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Abstract: Useful for human visual perception, edge detection remains a crucial stage in numerous
image processing applications. One of the most challenging goals in contour detection is to operate
algorithms that can process visual information as humans require. To ensure that an edge detection
technique is reliable, it needs to be rigorously assessed before being used in a computer vision tool.
This assessment corresponds to a supervised evaluation process to quantify differences between a
reference edge map and a candidate, computed by a performance measure/criterion. To achieve this
task, a supervised evaluation computes a score between a ground truth edge map and a candidate
image. This paper presents a survey of supervised edge detection evaluation methods. Considering a
ground truth edge map, various methods have been developed to assess a desired contour. Several
techniques are based on the number of false positive, false negative, true positive and/or true negative
points. Other methods strongly penalize misplaced points when they are outside a window centered
on a true or false point. In addition, many approaches compute the distance from the position where
a contour point should be located. Most of these edge detection assessment methods will be detailed,
highlighting their drawbacks using several examples. In this study, a new supervised edge map
quality measure is proposed. The new measure provides an overall evaluation of the quality of a
contour map by taking into account the number of false positives and false negatives, and the degrees
of shifting. Numerous examples and experiments show the importance of penalizing false negative
points differently than false positive pixels because some false points may not necessarily disturb
the visibility of desired objects, whereas false negative points can significantly change the aspect
of an object. Finally, an objective assessment is performed by varying the hysteresis thresholds on
contours of real images obtained by filtering techniques. Theoretically, by varying the hysteresis
thresholds of the thin edges obtained by filtering gradient computations, the minimum score of the
measure corresponds to the best edge map, compared to the ground truth. Twenty-eight measures
are compared using different edge detectors that are robust or not robust regarding noise. The scores
of the different measures and different edge detectors are recorded and plotted as a function of the
noise level in the original image. The plotted curve of a reliable edge detection measure must increase
monotonously with the noise level and a reliable edge detector must be less penalized than a poor
detector. In addition, the obtained edge map tied to the minimum score of a considered measure
exposes the reliability of an edge detection evaluation measure if the edge map obtained is visually
closer to the ground truth or not. Hence, experiments illustrate that the desired objects are not always
completely visible using ill-suited evaluation measure.
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1. Introduction: Edge Detection and Hysteresis Thresholding

A digital image is a discrete representation of a real and continuous world. Each point of an image,
i.e., pixel, quantifies a piece or pieces of gray-scale, brightness or color information. The transition
between dark and bright pixels corresponds to contours. They are essential information for the
interpretation and exploitation of images. Edge detection is an important field and one of the oldest
topics in image processing because the process frequently attempts to capture the most important
structures in the image [1]. Edge detection is therefore a fundamental step in computer vision
approaches. Furthermore, edge detection could itself be used to qualify a region segmentation
technique. Additionally, the edge detection assessment remains very useful in image segmentation,
registration, reconstruction or interpretation. It is hard to design an algorithm that is able to detect the
exact edge from an image with good localization and orientation. In the literature, various techniques
have emerged and, due to its importance, edge detection continues to be an active research area [2].
The detection is based on the local geometric properties of the considered image by searching for
intensity variation in the gradient direction [1]. There are two main approaches for contour detection:
first-order derivative [3–7] or second-order [8]. The best-known and most useful edge detection
methods are based on gradient computing first-order fixed operators [3,4]. Oriented first-order
operators compute the maximum energy in an orientation [9–11] or two directions [12]. As illustrated
in Figure 1, typically, these methods consist of three steps:

1. Computation of the gradient magnitude |∇I| and its orientation η, see Table 1, using a 3 × 3
templates [3], the first derivative of the filter (vertical and horizontal [4]), steerable Gaussian
filters, oriented anisotropic Gaussian kernels or combination of two half Gaussian kernels.

2. Non-maximum suppression to obtain thin edges: the selected pixels are those having gradient
magnitude at a local maximum along the gradient direction η, which is perpendicular to the edge
orientation [4].

3. Thresholding of the thin contours to obtain an edge map.

(a) Image 25 × 25 (b) Gradient magnitude |∇I| (c) Gradient direction η (d) Contour detected

Figure 1. Example of edge detection on an image. In (c), arrows representing η are pondered by |∇I|.

Table 1 gives the different possibilities for gradient and its associated orientations involving
several edge detection algorithms compared in this paper.

Table 1. Gradient magnitude and orientation computation for a scalar image I, where Iθ represents the
image derivative using a first-order filter at the θ orientation (in radians).

Type of Operator Fixed Operator [3–7] Oriented Filters [9–11] Half Gaussian Kernels [12]

Gradient magnitude |∇I| =
√

I2
0 + I2

π/2 |∇I| = max
θ∈[0,π[

|Iθ | |∇I| = max
θ∈[0,2π[

Iθ − min
θ∈[0,2π[

Iθ

Gradient direction η = arctan
(

Iπ/2
I0

)
η = arg max

θ∈[0,π[

|Iθ |+
π

2
η =

(
arg max
θ∈[0,2π[

Iθ + arg min
θ∈[0,2π[

Iθ

)
/2
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The final step remains a difficult stage in image processing, but it is a crucial operation for
comparing several segmentation algorithms. Unfortunately, it is far from straightforward to choose an
ideal threshold value to detect the edges of the desirable features. Usually, a threshold is fixed in a
function of the objects’ contours, which must be visible, but this is not an objective segmentation for
the evaluation. Otherwise, in edge detection, the hysteresis process uses the connectivity information
of the pixels belonging to thin contours and thus remains a more elaborated method than binary
thresholding [4]. To put it simply, this technique determines a contour image that has been thresholded
at different levels (low: τL and high: τH). The low threshold τL determines which pixels are considered
as edge points if at least one point higher than τH exists in a contour chain where all the pixel values are
also higher than τL, as represented with a signal in Figure 2. Segmented real images using hysteresis
thresholds are presented, later in this paper, in Figure 11. On the one hand, this algorithm is able to
partly detect blurred edges of an object. On the other hand, the lower the thresholds are, the more
the undesirable pixels are preserved and the problem remains that thresholds are fixed for both the
segmentation and the evaluation.
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Figure 2. Example of hysteresis threshold applied along a contour chain.

In order to compare the quality of the results by different methods, they need to render binary
edge maps. This normally requires a manual process of threshold selection aimed at maximizing the
quality of the results by each of the contending methods. However, this assessment suffers from a major
drawback: segmentations are compared using the (deliberately) chosen threshold, and this evaluation
is very subjective and not reproducible. The aim is therefore to use the dissimilarity measures without
any user intervention for an objective assessment. Finally, to consider a valuable edge detection
assessment, the evaluation process should produce a result that correlates with the perceived quality of
the edge image, which relies on human judgment [13–15]. In other words, a reliable edge map should
characterize all the relevant structures of an image as closely as possible, without any disappearance
of desired contours. In addition, a minimum of spurious pixels should be created by the edge detector,
disturbing at the same time the visibility of the main/desired objects to be detected.

In this paper, a novel technique is presented to compare edge detection techniques by using
hysteresis thresholds in a supervised way, consistent with the visual perception of a human being.
Comparing a ground truth contour map with an ideal edge map, several assessments can be compared
by varying the parameters of the hysteresis thresholds. This study shows the importance of more
strongly penalizing false negative points than false positive points, leading to a new edge detection
evaluation algorithm. The experiment using synthetic and real images demonstrated that the proposed
method obtains contour maps closer to the ground truth without requiring tuning parameters,
and objectively outperforms other assessment methods.

2. Supervised Measures for Image Contour Evaluations

In the last 40 years, several edge detectors have been developed for digital images. Depending
on their applications, with different difficulties such as noise, blur or textures in images, the best
edge detector must be selected for a given task. An edge detector therefore needs to be carefully
tested and assessed to study the influence of the input parameters. The measurement process can be
classified as either an unsupervised or a supervised evaluation criterion. The first class of methods
exploits only the input contour image and gives a coherence score that qualifies the result given by
the algorithm [15]. For example, two desirable qualities are measured in [16,17]: continuation and
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thinness of edges; for continuation, two connected pixels of a contour must have almost identical
gradient direction (η). In addition, the connectivity, i.e., how contiguous and connected edge pixels are,
is evaluated in [18]. These approaches obtain a segmentation that could generally be well interpreted
in image processing tasks. Even though the segmentation includes continuous, thin and contiguous
edges, it does not enable evaluation of whether the segmentation result is close to or far from a desired
contour. A supervised evaluation criterion computes a dissimilarity measure between a segmentation
result and a ground truth, generally obtained from synthetic data or expert judgement (i.e., manual
segmentation). Pioneer works in edge detection assessments were directly applicable only to vertical
edges [19,20] (examples for [19] are available in [21]). Another method [22] considers either vertical
contours or closed forms, pixels of contour chains connected to the true contour. Contours inside or
outside the closed form are treated differently. Alternatively, authors in [23] propose an edge detector
performance evaluation method in the context of image compression according to a mean square
difference between the reconstructed image and the original uncompressed one. Various supervised
methods have been proposed in the literature to assess different shapes of edges [21,24–26], the majority
are detailed in this study, and more precisely in an objective way using hysteresis thresholds. In this
paper, the closer to 0 the score of the evaluation is, the more the segmentation is qualified as good.
Several measures are presented with respect to this property. This work focusses on comparisons of
supervised edge detection evaluations in an objective way and proposes a new measure, aimed at
achieving an objective assessment.

2.1. Error Measures Involving Only Statistics

To assess an edge detector, the confusion matrix remains a cornerstone in boundary detection
evaluation methods. Let Gt be the reference contour map corresponding to ground truth and Dc the
detected contour map of an original image I. Comparing pixel per pixel Gt and Dc, the 1st criterion
to be assessed is the common presence of edge/non-edge points. A basic evaluation is composed of
statistics; to that end, Gt and Dc are combined. Afterwards, denoting | · | as the cardinality of a set, all
points are divided into four sets (see Figure 3):

• True Positive points (TPs), common points of Gt and Dc: TP = |Gt ∩ Dc|,
• False Positive points (FPs), spurious detected edges of Dc: FP = |¬Gt ∩ Dc|,
• False Negative points (FNs), missing boundary points of Dc: FN = |Gt ∩ ¬Dc|,
• True Negative points (TNs), common non-edge points: TN = |¬Gt ∩ ¬Dc|.

Figure 3 presents an example of Gt and Dc. Comparing these two images, there are 23 TPs, one FN
and one FP. Other examples are presented in Figure 10 comparing different Dc with the same Gt.
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(a) Gt, (b) Dc, (c) Gt vs. Dc, (d) legend (e) Histogram of
21×21 21×21 21×21 of (c) TPs, FPs and FNs

Figure 3. Example of ground truth (Gt) versus (vs.) a desired contour (Dc).

Several edge detection evaluations involving confusion matrices are presented in Table 2.
Computing only FPs and FNs or their sum enables a segmentation assessment to be performed and
several edge detectors to be compared [12]. On the contrary, TPs are an indicator, as for Absotude Grading
(AG) and SSR; these two formulae are nearly the same, just a square root of difference, so they behave
absolutely similarly. The Performance measure (Pm, also known as Jaccard coefficient [27]) or Dice
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directly and simultaneously considers the three entities TP, FP and FN to assess a binary image.
It decreases with improved quality of detection. Note that |Gt| = TP + FN and that |Dc| = TP + FP,
so it is easy to observe that Dice∗, AG∗, SSR∗ and P∗m behave similarly when FN and/or FP increase
(more details in [21]), as shown in the experimental results. Moreover, considering the original
versions of Dice and Pm are widely utilized for medical images assessments, they are related by
Dice = 2·|Gt∩Dc |

|Gt |+|Dc | = 2·|Gt∩Dc |
|Gt∪Dc | /

(
1 + |Gt∩Dc |

|Gt∪Dc |

)
= 2·Pm

Pm+1 . In addition, Localization − error (PE) and
Misclassi f ication Error (ME) represent the same measurement. Indeed, as |I| = TP + TN + FP + FN,
the ME measure can be rewritten as:

ME (Gt, Dc) = 1− TP + TN
TN + FN + TP + FP

=
TN + FN + TP + FP
TN + FN + TP + FP

− TP + TN
TN + FN + TP + FP

= PE.

Table 2. List of error measures involving only statistics.

Complemented Dice measure [28] Dice∗ = 1− 2 · TP
2 · TP + FN + FP

Complemented Per f ormance measure [29–32] P∗m (Gt, Dc) = 1− TP
|Gt ∪ Dc|

= 1− TP
TP + FP + FN

Complemented Absolute Grading [33] A∗G = 1− TP√
|Gt| · |Dc|

= 1− TP√
(TP + FN) · (TP + FP)

Complemented Segmentation Success Ratio [34] SSR∗ = 1− TP2

|Gt| · |Dc|
= 1− TP2

(TP + FN) · (TP + FP)

Localization− error [35] PE (Gt, Dc) =
FP + FN
|I|

Misclassi f ication Error [36] ME (Gt, Dc) = 1− TP + TN
TN + FN + TP + FP

Complemented Φ measure [37] Φ∗ (Gt, Dc) = 1− TPR · TN
TN + FP

Complemented χ2 measure [38] χ2∗ (Gt, Dc) = 1− TPR− TP− FP
1− TP− FP

· TP + FP + FPR
TP + FP

Complemented Fα measure [39] F∗α (Gt, Dc) = 1− PREC · TPR
α · TPR + (1− α) · PREC

, with α ∈]0; 1]

Another way to display evaluations is to create Receiver Operating Characteristic (ROC) [40]
curves, involving True Positive Rates (TPR) and False Positive Rates (FPR):

TPR =
TP

TP + FN
and FPR =

FP
FP + TN

. (1)

Then, TPR is plotted versus (vs.) FPR by varying the threshold of the detector (see Figure 4
(Section 4 details filters)). The closer the area under the curve is to 1, the better the segmentation,
and an area of 1 represents a perfect edge detection. Finally, the score higher than and furthest from the
diagonal (i.e., line from (0, 0) to (1, 1)) of ROC is considered as the best segmentation (here, H-K in (e) in
Figure 4). However, the score of SF5 is poor, but the segmentation seems better than Canny, Sobel and
H-K for this example. Thus, any edge detectors can be called the best by simply making small changes
Gt or the parameter set [41]. As TNs are the majority set of pixels, Precision–Recall (PR) [39,42] does not
take into account the TN value by substituting FPR with a precision variable: Prec = TP

TP+FP . By using
both TPR and Prec entities, PR curves quantify more precisely than ROC curves the compromise
between under-detection (TPR value) and over-detection (Prec value) (see Figure 4g). An example of
PR curve is available in Figure 4f. The best segmentation is tied to the curve point closest to the point
situated in (1, 1). As shown in Figure 4h,j, results of Sobel and H-K for PR are similar to those obtained
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with ROC. These evaluation types are effective for Gt having precise locations of edges, as in synthetic
images [14,43], since a displacement of Gt or Dc points strongly penalizes the segmentation.
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Figure 4. Receiver Operating Characteristic (ROC) and Precision–Recall (PR) curves for several edge
detectors. Images in (b–e) and (h–j) represent the best segmentation for each indicated detector tied
to ROC curves and PR curves, respectively. The ground truth image (parkingmeter) is available in
Figure 16 and the original image in Figure 17 (Peak Signal to Noise Ratio: PSNR = 14 dB).

Derived from TPR and FPR, the three measures Φ, χ2 and Fα (detailed in Table 2) are frequently
used. The complement of these measures translates a value close to 0 as a good segmentation.
Among these three measures, Fα remains the most stable because it does not consider the TNs, which
are dominant in edge maps (see [14]). Indeed, taking into consideration TN in Φ and χ2 influences
solely the measurement (as is the case in huge images). These measures evaluate the comparison of
two edge images, pixel per pixel, tending to severely penalize an (even slightly) misplaced contour,
as illustrated in Figure 8.

Consequently, some evaluations resulting from the confusion matrix recommend incorporating
spatial tolerance. Tolerating a distance from the true contour and integrating several TPs for one
detected contour can penalize efficient edge detection methods, or, on the contrary, benefit poor ones
(especially for corners or small objects). The assessment should therefore penalize a misplaced edge
point proportionally to the distance from its true location. More details are given in [21,26], some
examples and comparisons are shown in [21].

2.2. Assessments Involving Spacial Areas Around Edges

2.2.1. The Performance Value Pvr

To judge the quality of segmentation results and the performance of algorithms,
the performance value Pvr in [44] combines four features: location (L), matching (M), unmatching (U )
and spurious (S). In this approach, Dc pixels are assimilated as TP when they belong to a disc of
radius r centered on a pixel of Gt, as illustrated in Figure 5; this set of pixels is denoted TPr. Thus,
FNr represents the set of pixels of Gt located at a distance (In our tests, the Euclidean distance is used,
and the next section exposes different measures using distances of misplaced pixels.) higher than r of
Dc and, conversely, FPr the set of points of Dc at a distance higher than r of Gt. The location criteria
depends on the sum of the distance between each point of TPr and Gt, denoted by: ∑p∈TPr dGt(p).
Hence, the four criteria are computed as follows:
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L =
∑p∈TPr dGt(p)
|TPr| · |Gt|

,

M =
|TPr|
|Dc|

,

U =
|Gt| − |TPr|
|Gt|

=
FNr

|Gt|
,

S =
|Dc| − |TPr|
|Dc|

=
FPr

|Dc|
.

(2)

Finally, the performance value Pvr is obtained by:

Pvr(Gt, Dc) = 1− M
M+ L+ U + S . (3)

TP   pixel

FP   pixel

FN   pixel

TN   pixel

r

r

r

r

(a) Gt, (b) Dc, (c) Gt vs. Dc, (d) Gt vs. Dc, (e) Gt vs. Dc, (f) Legend
5 × 5 5 × 5 r = 0 r = 1.5 r = 2.5 for (c)–(e)

r = 0 TPr = 1 L = 0 M = 0.2 U = 0.5 S = 0.8 Pvr=0 = 0.87
r = 1.5 TPr = 2 L = 0.35 M = 0.4 U = 0 S = 0.6 Pvr=1.5 = 0.71
r = 2.5 TPr = 4 L = 0.68 M = 0.8 U = −1 S = 0.2 Pvr=2.5 = −0.18

Figure 5. Pv evaluation depends on the r parameter and can produce a negative evaluation.
The variable r is represented by the radius of the circle in (c–e). The higher the value of r, the higher L
andM are and the smaller U and S are (or can become negative for U ).

The main drawback of Pvr is that the term M
M+L+U+S can obtain negative or huge values. This is

explainable when r > 1, we can obtain |Gt| < |TPr| (typically when |Gt| < |Dc|). Thus, U < 0; so
if |U | > M + L + S , Pvr could be negative, as illustrated in Figure 5. Finally, when U < 0 and
M+ L+ U + S ≈ 0, Pvr tends to ± infinity (see experiments). Moreover, as illustrated in Figure 8,
Pvr>1 obtains the same measurement for two different shapes because FPs are close to the desired
contour, which is not desirable for the evaluation of small objects segmentation. Note that, when r 6 1,
L, and Pvr is equivalent to P∗m, since:

Pvr61(Gt, Dc) = 1− TP
|Dc| · FN
|Gt|

+ FP + TP
.

2.2.2. The Quality Measure R

In [45], a mixed measure of quality RW is presented. This evaluation depends on the number of
FPs and FNs and the calculus focuses on a window W for each mistake (FP or FN). For each point of
FN or of FP, to estimate the evaluation measure RW , several variables are computed:

• nb, the number of FPs in W, minus the central pixel: nb = ∑
p∈FP∩W

p− pc, with pc = 1 if the central

pixel is a FP point, or 0 otherwise,
• nh, the number of FNs in W, minus the central pixel: nh = ∑

p∈FN∩W
p − pc, with pc = 1 if the

central pixel is a FN point, or 0 otherwise.
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• ne, the number of edge points belonging to Gt in W: ne = ∑
p∈Gt∩W

p,

• nbt, the number of FPs in direct contact (i.e., 8-connexity) with the central pixel: for a pixel p,
if p ∈ FN, nbt = ∑

p∈FN∩W3×3

p− 1, with W3 × 3 a window of size 3 × 3 centered on p,

• nht, the number of FNs in direct contact with the central pixel: for a pixel p, if p ∈ FP, thus
nbt = ∑

p∈FP∩W3 × 3

p− 1, with W3 × 3 a window of size 3 × 3 centered on p.

Then, the final expression of RW is given by:

RW(Gt, Dc) = K ·
[

w · ∑
p∈FP

1 + b · nb
1 + p · ne + ibh · nht

+ ∑
p∈FN

1 + h · nh
1 + cEuler · ihb · nbt

]
. (4)

Table 3 contains the (rounded) coefficients determined by a least square adjustment [45].
The computation of RW depends on the number of FP(s) and the number of FN(s) in a local window
around each mistake, but not on the distances of misplaced points, as explained in the next section.
Figure 6 exposes an example of the error images IR, representing RW with the coefficients available
in Table 3.

Table 3. Coefficients of Equation (4) determined by a least square adjustment [45].

K w b p ibh h ihb cEuler

1.7 1.1 0.013 0.15 4.5 0.37 0.086 8.9

(a) Gt, (b) image C, (c) image HI, (d) IR, Gt vs. C, (e)IR, Gt vs. HI,
21 × 21 21 × 21 21 × 21 RW=3×3 = 59.99 RW=3×3 = 198.17

Figure 6. R evaluation depends on mistake distances but depends on an area contained in a window
around a mistake point. IR corresponds to the value of RW for each pixel. Images representing IR in
(d,e) correspond to inverse images. Here, the window size around each mistake is of size W = 3× 3.

2.2.3. The Failure Measure FM

The f ailure measure [46] is an extension of [20] (see beginning of Section 2). These evaluation
computes four criteria, taking into account a multiple detection zone (MD). The detection zone of the
ideal image can be represented as a dilation of Gt, creating a rough edge, as illustrated in Figure 7.
Then, the criteria are as follows: (1) False negative (FNFM), (2) False positive (FPFM), (3) Multiple
detection (DMFM) and (4) Localization (LOCFM). They are computed by:

• FNFM =
max(0, |Gt| − TPMD)

|Gt|
, where TPMD represents the number of points of Dc in MD (see

Figures 7 and 8), green pixels,

• FPFM =
FPMD

|I| − |MD| , with FPMD the number of points of Dc outside MD and |MD| denoting the

number of pixels of MD, see Figures 7 and 8, green and blue pixels,

• DMFM =
TPMD − TP
|MD| − |Gt|

, TP representing the number of TPs (see above),
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• LOCFM =
1

|Gt| · C
·∑p∈Gt max(C, d(p, Dc)), where C is a constant (C = 5 in our experiments) and

d(p, Dc) represents the Euclidean distance between p and Dc (see next section). In [20], LOCFM
represents the number of rows containing a point around the vertical edge.

On end, the f ailure measure (FM) is defined as:

FM(Gt, Dc) = α · FNFM + β · FPFM + γ · DMFM + δ · LOCFM, (5)

with (α, β, γ, δ) four positive coefficients such that α + β + γ + δ = 1; in the experiments:
α = 0.4, β = 0.4, γ = 0.1 and δ = 0.1. Unfortunately, due to the multiple detection zone, FM behaves
like Pv for the evaluation of small object segmentation, as shown in Figure 8, and FM obtains the same
measurement for two different shapes.

TPMD

Multiple Detection
zone (MD)

FP outside MD

TN outside MD

(a) Gt, (b) Dc, (c) Gt vs. Dc, (d) Gt vs. Dc, (e) Legend
27×27 27×27 TPMD = 69 TPMD = 97 in (c) and (d)
|Gt| = 93 |Dc| = 117 FM3×3 = 0.171 FM5×5 = 0.055

Figure 7. Failure Measure (FM) evaluation with two different Multiple Detection (MD) zones: in (c),
dilation of Gt with structuring element 3 × 3, and 5 × 5 in (d). The greater the MD area, the lower the
FM error.

(a) Gt (b) D1 (c) D2 (d) in (b): multiple (e) in (c): multiple
|Gt| = 24 TP = 0, FP = 16 TP = 0, FP = 16 detection zone detection zone

PE(Gt, D1)= 0.33 PE(Gt, D2)= 0.33
F∗α (Gt, D1)= 1 F∗α (Gt, D2)= 1
Pvr=1.5(Gt, D1)= 0.2727 Pvr=1.5(Gt, D2)= 0.2727
FM3×3(Gt, D1)= 0.1526 FM3×3(Gt, D2)= 0.1526
R(Gt, D1)=52.20 R(Gt, D2)= 30.68
Υ(Gt, D1)= 13.223 Υ(Gt, D2)= 13.223

FoM((Gt, D1)= 0.3939 FoM(Gt, D2)= 0.3939
H(Gt, D1)=1.4142 H(Gt, D2)= 5.3852
RDEk=2(Gt, D1)= 1.040 RDEk=2(Gt, D2)= 1.76
Sk

k=2(Gt, D1)= 1.0414 Sk
k=2(Gt, D2)= 1.6993

EMM(Gt, D1)= 1 EMM(Gt, D2)= 1
Ξ(Gt, D1)= 1.62 Ξ(Gt, D2)= 1.23

Figure 8. Different Dc: number of false positive points (FP) and false negative points (FN) are the same
for D1 and for D2 but the distances of FNs and the shapes of the two Dc are different. The legend for
(d,e) is available in Figure 7.

2.3. Assessment Involving Distances of Misplaced Pixels

A reference-based edge map quality measure requires that a displaced edge should be penalized
in function not only of FPs and/or FNs, but also of the distance from the position where it should be
located. Table 4 reviews the most relevant measures involving distances. Thus, for a pixel p belonging
to the desired contour Dc, dGt(p) represents the minimal Euclidian distance between p and Gt. If p
belongs to the ground truth Gt, dDc(p) is the minimal distance between p and Dc, and Figure 9a shows
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the difference between dGt(p) and dDc(p). Mathematically, denoting (xp, yp) and (xt, yt), the pixel
coordinates of two points p and t, respectively; thus, dGt(p) and dDc(p) are described by:

for p ∈ Dc :

dGt(p) = Inf
{√

(xp − xt)2 + (yp − yt)2, t ∈ Gt

}
,

for p ∈ Gt :

dDc(p) = Inf
{√

(xp − xt)2 + (yp − yt)2, t ∈ Dc

}
.

These distance functions refer to the Euclidean distance. Figure 9d illustrates an example of dGt(p)
and dDc(p).

Table 4. List of error measures involving distances, generally: k = 1 or k = 2 , and, κ = 0.1 or κ = 1/9 .

Error Measure Name Formulation Parameters

Pratt’s Figure of Merit (FoM) [47] FoM (Gt, Dc) = 1− 1
max (|Gt| , |Dc|)

· ∑
p∈Dc

1
1 + κ · d2

Gt
(p)

κ ∈ ]0; 1]

FoM revisited [48] F (Gt, Dc) = 1− 1
|Gt |+β·FP · ∑

p∈Gt

1
1 + κ · d2

Dc
(p)

κ ∈ ]0; 1] and
β ∈ R+

Combination of FoM and
statistics [49] d4 (Gt, Dc) =

1
2 ·
√

(TP−max (|Gt| , |Dc|))2 + FN2 + FP2

(max (|Gt| , |Dc|))2 + FoM2 (Gt, Dc)
κ ∈ ]0; 1] and
β ∈ R+

Edge map quality measure [50] Dp (Gt, Dc) =
1/2
|I|−|Gt | ·∑

p∈FP

(
1− 1

1 + κ·d2
Gt
(p)

)
+ 1/2
|Gt | ·∑

p∈FN

(
1− 1

1 + κ·d2
TP(p)

)
κ ∈ ]0; 1]

Symmetric FoM [21] SFoM (Gt, Dc) =
1
2 · FoM (Gt, Dc) +

1
2 · FoM (Dc, Gt) κ ∈ ]0; 1]

Maximum FoM [21] MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt)) κ ∈ ]0; 1]

Yasnoff measure [51] Υ (Gt, Dc) =
100
|I| ·

√
∑

p∈Dc

d2
Gt
(p) None

Hausdorff distance [52] H (Gt, Dc) = max
(

max
p∈Dc

(dGt (p)), max
p∈Gt

(dDc (p))
)

None

Maximum distance [24] f2d6 (Gt, Dc) = max

(
1
|Dc|

· ∑
p∈Dc

dGt (p),
1
|Gt|
· ∑

p∈Gt

dDc (p)

)
None

Distance to Gt [24,26,53] Dk (Gt, Dc) =
1
|Dc|

· k

√
∑

p∈Dc

dk
Gt
(p), k = 1 for [24,53] k ∈ R+

Oversegmentation [54] Θ (Gt, Dc) =
1

FP · ∑
p∈Dc

(
dGt (p)

δTH

)k for [54]: k ∈ R+

and δTH ∈ R∗+

Under-segmentation [54] Ω (Gt, Dc) =
1

FN · ∑
p∈Gt

(
dDc (p)

δTH

)k for [54]: k ∈ R+

and δTH ∈ R∗+

Relative Distance Error [24,55,56] RDEk (Gt, Dc) = k

√
1
|Dc|

· ∑
p∈Dc

dk
Gt
(p) + k

√
1
|Gt|
· ∑

p∈Gt

dk
Dc

(p),
k ∈ R+, k = 1
for [24], k = 2
for [55,56]

Symmetric distance [24,26] Sk (Gt, Dc) =
k

√√√√√ ∑
p∈Dc

dk
Gt
(p)) + ∑

p∈Gt

dk
Dc

(p)

|Dc ∪ Gt|
, k = 1 for [24] k ∈ R+

Baddeley’s Delta Metric [57] ∆k(Gt, Dc) = k

√
1
|I| · ∑

p∈I
|w(dGt (p))− w(dDc (p))|k

k ∈ R+ and a
convex function
w : R 7→ R

Magnier et al. measure [58] Γ(Gt, Dc) =
FP+FN
|Gt |2 ·

√
∑

p∈Dc

d2
Gt
(p) None

Complete distance measure [21] Ψ(Gt, Dc) =
FP+FN
|Gt |2 ·

√
∑

p∈Gt

d2
Dc
(p) + ∑

p∈Dc

d2
Gt
(p) None

λ measure [59] λ(Gt, Dc) =
FP+FN
|Gt |2 ·

√
∑

p∈Dc

d2
Gt
(p) + min

(
|Gt|2, |Gt |2

TP2

)
· ∑

p∈Gt

d2
Dc
(p) None
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Contours evaluation 

 Take into account of distances of FNs or/and FPs  

38 

distance of FPs

distance of FNs

TPs or TNs

1

1

4.2

4

(a) Distances (b) Gt, (c) Dc, (d) Representation (e) legend
in Figure 3c 21 × 21 21 × 21 of dGt and dDc of (d)

Figure 9. Example of ground truth (Gt) versus (vs.) a desired contour (Dc).

On the one hand, some distance measures are specified in the evaluation of over-segmentation
(i.e., presence of FPs), for example: Υ, Dk, Θ and Γ; others are presented and detailed in [21,24]. On the
other hand, the Ω measure assesses an edge detection by computing only under-segmentation (FNs).
Other edge detection evaluation measures consider both distances of FPs and FNs [14]. A perfect
segmentation using an over-segmentation measure could be an image including no edge points and an
image having the most undesirable edge points (FPs) concerning under-segmentation evaluations [60],
as shown in Figures 10 and 11. In addition, another limitation of only over- and under-segmentation
evaluations are that several binary images can produce the same result (Figure 8). Therefore, as
demonstrated in [14], a complete and optimum edge detection evaluation measure should combine
assessments of both over- and under-segmentation, as f2d6, Sk, RDEk, Ψ and λ, illustrated in Figure 8.

Among the distance measures between two contours, one of the most popular descriptors is
named the Figure of Merit (FoM). This distance measure has an advantage because it ranges from 0
to 1, where 0 corresponds to a perfect segmentation [47]. Nonetheless, for FoM, the distance of the
FNs is not recorded and are strongly penalized as statistic measures:

FoM (Gt, Dc) = 1− 1
max (|Gt| , |Dc|)

· ∑
p∈TP

1
1 + κ · d2

Gt
(p)
− 1

max (|Gt| , |Dc|)
· ∑

p∈FP

1
1 + κ · d2

Gt
(p)

= 1− TP
max (|Gt| , |Dc|)

− 1
max (|Gt| , |Dc|)

· ∑
p∈FP

1
1 + κ · d2

Gt
(p)

.

For example, in Figure 10, FoM(Gt, C) > FoM(Gt, M), whereas M contains both FPs and FNs
and C only FNs. Furthermore, for the extreme cases, knowing that TP = |Gt| − FN, the FoM measures
takes the following values:

• if FP = 0: FoM (Gt, Dc) = 1− TP
|Gt|

= 1− |Gt| − FN
|Gt|

,

• if FN = 0: FoM (Gt, Dc) = 1− TP
|Dc | −

1
|Dc | ·∑p∈FP

1
1+κ·d2

Gt
(p)

.

When FN>0 and FP are constant, it behaves like matrix-based error assessments (Figure 10).
Moreover, for FP>0, the FoM penalizes over-detection very lightly compared to under-detection.
Several evaluation measures are derived from FoM: F, d4, Dp, MFoM and SFoM. Contrary to FoM,
the F measure computes the distances of FNs but not of the FPs, so F behaves inversely to FoM, it can
be rewritten as:

F (Gt, Dc) = 1− 1
|Gt |+β·FP · ∑

p∈TP

1
1 + κ · d2

Dc
(p)
− 1
|Gt |+β·FP · ∑

p∈FN

1
1 + κ · d2

Dc
(p)

= 1− TP
|Gt |+β·FP −

1
|Gt |+β·FP · ∑

p∈FN

1
1 + κ · d2

Dc
(p)

.

Therefore, for the extreme cases, the F measures takes the following values:

• if FP = 0: F (Gt, Dc) = 1− TP
|Gt | −

1
|Gt | · ∑

p∈FN

1
1 + κ · d2

Dc
(p)

,
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• if FN = 0: F (Gt, Dc) = 1− TP
|Gt |+β·FP .

In addition, the d4 measure depends particularly on TP, FP, FN and ≈1/4 on FoM, but d4

penalizes FNs like the FoM measure; it is a close idea to the FM measure (Section 2.2). Otherwise,
SFoM and MFoM take into account both distances of FNs and FPs, so they can compute a global
evaluation of a contour image. However, MFoM does not consider FPs and FNs at the same time,
contrary to SFoM. Another way to compute a global measure is presented in [50] with the edge map
quality measure Dp. The right term computes the distances of the FNs between the closest correctly
detected edge pixel, i.e., Gt ∩ Dc, Dp can be rewritten as:

Dp(Gt, Dc)

FP− ∑
p∈FP

1
1 + κ · d2

Gt
(p)

2 · |I| − 2 · |Gt|
+

FN − ∑
p∈FN

1
1 + κ · d2

Gt
(p)

2 · |Gt|
.

Finally, Dp is more sensitive to FNs than FPs because of the huge coefficient 1
|I|−|Gt | .

A second measure widely computed in matching techniques is represented by the Hausdorff
distance H, which measures the mismatch of two sets of points [52]. This measure is useful in object
recognition, the algorithm aims to minimize H, which measures the mismatch of two shapes [61,62].
This max-min distance could be strongly deviated by only one pixel that can be positioned sufficiently
far from the pattern (Figure 10). There are several enhancements of the Hausdorff distance presented
in [24,63,64]. Furthermore, f2d6 and Dk are often called "Modified Hausdorff Distance" (abbreviated
MHD) in the literature. As another example, one idea to improve the measure is to compute H with
a proportion of the maximum distances; let us note H5%—this measure for 5% of the values [52].
Nevertheless, as pointed out in [24], an average distance from the edge pixels in the candidate image
to those in the ground truth is more appropriate, like Sk, RDEk or Ψ. Thus, the score of the f2d6

corresponds to the maximum between the over- and the under-segmentation (depending on 1
|Dc | and

1
|Gt | , respectively), whereas the values obtained by Sk represents their mean. Moreover, Sk takes small
values in the presence of low level of outliers, whereas the score becomes large as the level of mistaken
points increases [24,26] but is sensitive to remote misplaced points as presented in [21]. On the other
hand, the Relative Distance Error (RDEk) computes both the over- and the under-segmentation errors
separately, with the weights 1

|Dc | and 1
|Gt | , respectively. Otherwise, derived from H, the Delta Metric

(∆k) [57] intends to estimate the dissimilarity between each element of two binary images, but is highly
sensitive to distances of misplaced points [14,21]. All of these edge detection evaluation measures
are reviewed in [21] with their advantages and disadvantages (excepted RDEk), and, as concluded in
[21,25], a complete and optimum edge detection evaluation measure should combine assessments of
both over- and under-segmentation, as f2d6, Sk, H15%, RDEk and Ψ.
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(a) Gt (b) M (c) C (d) T (e) B

TP pixel

FP pixel

FN pixel

TN pixel

(f) Legend (g) Gt vs. M (h) Gt vs. C (i) Gt vs. T (j) Gt vs. B

Measure Gt vs M Gt vs C Gt vs T Gt vs B
FN 10 10 0 0
FP 10 0 10 7
TP 56 56 66 66

Dice∗ 0.150 0.080 0.070 0.050
SSR∗ 0.280 0.150 0.130 0.100

PE 0.021 0.0104 0.0104 0.007
F∗α 0.1515 0.0820 0.0704 0.0504
P∗m 0.2632 0.1515 0.1316 0.0959
χ2∗ 0.0989 0.1609 0.1413 0.1030
Φ∗ 0.1619 0.1515 0.0112 0.0078

Pvr=3 0.217 0.132 0.078 0.041
Pvr=5 0.037 0.132 -0.134 -0.017

R 52.49 33.35 19.13 13.09
FM3×3, C= 5 0.061 0.061 0.006 0.005
FM5×5, C= 5 0.056 0.061 0.007 0.005

H 6.000 6.000 5.6569 6.4031
H15% 4.6713 3.7000 3.6217 2.9835

Dk 0.1987 0.000 0.1726 0.1776
f2D6 0.6036 0.5606 0.5242 0.4496

ΘδTH=5 0.7968 0.000 0.7968 0.9377
ΩδTH=5 0.7400 0.7400 0.000 0.000

FoM 0.0888 0.1515 0.07711 0.0625
F 0.2029 0.0822 0.1316 0.0959
d4 0.1385 0.1312 0.1007 0.0747

SFoM 0.0411 0.0956 0.0842 0.0629
MFoM 0.5199 0.5199 0.5184 0.5150

Dp 0.068 0.063 0.005 0.003
Υ 4.1498 0.000 4.1498 3.4186

RDEk=1 0.5821 0.2803 0.2621 0.2248
RDEk=2 1.5734 0.7662 0.7522 0.7585

Sk
k=2 0.5821 0.3033 0.2806 0.2361
∆k 0.4705 0.2361 0.2344 1.1167

EMM 0.021 0.006 0.012 0.010
Γ 0.0290 0.0000 0.0145 0.0092
Ψ 0.0402 0.0140 0.0145 0.0092
λ 0.0439 0.0165 0.0145 0.0092
Ξ 0.890 0.630 0.620 0.520

Figure 10. Evaluation measure results for different Dc images in (b–e) using the same Gt in (a).
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TP pixel

FP pixel

FN pixel

TN pixel

(a) Original image (b) Gt [14] (c) Legend in (g–i)

(d) Dc, τL = 0.0, τH = 0.0, σ=1 (e) Dc, τL = 0.0, τH = 0.1, σ=1 (f) Dc, τL = 0.1, τH = 0.25, σ=1

(g) Gt vs. Dc, τL = 0.0, τH = 0.0 (h) Gt vs. Dc, τL = 0.0, τH = 0.1 (i) Gt vs. Dc, τL = 0.1, τH = 0.25

Measure τL = 0.0, τH = 0.0 τL = 0.0, τH = 0.1 τL = 0.1, τH = 0.25
Dice∗ 0.47 0.54 0.80

P∗m 0.64 0.67 0.89
SSR∗ 0.72 0.75 0.91

PE 0.101 0.079 0.083
χ2∗ 0.77 0.79 0.92
Φ∗ 0.43 0.59 0.88
F∗α 0.47 0.51 0.80

Pvr=3 0.24 0.32 0.46
Pvr=5 0.02 0.27 0.46

RW=3×3 5646.6 5982.2 9341.7
RW=5×5 6728.8 9119.8 1645.5

FMW=3×3 0.08 0.17 0.34
FMW=5×5 0.04 0.15 0.34

Dk
k=2 0.07 0.04 0.02
H 37.58 44.72 68.77

H5% 15.86 26.84 57.78
ΘδTH=1 4.47 2.04 1.05
ΩδTH=1 1.26 6.280 18.72

FoM 0.24 0.37 0.85
F 0.45 0.44 0.71
d4 0.42 0.47 0.75
Dp 0.084 0.200 0.404
Υ 0.88 0.22 0.03

f2D6 2.41 3.66 16.51
RDEk=2 2.931 4.88 12.06

Sk
k=2 3.81 6.25 21.99
∆k 5.82 10.93 28.18

EMM 0.00293 0.00299 0.0354
Γ 0.11 0.021 0.003
Ψ 0.11 0.12 0.37
λ 0.11 0.25 3.11
Ξ 4.89 1.68 95

Figure 11. Evaluation measure results for a real image segmented [4] at different hysteresis thresholds.
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On another note, the Edge Mismatch Measure (EMM) depending on TPs and both dDc and dGt .
In [36], this measure is combined with others (including ME and Dk) in order to compare several
thresholding methods. Indeed, δDc/Gt(p) is a threshold distance function penalizing high distances
(exceeding a value Mdist) and EMM is represented as follows:

EMM(Gt, Dc) = 1− TP

TP + ω
[
∑p∈FN δDc(p) + ε ·∑p∈FP δGt(p)

] (6)

with δDc and δGt two cost functions of dDc and dGt respectively discarding/penalizing outliers [36]:

δDc(p) =

{
dDc(p), if dDc(p) < Mdist

Dmax, otherwise,
and δGt(p) =

{
dGt(p), if dGt(p) < Mdist

Dmax, otherwise.
(7)

Thus, ω is the penalty weighting distance measures δDc and δGt , whereas ε represents a weight
for distances of FPs only. For this purpose, the set of parameters are suggested as follows:

• Mdist = 0.025 · |I|,
• Dmax =

|I|
10

,

• ω =
10
|I| ,

• ε = 2.

Note that the suggested parameters depend on |I|, the total number of pixels in I. Moreover,
EMM computes a score different from 1 if there exists at least one TP (cf. Figure 8). Finally, when
the EMM score is close to 0, the segmentation is qualified as acceptable, whereas a score close to 1
corresponds to a poor edge detection.

3. A New Objective Edge Detection Assessment Measure

3.1. Influence of the Penalization of False Negative Points in Edge Detection Evaluation

Several edge detection measures have been presented above. Clearly, taking into account both
FP and FN distances is more objective for the assessment. However, there are two main problems
concerning the edge detection measures involving distances. First, a single (or a few) FP point(s) at
a sufficiently high distance may penalize a good detection (see Figure 12c). This is a well known
problem concerning the Hausdorff distance. Thus, best scores for each measure obtained in an objective
way (cf. next section) are not necessarily tied to the most efficient detector. Secondly, the edge maps
associated with these scores lack many desired contours, because distances of FPs strongly penalize
edge detectors evaluated by the majority of these measures. On the contrary, distances of FN points
are neither recorded (as over-segmentation measures), nor penalized enough (cf. Figure 12b). In other
words, FNs are, generally, as penalized as FPs. Moreover, FNs are often close to detected edges (TPs or
FPs close to Gt), most error measures involving distances do not consider this particularity because
∑p∈FN dDc are less important than ∑p∈FP dGt . Note that RDEk computes ∑p∈FN dDc and ∑p∈FP dGt

separately. In [59], a measure of the edge detection assessment is developed: it is denoted λ and
improves the segmentation measure Ψ (see formulas in Table 4). The λ measure penalizes highly FNs
compared to FPs (as a function of their mistake distances), depending on the number of TPs. Typically,
contours of desired objects are in the middle of the image, but rarely on the periphery. Thus, using or
f2d6, Sk, ∆k, or Ψ, a missing edge in the image remains insufficiently penalized contrary to the distance
of FPs, which could be too high, as presented in Figure 13, contrary to λ. Another example, in Figure 10,
Ψ(Gt, C) < Ψ(Gt, T), whereas C should be more penalized because of FNs that do not enable the
object to be identified. The more FNs are present in Dc, the more Dc must be penalized as a function of
dGt , because the desirable object becomes unrecognizable, as Dc in Figure 11c. In addition, Dc should
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be penalized as a function of dGt , of the FN number, as stated above. For λ, the term influencing the

penalization of FN distances can be rewritten as: |Gt |2
TP2 =

(
FN+TP

TP

)2
=
(

1 + FN
TP

)2
> 1, ensuring a

stronger penalty for d2
Gt

, compared to d2
Dc

. The min function avoids the multiplication by infinity when
TP = 0. When |Gt| = TP, λ is equivalent to Ψ and Γ (see Figure 10, image T). In addition, compared
to Ψ, λ penalizes more Dc having FNs, than Dc with only FPs, as illustrated in Figure 10 (images C and

T). Finally, the weight |Gt |2
TP2 tunes the λ measure by considering an edge map of better quality when

FNs points are localized close to the desired contours Dc, the red dot curve in Figure 14 represents this
weight function. Hence, the λ function is able to assess images that are not too large, as in Figures 10,
12 and 13; however, the penalization is not enough for larger images. Indeed, the main difficulty
remains the FN + FP coefficient to the left of λ; as a result, the image in Figure 11a is considered by
this measure as the best one. The solution is to separate the two entities FN and FP and insert them
directly inside the root square of the measure, firstly to modulate the FPs distances and secondly to
weight the FN distances. Therefore, the new edge evaluation assessment formula is given by:

Ξ(Gt, Dc) =
1
|Gt|
·

√√√√(FP · ∑
p∈Dc

d2
Gt
(p) + f (FN) ·∑

p∈Gt

d2
Dc
(p)

)
(8)

with

f (TP) =

log(FN) · eFN , if TP = 0, i.e., |Gt| = FN

log (FN + 1) · e
|Gt |
TP , elsewhere.

(9)

(a) Gt (b) St (c) Sb
|Gt| = 48 FN = 20, FP = 0 FN = 0, FP = 5

H(Gt, St)= 3 H(Gt, Sb)= 8.6
f2d6(Gt, St)= 0.75 f2d6(Gt, Sb)= 0.79
FoM(Gt, St)= 0.55 FoM(Gt, Sb)= 0.08
F(Gt, St)= 0.10 F(Gt, Sb)= 0.09
FMW=3×3(Gt, St)= 0.17 FMW=3×3(Gt, Sb)= 0.04
RW=3×3(Gt, St)=56.64 RW=3×3(Gt, Sb)= 9.40
EMM(Gt, St)= 0.022 EMM(Gt, Sb)= 0.023

Sk
k=1(Gt, St)= 1.29 Sk

k=1(Gt, Sb)= 0.87
Sk

k=2(Gt, St)= 1 Sk
k=2(Gt, Sb)= 1.87

∆k(Gt, St)= 0.53 ∆k(Gt, Sb)= 2.15
RDEk=1(Gt, St)= 0.39 RDEk=1(Gt, Sb)= 0.40
RDEk=2(Gt, St)= 1.28 RDEk=2(Gt, Sb)= 1.29
λ(Gt, St)= 0.13 λ(Gt, Sb)= 0.04
Ξ(Gt, St)= 0.90 Ξ(Gt, Sb)= 0.87

Figure 12. A single (or a few) FP point(s) at a sufficiently high distance may penalize a good detection.
Sb represents Gt in (a) with only five FPs that penalize the shape using several edge detection
evaluation functions.
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(a) Gt, |Gt| = 41 (b) Dc, |Dc| = 61 (c) FP distances (d) Dc, |Dc| = 14 (e) FN distances

Measure Image in (b) Image in (d)
P∗m 0.33 0.66

FoM 0.32 0.66
F 0.33 0.50
H 19.03 17.12

f2d6 5.61 5.53
RDEk=1 2.80 2.77
RDEk=2 4.92 3.97

Measure Image in (b) Image in (d)
Sk

k=1 8.34 16.21
Sk

k=2 7.61 6.85
∆k 7.30 5.64

EMM 0.147 0.144
Ψ 0.91 0.81
λ 0.91 2.39
Ξ 8.38 11.74

Figure 13. Edge detection evaluations must be more sensitive to FN distances than FP distances. In (b),
|Dc| = 61, so there are 20 FPs, whereas, in (d), |Dc| = 14, so there are 27 FNs; so FP < FN.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

number of FNs

 

 

 f(FN)

 |G
t
|
2
/TP

2

0 20 40 60 80 100
0

20

40

60

80

100

120

number of FNs

 

 

 f(FN)

 |G
t
|
2
/TP

2

0 200 400 600 800 1000
0

100

200

300

400

500

600

number of FNs

 

 

 f(FN)

 |G
t
|
2
/TP

2

(a) |Gt| = 10 (b) |Gt| = 100 (c) |Gt| = 1000

Figure 14. Several examples of f function evolution as a function of the FN number.

The f function influencing the penalization of FN distances ensures a strong penalty for d2
Dc

,
compared to d2

Gt
(see blue curves in Figure 14). There exist several f functions than may effectively

accomplish the purpose. When FN = 0, f (TP) = 0, and only the FP distances are recorded, pondered
by the number of FPs. Otherwise, if TP = 0, so |Gt| = FN, thus f (TP) = log(FN) · eFN to avoid a

division by 0, and log(FN) · eFN > log (FN + 1) · e
|Gt |
TP . Finally, by separating the two weights for d2

Dc
and d2

Gt
penalizes Dc images containing FPs and/or Dc images with missing edges (FNs).

The next subsection details the way to evaluate an edge detector in an objective way. Results
presented in this paper show the importance to penalize false negative points more severely than false
positive points because the desired objects are not always completely visible using ill-suited evaluation
measure, and Ξ provides a reliable edge detection assessment.

3.2. Minimum of the Measure and Ground Truth Edge Image

Dissimilarity measures are used to assess the divergence of binary images. Instead of manually
choosing a threshold to obtain a binary image (see Figure 3 in [14]), the purpose is to compute
the minimal value of a dissimilarity measure by varying the thresholds (double loop: loop over
τL and loop over τH) of the thin edges obtained by filtering gradient computations (see Table 1).
Compared to a ground truth contour map, the ideal edge map for a measure corresponds to the desired
contour at which the evaluation obtains the minimum score for the considered measure among the
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thresholded (binary) images. Theoretically, this score corresponds to the thresholds at which the
edge detection represents the best edge map, compared to the ground truth contour map [14,25,46].
Figure 15 illustrates the choice of a contour map as a function of τL and τH . Algorithm 1 represents
this argmin function and summarizes the different steps to compute an ideal edge map concerning a
chosen measure.
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Figure 15. Example of computation of a minimum score for a given measure.

Algorithm 1 Calculates the minimum score and the best edge map of a given measure Meas

Require: |∇I| : normalized thin gradient image
Require: Gt : Ground Truth edge image
Require: Hyster : hysteresis threshold function
Require: Meas : Measure computing a dissimilarity score between Gt and a desired contour Dc

stepτ = 0.01 % step for the loops on thresholds
scoreL = realmax % the largest finite floating-point number
for τH = 0 : stepτ : 1 do

for τL = 0 : stepτ : 1 do
if τH > τL then

Dc ← Hyster(|∇I|, τL, τH)
score← Meas(Gt, Dc)
if scoreL > score then

scoreL ← scoreL % ideal score
IdealDc ← Dc % ideal edge map

end if
end if

end for
end for

Since low thresholds lead to heavy over-segmentation and high thresholds may create numerous
false-negative pixels, the minimum score of an edge detection evaluation should be a compromise
between under- and over-segmentation (detailed and illustrated in [14]).

As demonstrated in [14], the significance of the choice of ground truth map influences the
dissimilarity evaluations. Indeed, if not reliable [43], a ground truth contour map that is inaccurate in
terms of localization penalizes precise edge detectors and/or advantages the rough algorithms as edge
maps presented in [13,15]. For these reasons, the ground truth edge map concerning the real image in
our experiments is built semi-automatically, as detailed in [14].
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4. Experimental Results

The aim of the experiments is to obtain the best edge map in a supervised way. The importance of
an assessment penalizing false negative points more severely compared to false positive points has
been shown above. In order to study the performance of the edge detection evaluation measures, the
hysteresis thresholds vary and the minimum score of the studied measure corresponds to the best edge
map (cf. Figure 15). The thin edges of real noisy images are computed by nine filtering edge detectors:

• Sobel [3],
• Shen [5],
• Bourennane [7],
• Deriche [6],
• Canny [4],
• Steerable filter of order 1 (SF1) [9],
• Steerable filter of order 5 (SF5) [10],
• Anisotropic Gaussian Kernels (AGK) [11,65,66],
• Half Gaussian Kernels (H-K) [12,56].

The kernels of these methods are size-adaptable, except for the Sobel operator that corresponds to
a 3× 3 mask. The parameters of the filters are chosen to keep the same spatial support for the derivative
information, e.g., σ = 1.5 for Gaussians (details of these filters are available in [56]). Ground truth
images (Gt) are shown in Figure 16, whereas corrupted and original images are presented in Figure 17.
The scores of the different measures are recorded by varying the thresholds of the normalized thin
edges computed by an edge detector and plotted as a function of the noise level in the original image,
as presented in Figures 18 and 19. A plotted curve should increase monotonously with noise level
(Gaussian noise), represented by Peak Signal to Noise Ratio (PSNR) values (from 17 dB to 10 dB).
Among all the edge detectors, box (Sobel [3]) and exponential (Shen [5], Bourennane [7] filters do not
delocalize contour points [67], whereas they are sensitive to noise (i.e., addition of FPs). The Deriche [6]
and Gaussian filters [4] are less sensitive to noise, but suffer from rounding corners and junctions
(see [67,68]) as the oriented filters SF1 [9], SF5 [10] and AGK [11], but the more the 2D filter is elongated,
the more the segmentation remains robust against noise. Finally, as a compromise, H-K correctly
detects contour points that have corners and is robust against noise [12]. Consequently, the scores of
the evaluation measures for the first three filters must be lower than the three last ones, and, Canny,
Deriche and SF1 scores must be situated between these two sets of assessments. Furthermore, as SF5,
AGK and H-K are less sensitive to noise than other filters, the ideal segmented image for these three
algorithms should be visually closer to Gt. The presented segmentations correspond to the original
image for a PSNR = 14 dB. Therefore, on the one hand, considered segmentations must be tied to
the robustness of the detector. On the other hand, the scores must increase monotonously, with an
increasing order as a function of the edge detector quality. Note that the matlab code of FoM, Dk, Sk and
∆k measures are available at http://kermitimagetoolkit.net/library/code/. The matlab code of several
other measures are available on MathWorks: https://fr.mathworks.com/matlabcentral/fileexchange/
63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges.

http://kermitimagetoolkit.net/library/code/
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
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(a) Gt for image 109 (b) Gt for image "parkingmeter"

Figure 16. Ground truth edge images tied to original images available in Figure 17 used in the presented
experiments. These Gt images are available in [14].

Firstly, the segmented images tied to corrupted images with PSNR = 14 dB, representing the best
edge quality map for 28 different measures, are presented in Figures 20–47. The results concerning
over- and under-segmentation measures (cf. Section 2.3) are not reported because the score will always
attain 0 for the best edge map which are either full of FPs or devoid of any contour point [14]. The edge
map obtained using the Sobel filter is complicated; indeed, this filter is very sensitive to the noise in
the image, so only few edge points will be correctly detected, the rest being FPs. Furthermore, thin
edges (before thresholding) obtained using Shen, Bourennane and Deriche filters are not reliable, and it
is difficult to choose/compute correct thresholds in order to visualize continuous objects’ contours.
Segmentations obtained by Dice∗, P∗m and F∗α are overall visible, with a little too many FPs, except
for AGK and H-K, which are correctly segmented. On the contrary, contour points concerning SSR∗

and χ2∗ are less corrupted by FPs, but true edges are missing; in addition, edge maps concerning PE
are worse. Edge maps tied to Φ∗, FMW and Dp are hugely corrupted by FPs, since most of the object
contours remain unidentifiable. Concerning Pv, either edges are missing, when r = 2, or too many FPs
appear, when r = 4. Edge maps obtained by RW evaluation measures are adequate, even though object
contours are not really visible concerning Shen, Bourennane and Deriche filters and some spurious
pixels appear concerning AGK and H-K (cf. parkingmeter image). The Hausdorff distance H and ∆k

measures are not reliable because edge maps tied to these evaluations are either too noisy, or most
edges are missing (except for H-K). The edge maps associated with H5%, f2d6, Sk

k=2 and ψ are similar:
not too many FPs, but edges with Shen, Bourennane and Deriche filters are not continuous. However,
edges obtained using f2d6 are too noisy with AGK and H-K (cf. “parkingmeter” image), and the
same remark applies to Sk

k=1 for AGK. Concerning Sk, note that, when k = 1, edges are more easily
visible than using k = 2 because the distance measure score expands rapidly for a missing point far
from its true position (demonstrated in [21]). For image 109, edges obtained by EMM are not really
continuous with the Shen, Bourennane, Deriche and Canny filters, whereas spurious pixels appears
for the edges of the “parkingmeter” image. The edge maps obtained using minimum score of FoM
are heavily corrupted by continuous FPs, like hanging objects. This phenomenon is always present,
but less pronounced, with d4. Edge maps are too corrupted by FPs with MFoM and SFoM, even
though objects are visible, whereas FPs remains less present using F and λ. The segmentations tied to
RDE are reliable, not too many FPs, although some edges are missing. Lastly, the edges maps using the
proposed measure Ξ are not corrupted by noise, the objects are visible, even with the Shen, Bourennane
and Deriche filters. In addition, edge maps for Canny and SF1 are particularly well segmented.
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Secondly, the plotted curves available in Figures 18 and 19 evolve as a function of the noise level
(Gaussian noise). The noise level is represented by PSNR values: from 17 dB to 10 dB. Consequently, the
measure scores and the noise level must increase simultaneously. Moreover, scores of the evaluation
measures associated with the Sobel filter, which is sensitive to noise, must be higher than other
measures; scores concerning Shen and Bourennane filters must be situated just bellow. Finally, measure
scores tied to SF5, AGK and H-K must be plotted at the bottom, and, scores associated with Canny,
Deriche and SF1 filters must be situated above, but below the Shen and Bourennane filters. Now,
scores of Dice∗, P∗m, SSR∗, χ2∗ and F∗α measures increase monotonously, but these scores are not
consistent with the computed edge maps. Indeed, considering the segmented images presented
with PSNR = 14 dB, scores concerning Canny and SF1 filters are better than H-K, whereas the H-K
segmentation is of higher quality than others (continuous contours, less spurious pixels). Concerning
PE, in particular, this measure qualifies the Sobel, Shen and Bourennane filters better than H-K.
Similarly, Φ∗, FMW , Dp and Ψ qualify H-K and AGK as the worse edge detectors. Concerning Pv,
either curves are confused, when r = 2, or scores are negative, when r = 4. By contrast, H, H5% and
∆k scores have a random behavior, even though H5% seems better, but not reliable (see H-K or Sobel
scores as examples). The curves for FoM, F, d4 and MFoM are mixed and confused, F qualifies Shen
and Bourennane filters as the best edge detectors, whereas H-K and AGK are qualified as the worst.
The Deriche filter appears as the best edge detector for d4, although the segmentation using H-K is
clearly better. Curves are mixed using SFoM for the "parkingmeter" image. These plotted scores are
consistent with the images of segmentation, which are heavily corrupted by FPs. No filter can be
really qualified as better than the others. It is also a similar case for λ, where the scores are confused,
except with the Sobel filter. Concerning Sk

k=2, the plotted scores remain unreliable, cf. AGK scores.
When k = 1, Sk scores evolve properly, even though SF5 is penalized as strongly as the Canny filter.
Therefore, the measures having the correct evolution with the correct filter qualification are EMM,
RW , RDE, f2d6 and Sk

k=1. The scores obtained by Ξ are presented in Figures 48 and 49, where FP and
FN distances are also reported. Although these distances do not evolve monotonously, the final score
remains monotonous and the qualifications of the filters are reliable. Actually, the weights concerning
FN distances allow a reliable final computation of Ξ scores. Finally, the results gathering reliability
of the segmentation, curve evolution and filter qualification for each edge detection evaluation are
summarized in Table 5.



J. Imaging 2018, 4, 74 22 of 61

Table 5. Reliability of the reviewed edge detection evaluation measures.

Measure Segmentation Reliability Monotonic Curves Filter Qualification

Dice∗ ≈ 3 7

P∗m ≈ 3 7

SSR∗ ≈ 3 7

PE 7 3 7

χ2∗ ≈ 3 7

Φ∗ 7 3 7

F∗α ≈ 3 7

Pvr=2 7 3 ≈
Pvr=4 7 3 7

RW 3 3 ≈
FMW 7 3 7

H 7 7 7

∆k 7 7 7

H5% ≈ 7 7

FoM 7 3 7

F ≈ 3 7

d4 ≈ 3 7

SFoM ≈ 3 7

MFoM ≈ 3 7

Dp 7 3 7

EMM ≈ 3 3

f2d6 ≈ 3 3

RDEk=1 3 3 3

RDEk=2 3 ≈ 3

Sk
k=1 ≈ 3 ≈

Sk
k=2 ≈ 3 7

Ψ ≈ 3 7

λ ≈ 3 ≈
Ξ 3 3 3
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Original image 109, 689×489 PSNR 17 dB. PSNR 16 dB.

PSNR 15 dB. PSNR 14 dB. PSNR 13 dB.

PSNR 12 dB. PSNR 11 dB. PSNR 10 dB.

Original image parkingmeter, 495×558 PSNR 17 dB. PSNR 16 dB.

PSNR 15 dB. PSNR 14 dB. PSNR 13 dB.

PSNR 12 dB. PSNR 11 dB. PSNR 10 dB.

Figure 17. Image 109 (top) and image "parkingmeter" (bottom) at different levels of noise (PSNR).
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Figure 18. Image 109: Comparison of edge detection evaluation evolution as a function of PSNR values.
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Figure 19. Image parkingmeter: Comparison of edge detection evaluation evolutions.
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Figure 20. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 21. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 22. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 23. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 24. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 25. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 26. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 27. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 28. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 29. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 30. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 31. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 32. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 33. Ideal segmentations for several edge detectors on image 109, PSNR = 14 dB.
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Figure 34. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 35. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.



J. Imaging 2018, 4, 74 42 of 61

Sobel Shen Bourennane

χ2∗

Deriche Canny SF1

SF5 AGK H-K

Sobel Shen Bourennane

Φ∗

Deriche Canny SF1

SF5 AGK H-K

Figure 36. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 37. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 38. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 39. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 40. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.



J. Imaging 2018, 4, 74 47 of 61

Sobel Shen Bourennane

RDEk=1
Deriche Canny SF1

SF5 AGK H-K

Sobel Shen Bourennane

RDEk=2
Deriche Canny SF1

SF5 AGK H-K

Figure 41. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 42. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 43. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 44. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 45. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 46. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 47. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 48. Segmentations and scores concerning Ξ measure and image 109.
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Figure 49. Segmentations and scores concerning Ξ measure and image parkingmeter.
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5. Conclusions

This study presents a survey of supervised edge detection evaluation methods. Several techniques
are based on the number of false positive, false negative, true positive and/or true negative points.
Other methods strongly penalize misplaced points when they are outside a window centered on a true
point. In addition, many approaches compute the distance from the position where a contour point
should be located. Most of these edge detection assessment methods are presented here, with many
examples, exposing the drawbacks for different comparisons of edges with different shapes. Measures
involving only statistics fail to assess objectively when there are no common edge points between
the ground truth (Gt) and the desired contour (Dc). On the contrary, assessments involving spatial
areas around edges (i.e., windows around a point) remain unreliable if several points are detected for
one contour point. Moreover, these techniques depend strongly on the window size, which enables
misplaced points outside the considered window to be severely penalized. Among assessments
involving spacial areas around edges, only the RW measure is suitable. Therefore, assessment involving
distances of the misplaced pixels can evaluate a desired edge as a function of the distances between
the ground truth edges and each point of Dc. There exist different implementations to assess edges
using distances (Note that different strategies exist containing some operators other than confusion
matrices of distances to assess edge detectors, they are referenced in [69].). On the one hand, some
methods record only distances of false positive points, or only distances of false negative points. On the
other hand, some assessment techniques are based on both distances of false positives (FPs) and false
negative points (FNs). Among the more prominent measures, the Figure of Merit (FoM) remains the
most widely used. The main drawback of this technique is that is does not consider distances of false
negative points, i.e., false negative points are strongly penalized without considering their distances;
consequently, two different desired contours can obtain the same evaluation, even if one of them if
visually closer to the true edge. Consequently, several edge evaluation methods are derived from the
Hausdorff distance, they compute both distances of FPs and FNs. The main differences between these
edge detection evaluation measures are the weights for the FP and/or FN distances and the power tied
to the distance computations. As FNs are often close to detected edges (TPs or FPs close to Gt), most
error measures involving distances do not consider this particularity and are not sufficiently penalized.
Distances of FPs strongly penalize edge detectors evaluated by the majority of these measures. Only
RDEk computes the distances of FPs and FNs separately.

In order to objectively compare all these supervised edge detection assessment methods in an
objective way, based on the theory of the dissimilarity evaluation measures, the objective evaluation
assessed nine 1st-order edge detectors involving the minimum score of the considered measures by
varying the parameters of the hysteresis. The segmentation that obtains the minimum score of a
measure is considered as the best one. The scores of the different measures and different edge detectors
are recorded and plotted as a function of the noise level in the original image. A plotted curve must
increase monotonously with the noise level (Gaussian noise), represented by PSNR values (from 17 dB
to 10 dB). It is proved that some edge detectors are better than others. The experiments show the
importance of the growing increase of the noise level: a given edge evaluation measure can qualify an
edge detector as low for a given noise level, whereas, for a higher noise level, the same edge detector
obtains a better score. Consequently, mixing the results of curve evolution (monotonic or not), filter
qualification (poor edge detector penalized stronger than robust edge detector) and the obtained edge
map tied to the minimum score of a considered measure, a credible evaluation is obtained concerning
the studied measures. These experiments exhibit the importance of dissociating both distances of
FPs and FNs. A minimum of measures involving only statistics can be tied to correct segmented
images, but the evolution of the scores is not reliable as a function of the edge detector robustness.
On the contrary, edge maps are visually closer to the ground truth by considering the distance of
false negative points tuned by a weighting. The same applies to the score evolution, and remains
significant for edge detector qualification. The results gathering reliability of the segmentation, curve
evolution and filter qualification for each edge detection evaluation are summarized in Table 5. Thus,
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the edge detection evaluations that are objectively suitable are the Relative Distance Error (RDEk=1)
and the new proposed measure Ξ. The main difference between RDE and Ξ is that RDE separates
the computations of distances of FPs and FNs as a function of the number of points in Dc and Gt,
respectively, whereas Ξ gives a strong weight concerning distances of FNs. This weight depends
on the number of false negative points: the more there are, the more the segmentation is penalized.
This enables an edge map to be obtained objectively containing the main structures, similar to the
ground truth, concerning a reliable edge detector, and a contour map where the main structures of the
image are noticeable. Finally, the computation of the minimum score of a measure does not require
tuning parameters, which is a huge advantage. The open problem remains the normalization of the
distance measures, which could qualify a good segmentation and a poor edge detection close to 0 and
1, respectively. Another open problem concerns the choice of the hysteresis thresholds in the absence
of a ground truth edge map, where the selection of thresholds may be learned thanks to a reliable edge
detection evaluation measure.
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was carried out by Hassan Abdulrahman. The figures were created by Baptiste Magnier. Finally, the text was
written by Baptiste Magnier.

Acknowledgments: Special thanks to Adam Clark for the English enhancement.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

|∇I| Gradient magnitude of an image I
η gradient orientation
TP set of True Positive pixels
FP set of False Positive pixels
FN set of False Negative pixels
TN set of True Negative pixels
Gt Ground truth contour map
Dc Detected contour map
Dice Dice measure
Pm Performance measure
SSR Segmentation Success Ratio
PE Localization-error
ME Misclassiffication Error
Φ Φ measure
χ2 χ2 measure
Fα Fα measure, with α ∈ [0, 1]
Pv Performance value
RW Quality Measure RW focussing on a window W
FM Failure measure FM
FoM Pratt’s Figure of Merit
F Figure of Merit revisited
d4 Combination of Figure of Merit and statistics
Dp Edge map quality measure
SFoM Symmetric Figure of Merit
MFoM Maximum Figure of Merit
Υ Yasnoff measure
H Hausdorff distance
f2d6 Maximum distance measure
Dk Distance to ground truth, with k a real positive
Θ Over-segmentation measure Θ
Ω Under-segmentation measure Ω
RDEk Relative Distance Error, with k a real positive
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Sk Symmetric distance measure, with k a real positive
∆k Baddeley’s Delta Metric
Γ Over-segmentation measure Γ
Ψ Complete distance measure
λ λ measure
Ξ Ξ measure
dGt (p) minimal Euclidian distance between a pixel p and Gt

dDc (p) minimal Euclidian distance between a pixel p and Dc

Sobel Sobel edge detection method
Shen Shen edge detection method
Bourennane Bourennane edge detection method
Deriche Deriche edge detection method
Canny Canny edge detection method
SF1 Steerable filter of order 1
SF5 Steerable filter of order 5
AGK Anisotropic Gaussian Kernels
H-K Half Gaussian Kernels
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