j are indexing the
orientations in the red-green and blue-yellow channels, respectively. The trained LMS-filters for the
blue-yellow channel and embeddable orientations 45◦ and 135◦ are shown in Figure 3a.

Figure 3. (a) Trained LMS-filters from blocks with embedded orientations 45◦ and 135◦; (b) First two
PCA components for 45◦ and 135◦; (c) Three atoms from learned dictionaries for 45◦ and 135◦.

We use histogram densities to estimate the probability densities in Equation (2), as that approach
achieved best results in the original grayscale case.
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2.2.2. PCA Components

The color extension of the orientation modulation method in dispersed-dot halftones uses PCA
to learn the main components, or eigen-templates, of the watermarked halftone blocks for each
embeddable orientation [14]. Similar to the previous method, these eigen-templates are calculated from
the DFT-transformed watermarked blocks (with the highest frequencies removed), and the extraction
of the oriented feature from the testing blocks is done using cross-correlation scores calculated between
the eigen-templates for different orientations and the testing block. The sign of the eigen-templates
is chosen such that the cross-correlation score is positive when their orientation matches the one
embedded in the testing block. A detection metric composed of similarity and dissimilarity score,
both based on cross-correlation scores, is calculated for each of the possible orientations. The embedded
orientation in the testing block is decided to be the one that maximizes the detection metric Dθ :

θd = arg max
θ

Dθ ; Dθ =
K

∑
k=1

∑
m,n

eθ,k(m, n)·H(m, n)−
K

∑
k=1

∑
m,n

eθ+90,k(m, n)·H(m, n) (3)

In Equation (3), θd is the detected orientation in the testing block H(m, n), eθ,k(m, n) and
eθ+90,k(m, n) are the k-th PCA components for the orientations θ and θ + 90◦, respectively. The detection
of embedded orientation is made for the two chrominance channels independently of each other.
This detector uses more cross-correlation calculations per orientation than the one in Section 2.2.1,
but it does not use probabilistic characterization of the chrominance print-and-scan channel. The first
two eigen-templates for the blue-yellow channel, with orientations 45◦ and 135◦ are shown in Figure 3b.

2.2.3. Image Moments

An orientation modulation approach for data embedding in to-be-printed images was proposed
initially for clustered-dot halftones [10,11], where the embedded oriented features are the clustered
dots themselves. For detection of the orientation of each clustered dot, image moments calculated
along the embeddable orientations are used as orientated feature extractors. The grayscale version of
OM in clustered-dot halftones uses a probabilistic model for the OM communication channel and ML
detection rule:

θd = arg max
θ

∏
i

p
(
σθi

∣∣θ); (4)

In Equation (4), θd is the detected orientation in the testing block, σθi is the image moment
calculated along orientation θi, and p(σθi|θ) is the probability density of the extracted moments along
orientation θi when the embedded orientation is θ. The extension to color is similar as in the LMS-filter
detector case:

θr, θb = arg max
θrg,θby

∏
i,j

p
(

σθi

∣∣∣θrg, θby

)
·p
(

σθj

∣∣∣θrg, θby

)
(5)

In the case of our dispersed-dot halftones, it makes sense to use image moments as orientation
descriptors if they are calculated in frequency domain. An example of DFT representation of the
embedded features is shown on Figure 2b,c. However, due to moment’s sensitivity to noise and poorer
orientation discrimination ability in cases of more-than-two embeddable orientations [10,16], they are
not suitable for orientation detection of CDBS-OM embedded data.

2.2.4. Sparse Dictionaries

Son and Choo showed that the detection of the orientation of clustered dots could be done by
utilizing sparse dictionaries [16], and their approach performs significantly better than the method
using image moments. A separate sparse dictionary Dθ of size ND is learned for each orientation θ:

min ∑
k
||A(k)||0, subject to ||X−DθA||22 < ε (6)
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In Equation (6), X is a matrix whose columns X(k) are filled with the training halftone blocks
watermarked with specific orientation θ, Dθ is the learned sparse dictionary for orientation θ, A is
the matrix of representation whose columns A(k) are coefficients for representation of X(k) using Dθ .
In other words, the sparse dictionaries are learned so that the representation error is minimized (lower
than an arbitrary value of ε) while the number of non-zero A(k) coefficients used for that representation
is also minimized. The Equation (6) can be solved iteratively using the K-SVD algorithm [19].
The detected orientation in a testing block is decided as the one whose associated dictionary achieves
minimal reconstruction error when only limited number of atoms from the dictionary are used
for reconstruction:

θd = arg min
θ
||H−Dθα||22, ||α||0 ≤ TH (7)

In Equation (7), H is the testing block, and α is the representation column-vector with
maximum TH non-zero coefficients. The vector α is obtained using the orthogonal matching pursuit
algorithm [19], and given that Equation (7) is solved for each orientation (each dictionary Dθ) and
for each testing block, it results in significantly higher computational time compared to the other
detection methods. Figure 3c shows arbitrary three atoms from the dictionaries of size ND = 32 learned
from watermarked blue-yellow channel with orientations 45◦ and 135◦. The number of atoms ND in
the dictionary can vary typically from few dozens to few hundreds, with the overall computational
requirements of the detector increasing with the number of atoms in the learned dictionaries. In order
to extend this dictionary-based detection to our color, dispersed-dot case, we train the dictionaries
separately for each chrominance channel and perform detection using the DFT representation of the
chrominance channels of the watermarked images. The dictionaries can also be learned from spatial
domain chrominance data, but on average, they performed worse using our testing parameters sets.
In this work, we use them fully trained on DFT-based blocks—the same as all of the detection methods
addressed in this paper.

2.3. Proposed Detection Method

2.3.1. New PCA-Based Orientation Feature Extractors

The data embedding by forcing certain oriented halftone textures through oriented PSFs in the
CDBS iterative halftoning framework (Figure 1) is not direct and explicit—the final texture of the
watermarked halftone block is dominantly influenced by the contone image content, and the actual
instantiation of the embedded oriented feature can vary a lot among different blocks. Using PCA
to learn the main components of embedded feature variation for each orientation and using those
components as correlation-based feature extractors is easy to justify—the cross-correlation score is
proportional to the covariance by definition, and the main PCA components capture the direction of
highest variance in the training watermarked halftone blocks.

In the previously published work [10,11,13,14,16], the oriented feature extractors in the detectors
are constructed separately for each of the embeddable orientations. In this work, we demonstrate
the use of PCA to reduce the number of feature extractors. Instead of using separate training sets
for each embeddable orientation, the training set can consist of watermarked blocks with all of the
embeddable orientations (in an equal amount). PCA decomposition of such joined set results in
principal components that discriminate the orientations in a more efficient way. We show three
different examples in Figure 4, obtained using three training sets consisted of 11,250 watermarked
blocks. In the case of two possible embeddable orientations (1 bit per block) with associated angles
of 0◦ and 90◦, we obtained the first five principal components shown in Figure 4a. Figure 4b shows
the first five components when the embeddable orientations are 45◦ and 135◦, while the case of 2 bits
per block, or four embeddable orientations 0◦, 45◦, 90◦ and 135◦, is shown in Figure 4c. What is
common for all cases is that the first component cannot be used as an orientation discrimination
feature—it captures the main direction of blocks variation regardless of the embedded orientation.
The approximate explained variance is given below each of the components and it is significantly
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higher for the first component—we could argue that the first component captures the main direction
of visual content variation. The next component, or the next two components for the 4-orientations
case, efficiently captures the variation due to the orientations embedding. The gray areas in those
components have values very close to zero. In the case of two orientations, the cross-correlation score
between the second component and a testing block would normally be either positive and closer to one
or negative and closer to minus one depending on the actual embedded orientation in the testing block.
In the case of four orientations, the cross-correlation score calculated using the second component
could obviously be used to discriminate between the horizontal and the vertical orientation, while the
third component can be used to discriminate between the two diagonal orientations. The proposed
feature extractors are those PCA components that can discriminate between at least two embeddable
orientations. While it can be formally tested which of those components, starting from the first,
are suitable as feature extractors, in the case of OM embedded data it is easy to select them simply by
visual inspection.

Figure 4. The first five PCA components of watermarked blocks with different orientations in the Cx
(top) and Cz channel (bottom), rounded percentage of explained variance in the training set is shown
below the components. (a) Two embeddable orientations, 0◦ and 90◦; (b) Two embeddable orientations,
45◦ and 135◦; (c) Four embeddable orientations, 0◦, 45◦, 90◦ and 135◦.

2.3.2. ML Detection

The extracted features using the proposed PCA components can be used for detection of an
oriented feature embedded in the testing block. However, a simple decision criterion might not
be optimal, so we use a statistical model for the chrominance print-and-scan channel that acts as a
transmission channel for the data between the embedder and the detector. The channel likelihood
function can be modelled to be of the form p(Xrg, Xby

∣∣∣θrg, θby) that is a conditional probability density
function of the extracted features Xrg and Xby calculated in the red-green and blue-yellow chrominance
channel, when the embedded orientations in those channels are θrg and θby respectively. If we assume
conditional independence between the extracted features in the two chrominance channels, then the
channel likelihood function can be factorized as:

p
(

Xrg, Xby

∣∣∣θrg, θby

)
= p

(
Xrg

∣∣∣θrg, θby

)
p
(

Xby

∣∣∣θrg, θby

)
(8)

This assumption for conditional independence may not fully hold, however, in practice it would
be difficult to estimate the channel likelihood function without making this assumption. The vectors
Xrg and Xby have as many elements as orientation feature extractors, i.e., it is a one-element vector
for the 2-orientations case, two-element vector for the 4-orientations case, and so on. Without losing
generality, the following presentation is tailored to the case with four orientations—our previous
work [14] showed that increasing the number of embeddable orientations up to four does not have
significant impact on the detector’s performance. In that case, the channel likelihood function can be
written as:

p
(

Xrg, Xby

∣∣∣θrg, θby

)
= p

(
X1

rg, X2
rg

∣∣∣θrg, θby

)
p(X1

by, X2
by

∣∣∣θrg, θby ) (9)
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In Equation (9), the indexes 1 and 2 correspond to the features extracted using the first and
second PCA-based feature extractor, i.e., the second and third principal components in Figure 4c. It is
safe to assume that the features extracted using different PCA components are independent—they
are uncorrelated due to the PCA orthogonality property, and given that they are close to normally
distributed (an example is shown in Figure 5a) we can safely assume their independence. Thus, the
channel likelihood function gets the following form:

p
(

Xrg, Xby

∣∣∣θrg, θby

)
= p

(
X1

rg

∣∣∣θrg, θby

)
p
(

X2
rg

∣∣∣θrg, θby

)
p(X1

by

∣∣∣θrg, θby )p(X2
by

∣∣∣θrg, θby ) (10)

Figure 5. (a) Probability densities for the extracted feature using the first PCA extractor (second PCA
component in Figure 4c), calculated on training data in Cx channel with four different orientations;
(b) Probability densities for extracted feature using horizontal LMS-filter; (c) Probability densities for
horizontal moment.

Given that in our case, each of θrg and θby can have four different values, the channel likelihood
function can be obtained using Equation (10) by estimating a total of 43 = 64 probability density
functions. These functions are estimated via histogram densities obtained using training CDBS-OM
printed and scanned images. The ML detection rule is simply the combination of orientations θr and
θb that maximize the channel likelihood function:

θr, θb = arg max
θrg,θby

p
(

X1
rg

∣∣∣θrg, θby

)
p
(

X2
rg

∣∣∣θrg, θby

)
p(X1

by

∣∣∣θrg, θby )p(X2
by

∣∣∣θrg, θby ) (11)

The channel likelihood function (as in Equation (10)) can be easily derived in the same way
for cases with different number of embeddable orientations. We note that we used this channel
modelling approach to define the extension of LMS-filter-based detector and moments-based detector
to our color case—hence the high similarity between the detection criterion in Equation (11) and the
ones in Equations (2) and (5). However, for the LMS-filter-based and moments-based ML detections,
the channel likelihood factorize into twice the components i.e., the number of probability density
functions that need to be known is double than for the proposed detector—due to twice more
orientation feature extractors (one feature extractor per embeddable orientation).

We show the estimated probability densities in the red-green Cx channel for extracted horizontal
features using the proposed PCA-based extractors, LMS-filters, and image moments. Figure 5a shows
the probability densities of the scores obtained using the first PCA feature extractor (second component
in Figure 4c), p

(
X1

rg

∣∣∣θrg, θby

)
for θrg = θby ∈ {0◦, 45◦, 90◦, 135◦}. It can be seen that this feature can

almost fully discriminate between the horizontal and vertical embedded orientations, while the overlap
between the distributions for the horizontal and both diagonal orientations is also very low. Figure 5b
shows the corresponding probability densities for the extracted features using the horizontal LMS-filter
p
(

x0◦
∣∣∣θrg, θby

)
for θrg = θby ∈ {0◦, 45◦, 90◦, 135◦}. The overlap between the densities is substantial

when compared to the proposed PCA feature extractors. The maximum probability density value for
the PCA-based extracted features is reached for correlation scores closer to zero when compared to the
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LMS-filter extracted features. This is because the proposed PCA-based extractors does not capture
the main variance direction—leading to lower, in absolute values, cross-correlation scores. Figure 5c
shows the estimated probability densities p

(
σ0◦

∣∣∣θrg, θby

)
for θrg = θby ∈ {0◦, 45◦, 90◦, 135◦}. The huge

overlap between the distributions indicates poor orientation discrimination ability of the horizontal
image moment, and it is the same case for the other moments as well.

3. Results

In this section, we evaluate the proposed detector and compare it to the previously published
types of detectors. All of the presented results are in terms of correct detection rate (CDR) defined
as percentage of correctly detected oriented features from CDBS-OM watermarked printed images.
For training the feature extractors and estimating the distributions in the channel likelihood functions
in Equations (2), (5), and (11), we used 11250 training halftone blocks obtained from 18 images
(the first 18) from the CID:IQ image dataset [20]. The feature extractors for the different detection
methods, as well as the dictionaries, were obtained/trained from digital watermarked halftones.
The feature distributions for the ML detectors were obtained from printed and 600 dpi-scanned
watermarked halftone images. For testing the detectors performance, we used 54 natural images: the
24 images from the Kodak dataset [21] and the 30 images from the CSIQ dataset [22]. In all of the
tests, we used random quaternary watermark data i.e., embedded features with four equally-probable
different orientations (0◦, 45◦, 90◦, 135◦). The halftone block size per embedded oriented feature
was M × N = 32 × 32. The size of the Kodak images is 768 × 512 pixels, while the CSIQ images,
originally 512 × 512 pixels, were scaled to 640 × 640 pixels so they can carry approximately the same
number of embedded features as the images from the Kodak dataset. The watermark quality factor [14]
was set to η = 2.5. All of the images were printed through the Caldera RIP software at 300 dpi on
the HP Premium Matte Photo Paper using the HP Designjet Z3200 printer (HP Inc., Palo Alto, CA,
USA). For the dictionary-based detection, Equations (6) and (7) were solved using the open-source
implementation [23].

For scanning/capturing the watermarked printed images, we used three different devices: Epson
10000XL scanner (Seiko Epson Co., Ltd., Tokyo, Japan), Canon Powershoot A700 compact 6 mega-pixels
camera (Canon Co., Ltd., Tokyo, Japan), and Huawei Honor 7 smartphone 20 mega-pixels camera
(Huawei Co., Ltd., Shenzhen, China). All of the scanned/captured images were manually rotated,
aligned and scaled to their original halftone size. We calibrated the Epson scanner using the Color
Engineering Toolbox [24] that uses 3rd order polynomials for least squares fitting between the scanner
RGB and the XYZ space (with D50 as white point). From the Epson scanner, we obtained two
different scanned sets, at 300 dpi and 600 dpi resolution, which, including the Canon and Huawei
captures, resulted in four different sets of the 54 testing images. The Canon and Huawei cameras
were not color-calibrated—we assumed sRGB values of the captured images in order to convert
them via XYZ to YyCxCz for watermark detection. Given that a real application scenario may
include different and unknown scanning/capture devices as well as different lighting conditions,
we tested the detectors robustness to those type of deviations in the following way: we estimated the
probability densities in Equations (2), (5), and (11) only for the 600 dpi Epson scans of the training
images and we used those estimated probability densities for the whole evaluation that included
the other three scans/captures of the testing images—the 300 dpi Epson scans and the captures
using Canon and Huawei camera. The reason for using only the color-calibrated 600 dpi scans
for modelling the chrominance print-and-scan channels is that they are least affected of external
geometric distortions in the scanning part of the print-and-scan channel such as rotation, scaling or
lens barrel distortion. The Matlab code for features training and detectors comparison is available as
Supplementary Materials; the training and testing printed and scanned/captured images (including
the Matlab code) are available for download [25].

The moments-based detector (Equation (5)) performed considerably worst, with CDR below 45%
in all of the tests and for both of the chrominance channels of all the 54 testing images. As it can be



J. Imaging 2018, 4, 56 10 of 17

seen from Figure 5c, the moment’s probability densities considerably overlap between each other for
different orientations, which also yields to very low ability for discriminating the embedded oriented
features. We conclude that image moments are not appropriate to use as orientation-description
features for OM data embedded in dispersed-dot halftones. To avoid polluting our results, we have
excluded the moments-based detector from further evaluation.

For the performance of the dictionary-based detector, two parameters are most important:
the dictionary size, ND, and the maximum number of atoms used for reconstruction of a testing
watermarked block, TH. In order to find nearly optimal values for these two parameters, we performed
tests for three values of ND—(32, 64, 128) and six values of TH—(from 1 to 6). Regardless of the
scanning/capture device, the CDR had very similar trends, so we show it aggregated for all four
testing sets in Figure 6. It can be seen that the CDR increases with the number of atoms in the
dictionary for the red-green Cx channel. For both chrominance channels, the largest tested dictionary
size ND = 128 achieved highest CDR regardless of the number of atoms used in detection. Regarding
the number of atoms, TH, the results showed that different values of TH may be best for different
sizes ND or chrominance channels. However, averaged for both chrominance channels when ND = 128,
using TH = 2 atoms achieves highest CDR on average for all testing images from all four testing sets.
We use these parameter values for the comparison with the other detectors that follows. While using
dictionaries larger than ND = 128 may potentially achieve even higher CDR, we decided not to test
them because the training time and the actual detection time using dictionaries of size ND = 128 is
already excessively large to be useful in a practical application.

Figure 6. CDR for all images and capture devices using dictionary-based detector, in the Cx (a) and Cz
channel (b), depending on the dictionary size ND (color-coded) and the number of atoms used in the
detection TH.

Regarding the LMS-filters training, there are few parameters such as convergence rate or stopping
threshold [13]. We trialed different values for these parameters, but we did not get any significant
difference in the final detection results. That was mostly because after training the LMS-filters are
normalized to unit energy, so those parameters hardly influence the shape of the learned LMS-filters,
especially when the training set is relatively large—in our case, we used 11250 training watermarked
halftone blocks. Therefore, in this work we train the LMS-filters using the exact parameter values as in
the original work [13].

The 54 testing images include a wide variety of content. Some of them have areas with extreme
dark or light levels, or heavily saturated areas that include a dominant single colorant or dominant
halftone pixel value. In those types of image areas, oriented features may not be embedded at all,
or have very poor strength. That means that the highest CDR of 100% may not be possible regardless of
the detector used, simply because some of the oriented features were not (or were poorly) embedded
with the CDBS-OM method and therefore are not present in the printed images. To demonstrate this,
we show an example in Figure 7. The CDR from the 600 dpi scans using the proposed detector is
shown in Figure 7a. It can be seen that for some of the testing images, a CDR of 100% was achieved
in the Cx or the Cz channel. Figure 7b shows the scanned 20th testing image. The large sky area is
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very bright, and the OM data embedding resulted in covering the sky area with only yellow colorant
dots. The data can be relatively correctly extracted from the blue-yellow Cz channel—the CDR is
around 94%. However, the absence of magenta or cyan dots in the sky area (used for rendering red
or green tones) means that the data were not actually embedded in the red-green channel of that sky
area, resulting in low CDR of around 65%. Figure 7c shows the scanned 45th testing image. There are
large very dark areas where the OM embedded data cannot be extracted due to absence of oriented
red-green or blue-yellow variations. That results in low CDR for both channels. However, the CDR in
the Cx channel of the 45th image is significantly higher than the CDR in the Cz channel. That is mainly
due to the darker tones present in the image, which are rendered using mostly darker (including red
and green) colorant dots.

Figure 7. (a) CDR from 600 dpi scans of all testing images; (b) 600 dpi scan of the 20th testing image;
(c) 600 dpi scan of the 45th testing image.

In order to eliminate this fluctuation of CDR among the testing images, we used one-sided paired
t-test in the CDR analysis. Specifically, in the next tables along the CDR values, we show a column
‘Margin’. The value in this column is the maximum CDR percentage points added to the results of
the competing detectors for which the t-test still rejects (at 95% confidence) the null-hypothesis that
the proposed PCA-based detector on average does not achieve higher CDR. In this way, the ‘Margin’
value can be interpreted as a CDR margin of a statistically significant improvement of the proposed
detector over each of the competing detectors.

In Table 1, we show the average CDR values obtained using the proposed detector and its
competitors, separately for the two chrominance channels, Cx and Cz. We used only the 600 dpi
scanned images for these results. It can be seen that both PCA-based detectors achieve higher CDR
than the rest, with the proposed one, in the Cz channel, achieving statistically significant 0.8 percentage
points higher CDR than the old PCA-based detector. The CDR margins of improvement for the
proposed detector over the rest two vary from 3.7 to 11.7%. The LMS-filter detectors performed third
best, while the dictionary-based detector performed worst.

Table 1. CDR for different detectors using the 600 dpi scanned testing images, and statistically
significant improvement of the proposed PCA-based detector.

Detector
Cx Channel Cz Channel

CDR (%) Margin (% Points) CDR (%) Margin (% Points)

Proposed PCA-based 92.2 - 91.4 -
Old PCA-based [14] 92.3 no 90.1 0.8

LMS-filters-based [13] 87.4 4.2 86.8 3.7
Dictionary-based [16] 79.2 11.7 82.4 7.7

In real application scenarios, the detection of oriented features may be performed with various
capture devices, and it is not practically viable to have channel likelihood functions tailored to each
specific capture device. Therefore, it is important that the feature extractors are robust to non-calibrated
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devices in the scan/capture part of the print-and-scan channel. As previously mentioned, apart from
the 600 dpi scans, we made three other captures using: the same calibrated Epson scanner but at 300 dpi
resolution, a Canon compact camera, and a Huawei smartphone camera. The watermark detection
from these sets was performed assuming the chrominance print-and-scan channel model obtained
from the 600 dpi scanned images. We note that this is relevant only for the LMS-filters detector and the
proposed PCA-based detector, as the old PCA-based detector as well as the dictionary-based detector
are not using probabilistic model for the print-and-scan channel. The CDR from the 300 dpi scans
are given in Table 2. It can be seen that CDR values for all detectors remained roughly the same as
for the 600 dpi scans, with few detectors even performing marginally better than the 600 dpi case.
We argue that the slightly higher CDR may be result to the absence of down resizing when aligning
the 300 dpi images—as they were printed at 300 dpi resolution as well. We can conclude that the
300 dpi scanning resolution is still high enough to allow non-degraded watermark detection from the
300 dpi-printed images.

Table 2. CDR for different detectors using the 300 dpi scanned testing images, and statistically
significant improvement of the proposed PCA-based detector.

Detector
Cx Channel Cz Channel

CDR (%) Margin (% Points) CDR (%) Margin (% Points)

Proposed PCA-based 92.7 - 91.8 -
Old PCA-based [14] 92.9 no 90.8 0.3

LMS-filters-based [13] 86.6 5.4 87.1 3.5
Dictionary-based [16] 82.2 9.1 84.2 6.3

Tables 3 and 4 show CDR obtained using the images from the Canon and the Huawei phone
camera, respectively. Compared to the previous CDR values obtained from the scanned images,
there is significant drop of CDR in both chrominance channels and for all detectors. This can mainly
be attributed to the fact that these two cameras were not color-calibrated, and there was a visible
geometrical barrel distortion. However, the drop in CDR was lower for the proposed detector,
which further increased its improvement margin over the rest. An interesting issue occurred with the
LMS-filter-based detector. The drop in CDR in the Cx channel was quite large, and it occurred for
both camera-captured sets. The low CDR values of around 30–33% are very close to the theoretical
value of 25% that a random guess would achieve as CDR (for this 4-orientations case). After inspecting
the issue more closely, we noticed that the actual probability densities in the channel likelihood for
these cameras are shifted from those obtained for the 600 dpi scans. This is shown on Figure 8 where
probability densities (for 600 dpi scans) used by the detector are shown with solid lines, while the
actual estimated (for the Huawei captured images, similar happens for the Canon captured images)
are shown with dotted lines. The main reason for the shifts is the capture with non-color-calibrated
camera, and this impact is further increased by the lower orientation-discrimination ability of the
LMS-filters (Figure 5b).

Table 3. CDR for different detectors using the Canon-captured testing images, and statistically
significant improvement of the proposed PCA-based detector.

Detector
Cx Channel Cz Channel

CDR (%) Margin (% Points) CDR (%) Margin (% Points)

Proposed PCA-based 85.6 - 69.2 -
Old PCA-based [14] 83.7 1.5 64.3 4.2

LMS-filters-based [13] 33.1 48.8 48.9 17.9
Dictionary-based [16] 75.4 9.3 58.8 9.1
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Table 4. CDR for different detectors using the Huawei-captured testing images, and statistically
significant improvement of the proposed PCA-based detector.

Detector
Cx Channel Cz Channel

CDR (%) Margin (% Points) CDR (%) Margin (% Points)

Proposed PCA-based 86.1 - 78.7 -
Old PCA-based [14] 84.6 1.2 73.9 4.1

LMS-filters-based [13] 30.6 53.4 52.7 23.7
Dictionary-based [16] 77.9 7.5 63.6 13.6

Figure 8. Two probability densities of extracted features, p(x0◦ |0◦, 0◦) and p(x0◦ |90◦, 90◦), estimated
from the Epson 600 dpi scans (solid line) and Huawei camera captures (dashed line).

Except for the specific LMS-filter case, in both Tables 3 and 4 the CDR in the Cz channel is
significantly lower than the CDR in the Cx channel. The main reason for this is the lower visibility of
the distortion introduced from the data embedding in the Cz channel—due to the lower sensitivity of
the human visual system along the blue-yellow axis. The lower visibility of the embedded data in the
Cz channel is reflected in both of the Canon and Huawei captures, effectively reducing the strength of
the embedded oriented features and leading to lower CDR. When compared between the two camera
captures, the CDR was higher for the Huawei captures mainly due to the higher sensor resolution of
the Huawei camera.

Regarding the computational complexity, the proposed PCA-based detector requires fewer
calculations of cross-correlation scores when compared to the LMS-filter detector and the old
PCA-based detector. While the ML detection adds extra calculations, they can be greatly reduced by
using lookup tables and increasing the memory requirement instead. In that case, the computational
overhead from ML detection is minor compared to calculating more cross-correlation scores for feature
extraction. The dictionary-based detector requires significantly more computational power than the
rest—for the case ND = 128, using TH = 2, the detector took around 300 times longer compared to the
proposed detector.

4. Discussion

An interesting discussion point is that both PCA-based detectors had similar CDR performance,
despite the proposed one using ML detection criterion. The main reason for that is the high similarity
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of their feature extractors. If we change the summation order in Equation (3), the detection metric of
the old PCA-based detector can be re-written as:

Dθ = ∑
m,n

H(m, n)·
K

∑
k=1

(eθ,k(m, n)− eθ+90,k(m, n)) = ∑
m,n

H(m, n)·tθ(m, n) (12)

In Equation (12), tθ(m, n) is the equivalent feature extractor for embedded orientation θ, and it
is a linear combination of 2K PCA templates obtained for embedded orientations θ and θ + 90◦.
In Figure 9, we show these equivalent feature extractors tθ(m, n) for four different orientations
θ ∈ {0◦, 45◦, 90◦, 135◦} in both Cx and Cz channels. It can be seen that they are quite visually similar
to the feature extractors (2nd and 3rd PCA components in Figure 4c) used by the proposed detector.
Only two of the four equivalent feature extractors are linearly independent, the other two are their
inverted versions. Their value is very close to zero for DFT coefficients that are practically not affected
from the orientations embedding. This makes them robust to visual content variations, and they
have similar orientation-discrimination abilities as the feature extractors of the proposed detector
(as illustrated in Figure 5a). However, as it can be seen from Tables 1–4, using ML detection criterion
achieves higher CDR, especially for the cases of detection from images captured with non-calibrated
devices. If the old PCA-based detector is implemented as in Equation (12), then it requires same
number of feature extraction calculations as for the proposed detector, but the overall computational
requirements are lower from all detectors—due to not using ML detection.

Figure 9. Equivalent feature extractors tθ(m, n) of the old PCA-based detector [14], for orientations
θ ∈ {0◦, 45◦, 90◦, 135◦}, in the Cx channel (a) and Cz channel (b).

Another discussion point is the comparison between detection using LMS-filters as feature
extractors, and the proposed PCA learned feature extractor. The LMS-filters as feature extractors for
detection have been used in other similar halftoning-and-watermarking methods [5,26]. However,
in this work we show that they are inferior to the proposed feature extractors, which can be mainly
attributed to the fact that they are responsive to not just the embedded data but to the visual content as
well. That degrades their ability for discriminating orientations despite the ML detection criterion,
and may render them impractical in scenarios where the detection is performed on images captured
using unknown devices. Another way to illustrate the difference in orientation-discrimination ability
between the LMS-filters and the proposed PCA-based feature extractors is by looking at the joint
probability densities of the extracted features using the LMS-filters—we consider a two-orientations
case (horizontal and vertical orientation) so that the joint probability densities are 2D and suitable
for visualization. The joint probability densities of extracted features for those two orientations
using LMS-filters, p(x0◦ , x90◦ |0◦, 0◦) and p(x0◦ , x90◦ |90◦, 90◦), are shown in Figure 10. They span
smaller space and are very close to each other—making them more sensitive to variation/shifts
in the cross-correlation scores due to changes in the print-and-scan channel. While Figure 5a
shows the relevant two probability densities of extracted features using the proposed PCA template,
p
(

X1
rg

∣∣∣0◦, 0◦
)

shown with blue line and p
(

X1
rg

∣∣∣90◦, 90◦
)

shown with yellow line. They are 1D as only
one PCA feature can discriminate the two orientations, the two curves are barely overlapping and are
distant from each other, span larger range of the cross-correlation axis, and hence are more robust to
variations in the feature distributions for different scan/capture devices.
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Figure 10. Joint distributions of LMS-filters extracted features (cross-correlation scores) for horizontal
and vertical orientation in the Cx channel, p(x0◦ , x90◦ |0◦, 0◦) and p(x0◦ , x90◦ |90◦, 90◦).

The significance of this study can be sublimed in two main points. The first point is that an
improved PCA-based detector for OM embedded data is proposed, which uses lower number of
feature extractors and ML detection criterion. The second point is that relevant state-of-the-art
detectors are compared to each other on a large set of testing images captured using three different
devices, with the training/testing images as well as the code implementation provided as open-source.

As a main limitation of this study, we consider the parameters used in the CDBS-OM data
embedding. It was stated previously that the whole evaluation used fixed values for parameters,
such as the size of the watermarked blocks, the watermark quality factor, the number of embeddable
orientations, or the printing resolution. These parameters values were selected based on our previous
work [14] as a good compromise between watermark perceptibility, watermark data capacity, and CDR,
and hence, we believe that a real application would use those values (or very close to them). We have
no reason to suspect that the conclusions from this study would be significantly different if different
parameters were used—we argue that the CDR is strongly related to the features’ discrimination ability,
and detectors’ relative performance is not depending on parameters such as the size or the strength of
embedded orientations. However, this claim may be investigated further in a future work.

Another limitation of this study is the manual alignment of images prior to detection. Manual
alignment was also used in the previous works [13,14,16], but a real application would normally
use a method for automatic image registration. Different strategies to achieve image alignment,
including use of synchronization points/patterns or exploiting periodicity in the embedded data, will
be investigated in future work.

5. Conclusions

In this paper, we propose a method for detection of orientation-modulation embedded data in color
printed images. We demonstrate the use of PCA to learn the main components of orientations embedding,
that, when used as correlation-based feature extractors, provide high orientation-discrimination ability.
We use a probabilistic model for the chrominance print-and-scan channel and an ML detection of the
embedded data. The proposed method is compared to four state-of-the-art detectors using a large set of
testing images obtained from three scan/capture devices. The proposed detector achieved higher average
correct detection rate than all other detectors. Other advantages of the proposed detection method are
lower number of feature extractors needed—leading to lower computational requirements, and increased
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robustness to unknown/non-calibrated scanning/capture devices. This increased robustness is mainly
due to the ability of the proposed PCA-based feature to better separate the embedded oriented features
from the visual image content.

Supplementary Materials: The following are available online at http://www.mdpi.com/2313-433X/4/4/56/s1,
Matlab code and all figures. The data used, including the Matlab code, is available online, see [25].
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