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Abstract: The diffraction contrast modalities accessible by X-ray grating interferometers are not
imaged directly but have to be inferred from sine-like signal variations occurring in a series of
images acquired at varying relative positions of the interferometer’s gratings. The absolute spatial
translations involved in the acquisition of these phase stepping series usually lie in the range of only
a few hundred nanometers, wherefore positioning errors as small as 10 nm will already translate into
signal uncertainties of 1–10 % in the final images if not accounted for. Classically, the relative grating
positions in the phase stepping series are considered input parameters to the analysis and are, for the
Fast Fourier Transform that is typically employed, required to be equidistantly distributed over
multiples of the gratings’ period. In the following, a fast converging optimization scheme is presented
simultaneously determining the phase stepping curves’ parameters as well as the actually performed
motions of the stepped grating, including also erroneous rotational motions which are commonly
neglected. While the correction of solely the translational errors along the stepping direction is
found to be sufficient with regard to the reduction of image artifacts, the possibility to also detect
minute rotations about all axes proves to be a valuable tool for system calibration and monitoring.
The simplicity of the provided algorithm, in particular when only considering translational errors,
makes it well suitable as a standard evaluation procedure also for large image series.

Keywords: X-ray imaging; Talbot–Lau interferometer; grating interferometer; phase contrast imaging;
darkfield imaging; phase stepping; optimization

1. Introduction

X-ray grating interferometry [1,2] facilitates access to new contrast modalities in laboratory
X-ray imaging setups and has by now been implemented by many research groups after the seminal
publication by Pfeiffer et al. in 2006 [3]. The additional information on X-ray refraction (“differential
phase contrast”) and ultra small angle scattering (“darkfield contrast”) properties of a sample that can
be obtained promises both increased sensitivity to subtle material variations as well as insights into
the samples’ substructure below the spatial resolution of the acquired images.

In contrast to classic X-ray imaging, the absorption, differential phase and darkfield contrasts are
not imaged directly but are encoded in sinusoidal intensity variations arising at each detector pixel
when shifting the interferometer’s gratings relative to each other perpendicular to the beam path and
the grating bars. A crucial step in the generation of respective absorption, phase and darkfield images
therefore is the analysis of the commonly acquired phase stepping series, which is the subject of the
present article. Respective examples are shown in Figures 1 and 2.
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Figure 1. Example for a grating interferometric phase stepping series (without sample, cf. Section 2.3
for experimental details). The intensity variation throughout the series is visually most perceivable
in the center. The Moiré fringes are caused by imperfectly matched gratings and will translate to
reference offset phases of the sinusoid curves found at each detector pixel (cf. Figure 2). The bottom
panel shows a corresponding phase stepping curve for the pixel marked orange in the above image
series. The sampling positions are subject to an unknown error.
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Figure 2. From left to right: Transmission (sinusoid mean), visibility (ratio of sinusoid amplitude and
mean) and phase images derived from phase stepping series, as shown in Figure 1. The first two rows
show acquisitions with and without sample (a piece of plastic hose of 2 cm diameter), while the last
row shows the sample images (center row) normalized with respect to the empty beam images (first
row). Positioning errors in the phase stepping procedure cause the Moiré pattern of the reference phase
image to translate into the final results.



J. Imaging 2018, 4, 77 3 of 18

In principle, the images within such phase stepping series are sampled at about 5–10 different
relative grating positions equidistantly distributed over multiples of the gratings’ period such
that the expected sinusoids for each detector pixel may be characterized by standard Fourier
decomposition [1–3]. The zeroth order term represents the mean transmitted intensity (as in classic
X-ray imaging), while the first order terms encode phase shift and amplitude of the sinusoid. The ratio
of amplitude and mean (generally referred to as “visibility”) is here related to scattering and provides
the darkfield contrast. Higher order terms correspond to deviations from the sinusoid model mainly
due to the actual grating profiles and are usually not considered.

Given typical grating periods in the range of 2–10 micrometers, the actually performed spatial
translations lie in the range of 200–2000 nanometers. Particular for the smaller gratings, positioning
errors as small as 10–20 nm imply relative phase errors in the range of 5–10 percent, causing
uncertainties in the derived quantities in the same order of magnitude. The propagation of noise
within the sampling positions onto the extracted signals has, e.g., been studied by Revol et al. [4],
and first results for the determination of the actual sampling positions from the available image series
were shown by Seifert et al. [5] using methods by Vargas et al. [6] from the context of visible light
interferometry based on a decomposition of the images into three basis images (to be found by means
of principal component analysis and subsequent optimization) corresponding to the transmission
image and the amplitude modulated sine and cosine of the phase image. Kaeppler et al. [7] optimized
the phase stepping positions by means of minimizing an objective function penalizing variations
within the visibility and differential phase images that arise from phase stepping errors. For the case
of simultaneous grating stepping and object rotation, von Teuffenbach et al. [8] recently reported
the inference of stepping errors as part of a maximum likelihood tomographic reconstruction
procedure proposed by Ritter et al. [9]. Finally, the authors just became aware of the parallel work by
De Marco et al. [10] who investigated the origination of the particular image artifacts caused by phase
stepping jitter in order to derive a postprocessing artifact reduction technique.

Especially with regard to the quantitative analysis of darkfield signals [11–13], the reduction or
elimination of stepping jitter induced errors is highly desirable. This also applies to the directional
darkfield [14,15] and anisotropic darkfield tomography techniques [16–21], which rely on the
comparability of multiple darkfield images to relate signal variations to the anisotropy and orientation
of scatterers. As the tomographic methods furthermore require large amounts (103–104) of projections,
phase stepping series processing efficiency is also an issue. With regard to system calibration and
monitoring, the inference of the actual stepping motions from the phase stepping series is of interest.

The present article proposes a simple iterative optimization algorithm both for the fitting of
irregularly sampled sinusoids and in particular for the determination of the actual sampling positions.
The use of only basic mathematical operations eases straightforward implementations on arbitrary
platforms. Besides uncertainties in the lateral stepping motion, the remaining mechanical degrees of
freedom (magnification/expansion and rotations) are also considered. The proposed techniques will
be demonstrated on a typical data set.

2. Methods

The task of sinusoid fitting with imprecisely known sampling locations will be partitioned into
two separate optimization problems considering either only the sinusoid parameters or only the
sampling positions while temporarily fixing the respective other set of parameters. Alternating both
optimization tasks will minimize the joint objective function in few iterations. The technique is further
extended to an objective function considering spatially varying sampling positions to also model
(erroneous) relative grating rotations and magnifications.
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2.1. Sinusoid Fitting

The sinusoid is defined as a function ỹ(φ) of phase φ parameterized by a constant offset o,
an amplitude a and a phase offset φ0:

ỹ(φ) = o + a sin(φ− φ0) . (1)

For the purpose of fitting the sinusoid model to given data samples, the equivalent representation
as a linear combination of trigonometric basis functions (i.e., as a first order Fourier series) will be
more convenient:

o + a sin(φ− φ0) = o + a (cos φ0 sin φ− sin φ0 cos φ)

= o + as sin φ + ac cos φ

= (o, as, ac) · (1, sin φ, cos φ)T ,

(2)

parameterized by the constant offset o and two auxiliary amplitudes as and ac with the following
identities:

a =
√

a2
s + a2

c

sin φ0 = −ac/a

cos φ0 = as/a

φ0 = arctan2(−ac, as) .

(3)

The parameters o, ac, and as of the recast sinusoid model corresponding to the least squares fit to
given data samples (φi, yi) enumerated by i may be determined by means of the following iterative
scheme (introducing the superscript iteration index k):

o(0), a(0)c , a(0)s = 0, 0, 0

ỹ(k)i = o(k) + a(k)c cos φi + a(k)s sin φi

o(k+1) = o(k) +
1
N ∑

i
(yi − ỹ(k)i )

a(k+1)
s = a(k)s +

2
N ∑

i
(yi − ỹ(k)i ) sin φi

a(k+1)
c = a(k)c +

2
N ∑

i
(yi − ỹ(k)i ) cos φi ,

(4)

with the factors of 1/N and 2/N accounting for the normalization of the respective basis functions
and N being the amount of samples (φi, yi) enumerated by i. The intermediate variables ỹ(k)i denote
the respective ordinate values of the sinusoid model for iteration k and abcissas φi. The differences
yi − ỹ(k)i thus correspond to the residuals at iteration k. The scheme reduces to classic Fourier analysis
for the case of the abscissas φi being equidistantly distributed over multiples of 2π and converges
within the first iteration in that case. As the incremental updates to o(k), a(k)s and a(k)c are proportional
to the respective derivatives of the `2 error ∑i(o(k) + a(k)c cos φi + a(k)s sin φi − yi)

2, the fixpoint of the
iteration will be the least squares fit also in all other cases.

For a stopping criterion, the relative error reduction

∆`2 =

√
∑i

(
yi − ỹ(k−1)

i

)2
−
√

∑i

(
yi − ỹ(k)i

)2

√
∑i

(
yi − ỹ(k)i

)2
(5)

may be tracked. It is typically found to fall below 0.1% within 10–20 iterations given only slightly
noisy data (noise sigma three orders of magnitude smaller than sinusoid amplitude) and within less
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than 10 iterations for most practical cases. For the special case of equidistributed φi on multiples of 2π,
it will immediately drop to 0 after the first iteration. In practice, a fixed amount of iterations in the
range of five to fifteen will therefore be adequate as stopping criterion as well.

2.2. Phase Step Optimization

An underlying assumption of the previously described least squares fitting procedure is the
certainty of the abscissas, i.e., the set of phases φi at which the ordinates yi have been sampled. As the
sampling positions are themselves subject to experimental uncertainties (arising from the mechanical
precision of the involved actuators), a further optimization step will be introduced that minimizes
the least squares error of the sinusoid fit over deviations ∆φi from the intended sampling positions φi.
These deviations are expected to be smaller than the typical stepping increment φi+1 − φi. While this
procedure obviously results in overfitting when considering only a single phase stepping curve (PSC),
it becomes a well-defined error minimization problem when regarding large sets of PSCs sharing the
same actual sampling positions φi + ∆φi. In other words, an approach to the minimization problem

oj, aj, φ0,j, ∆φi = argmin
oj ,aj ,φ0,j ,∆φi

∑
i,j

(
oj + aj sin(φi + ∆φi − φ0,j)− yji

)2 (6)

shall be considered, with j indexing phase stepping curves captured by different detector pixels at
identical stepping positions φi + ∆φi.

To derive an optimization procedure for the sampling positions, first the fictive case of a perfectly
sinusoid PSC with negligible statistical error on the ordinate (the sampled values) shall be considered.
Ignoring for now the fact that least squares fits commonly assume only the ordinates to be affected
by noise, a least squares fit shall be used to preliminarily determine the parameters of the sinusoid
described by the observed data. Assuming then that inconsistencies of the observed data with the
model are due to errors on the sampling locations, deviations from their intended positions are given
by the data points’ lateral distances from the sinusoid curve (cf. Figure 3). Finally, the actual systematic
deviations of the sampling locations can be found by averaging over the respective results for a large
set of PSCs sampled simultaneously. This information can be fed back into the original sinusoid fit,
which then again allows the refinement of the current estimate of the true sampling positions, finally
resulting in an iterative procedure alternatingly optimizing the sinusoid parameters and the actual
sampling locations (cf. Algorithm 1).

0 /2 3 /2 2
phase

noisy data
sinusoid fit
optimized
sampling positions

Figure 3. Optimization of the actual (in contrast to the intended) sampling positions by Equation (14)
with respect to a previous sinusoid fit based on the temporary assumption that deviations from the
sinusoid model are mainly due to errors on the sampling positions rather than the sampled ordinate
values. Averaging of respective phase deviations found for large sets of measurements will finally
allow the differentiation of systematic deviations from statistical noise.
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Algorithm 1 Least squares optimization of shared abscissa values φi for simultaneous sinusoid
fits to ordinate samples yji belonging to independent curves j sampled at identical positions φi.
This represents a special case of Algorithm 2 with spatially invariant sampling phases. The relaxation
parameter λk ∈ (0; 1] may be chosen <1 if damping of the updates to φ

(k)
i is desired. For the

intermediate argmin operations, see Equations (2)–(5).
1: φi, yji: input data
2: m0 ← 1

2 . upper limit to ∆φji, m0 ∈ (0; 1.38]

3: φ
(0)
i ← φi

4: o(0)j , a(0)j , φ
(0)
0,j ← argmin

o,a,φ0

∑i

(
o + a sin(φ(0)

i − φ0)− yji

)2
. initialization

5: for k = 0 .. kmax do

6: ∆φ
(k)
i ←

∑j softlimit
(

cos(φ(k)
i −φ

(k)
0,j )

(
a(k)j (yji−o(k)j )−a2

j sin(φ(k)
i −φ

(k)
0,j )

)
,(a(k)j )2m0 cos4(φ

(k)
i −φ

(k)
0,j )

)
∑j(a(k)j )2 cos2(φ

(k)
i −φ

(k)
0,j )

7: φ
(k+1)
i ← φ

(k)
i + λk∆φ

(k)
i

8: o(k+1)
j , a(k+1)

j , φ
(k+1)
0,j ← argmin

oj ,aj ,φ0,j

∑i

(
oj + aj sin(φ(k+1)

i − φ0,j)− yji

)2

9: end for.

Algorithm 2 Simultaneous least squares optimization of abscissa values φji and sinusoid fits to ordinate
samples yji belonging to independent curves j sampled at positions φji = φi(j) with φi(j) being a slowly
varying polynomial with respect to the spatial coordinates h(j) and v(j) accounting for the expected
effects due to translations, magnification and rotations of an interferometer’s gratings. The procedure
reduces to Algorithm 1 when considering only the zeroth order term of φi(j).

1: φi, yji: input data
2: m0 ← 1

2 . upper limit to ∆φji, m0 ∈ (0; 1.38]

3: φ
(0)
ji ← φi∀j . initialization of sampling phases with intended values

4: o(0)j , a(0)j , φ
(0)
0,j ← argmin

o,a,φ0

∑i

(
o + a sin(φ(0)

i − φ0)− yji

)2
. initial sinusoid fits

5: for k = 0 .. kmax do

6: ∆φ
(k)
ji ←


0 a(k)j cos(φ(k)

ji − φ
(k)
0,j ) = 0

softlimit

(
(yji−o(k)j )/a(k)j −sin(φ(k)

ji −φ
(k)
0,j )

cos(φ(k)
ji −φ

(k)
0,j )

, m0 cos2(φ
(k)
ji − φ

(k)
0,j )

)
else

7: w(k)
ji ← a(k) 2

j cos2(φ
(k)
ji − φ

(k)
0,j )

8: ∆φ
(k)
i ,∇hφ

(k)
i ,∇vφ

(k)
i ,∇hvφ

(k)
i ,∇h2 φ

(k)
i ← argmin

∆φi ,∇hφi ,∇vφi ,∇hvφi ,∇h2 φi

∑j wji

(
∆φi(j)− ∆φ

(k)
ji

)2

. for ∆φi(j), cf. Equation (19)
9: φ

(k+1)
ji ← φ

(k)
ji + ∆φ

(k)
i + ∇hφ

(k)
i (h − h0) + ∇vφ

(k)
i (v − v0) + ∇hvφ

(k)
i (h − h0)(v − v0) +

∇h2 φ
(k)
i (h− v0)

2

10: o(k+1)
j , a(k+1)

j , φ
(k+1)
0,j ← argmin

oj ,aj ,φ0,j

∑i

(
oj + aj sin(φ(k+1)

ji − φ0,j)− yji

)2

11: end for.
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2.2.1. Determination of Individual Phase Deviations

Starting with an initial sinusoid fit

o, a, φ0 = argmin
o,a,φ0

∑
i
(o + a sin(φi − φ0)− yi)

2 , (7)

to given data samples (φi, yi), the residual sum of squares shall be minimized over deviations ∆φi to
the abscissas φi while keeping the sinusoid model parameters o, a and φ0 fixed:

∆φi = argmin
∆φi

∑
i
(o + a sin(φi + ∆φi − φ0)− yi)

2 . (8)

For reasons of better readability, the detector pixel index (or equivalently PSC index) j of the
sinusoid parameters o, a, φ0 and the data samples yi has been omitted here and is explicitly added
again to the final results at the end of this subsection.

Equation (8) is solved when the derivative of the objective function with respect to ∆φi vanishes:

0 =
d

d∆φi
∑

i
(o + a sin(φi + ∆φi − φ0)− yi)

2

0 = 2 (o− yi + a sin(φi + ∆φi − φ0)) a cos(φi + ∆φi − φ0)

for a cos(φi + ∆φi − φ0) 6= 0 :

0 = (o− yi + a sin(φi + ∆φi − φ0))

for ∆φi � π :

0 ≈ (o− yi + a sin(φi − φ0) + ∆φia cos(φi − φ0))

(9)

where the last step is a first order Taylor expansion with respect to ∆φi. This directly leads to the
following expression for ∆φi:

∆φi ≈
1

cos(φi − φ0)

(
yi − o

a
− sin(φi − φ0)

)
for ∆φi � π and a cos(φi − φ0) 6= 0 , (10)

where the earlier condition a cos(φi + ∆φi − φ0) 6= 0 is approximated to be satisfied when
a cos(φi − φ0) 6= 0. The restriction to cases with a cos(φi − φ0) 6= 0 can be intuitively understood
when recalling that cos(φi − φ0) = 0 implies a maximum or minimum of the sinusoid and a = 0 means
that it is constant (φi independent), in both of which cases there is no sensible choice for ∆φi 6= 0.
The constraint on the result, ∆φi � π, can simply be taken into account by means of a limiting function
parameterized by a maximal absolute value m ≥ 0 such as

softlimit(∆φi, m ≥ 0) =

0 m = 0

m tanh
(

∆φi
m

)
else

, (11)

which converges to the identity function for ∆φi � m and is bounded at ±m. The choice of m in this
case depends on the validity range of the linear approximation of sin(φi + ∆φi − φ0) with respect
to ∆φi about φi − φ0, which obviously depends on the magnitude of the curvature of the sinusoid
at this point, as illustrated in Figure 4. This may be accounted for by introducing a suitable φi − φ0

dependence to m denoted by the respective argument:

m(φi − φ0) = m0 cos2(φi − φ0) . (12)

m(φi − φ0) reaches its largest value m0 at φi − φ0 = 0 (where sin(φi − φ0) is actually linear) and
smoothly drops to 0 for cos(φi − φ0) = 0, in which case both the sine and its curvature are extremal
and ∆φi shall and will be limited to 0. The upper bound for m(φi − φ0) and thus for the choice
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of m0 is defined by the range of values ∆φi ∈ [−m0 cos2(φi − φ0),+m0 cos2(φi − φ0)] over which
sin(∆φi + φi − φ0) is actually invertible (cf. Figure 4). The sine function sin(ϑ) is locally invertible
over intervals of ϑ ∈ [nπ − π

2 , nπ + π
2 ] with n being an integer number and ϑ denoting the argument

(ϑ = ∆φi + φi − φ0). For the determination of m0 it is sufficient to consider the case n = 0:

m0 cos2(ϑ) ≤ π

2
− |ϑ| ∀ϑ ∈ [−π

2
,+

π

2
]

m0 . 1.38 .
(13)

For m0 = 1.38, the linear approximation used in Equation (9) deviates by up to 40%. The deviation
is limited to 20% or 5% for m0 = 1 and m0 = 1

2 , respectively.

0 1
2

3
2

2 5
2

2 | |

Figure 4. Illustration of the maximal sensible ranges for linear approximations of a sinusoid.
Vertical lines at the turning points indicate the boundaries of monotone sections that should never be
crossed by linear approximations of the curve. The maximum meaningful range is thus largest for
points furthest from these boundaries and reduces to zero exactly at the turning points. Equation (12)
approximates this phase dependence of the validity range with a cos2 function, and Equation (13)
defines the maximum amplitude admissible to indeed never exceed turning points.

Combining the above results and reintroducing the detector pixel index j, the following expression
for pixel (j) and phase step (i) wise phase stepping deviations ∆φji reducing (and, for sufficiently small

∆φji, minimizing) the `2 error
(
oj + aj sin(φi + ∆φji − φ0,j)− yji

)2 can be given, choosing m0 = 1
2 :

∆φji ≈


0 aj cos(φi − φ0,j) = 0

softlimit


(

yji−oj
aj
−sin(φi−φ0,j)

)
cos(φi−φ0,j)

, 1
2 cos2(φi − φ0,j)

 else
. (14)

Figure 3 shows an example of this approximate least squares solution to ∆φji.

2.2.2. Noise Weighted Average of Phase Deviations

Now that an expression has been derived for the deviations ∆φji optimizing the abscissa values for
individual PSCs indexed by j given previous sinusoid fits, the respective results for all PSCs sharing the
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same sampling locations may be averaged, such that the mean deviations ∆φi essentially correspond
to the actual systematic phase stepping errors (whereas statistical noise will mostly cancel out):

∆φi =
∑j wji∆φji

∑j wji
, (15)

using weights wji factoring in the relative certainty and relevance of the individual ∆φji. An appropriate
choiceis

wji = a2
j cos2(φi − φ0,j) , (16)

where cos2(φi − φ0,j) weights the slope dependent error propagation from noisy measurements yji to
∆φji based on the derivative of the sinusoid model at phase step i and a2

j weights the contribution of a
particular PSC j to the accumulated `2 error. These considerations leadto

∆φi =
∑j a2

j cos2(φi − φ0,j)∆φji

∑j a2
j cos2(φi − φ0,j)

=

∑j a2
j cos2(φi − φ0,j) softlimit


(

yji−oj
aj
−sin(φi−φ0,j)

)
cos(φi−φ0,j)

, 1
2 cos2(φi − φ0,j)


∑j a2

j cos2(φi − φ0,j)

=
∑j softlimit

(
cos(φi − φ0,j)

(
aj (yji − oj)− a2

j sin(φi − φ0,j)
)

, 1
2 a2

j cos4(φi − φ0,j)
)

∑j a2
j cos2(φi − φ0,j)

,

(17)

where the last step uses the relation α softlimit(x, m) = softlimit(αx, αm) for arbitrary real-valued
arguments x and m and factors α ≥ 0.

Finally, the above derivations can be combined to an iterative optimization algorithm reducing
the accumulated least square error of multiple sinusoid fits (indexed by j) to data points yji over shared
abscissa values φi as defined by Equation (6). A pseudo code representation is given in Algorithm 1,
further introducing the relaxation parameter λk ∈ (0; 1] that may be chosen <1 in order to damp the
adaptions to φ

(k)
i if desired. The intermediate sinusoid fits may be accomplished using the iterative

algorithm described in the previous section.

2.2.3. Inhomogeneous Sampling Phase Deviations

Up to now, it has been assumed that deviations from the intended phase stepping positions are
due to purely translational uncertainties in the relative motion of the involved gratings, resulting in
offsets ∆φi of the actual from the intended sampling phases that are homogeneous throughout the
whole detection area. When also considering relative grating period changes (e.g., due to either thermal
expansion or motion induced changes in magnification) and rotary motions of the interferometer’s
gratings relative to each other (e.g., due to backlashes within the mechanical actuators), the effective
sampling phases at each phase step may exhibit gradients over the detection area. Given the small
grating periods (micrometer scale) compared to the total extents of the gratings (centimeter scale),
both tilts in the sub-microrad range and relative period changes in the range of 10−7 will already
manifest themselves in observable gradients.

The corresponding optimization problem regarding gradients is, analog to Equation (6), given by:

oj, aj, φ0,j, ∆φi(j) = argmin
oj ,aj ,φ0,j ,∆φi(j)

∑
i,j

(
oj + aj sin(φi + ∆φi(j)− φ0j)− yji

)2
(18)
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where the spatial dependence of the phase deviations ∆φi has been accounted for by a functional
dependence on the detector pixel index j. Given the expected gradients (as illustrated in Figure 5),
the spatially varying phase deviations ∆φi(j) have the following form:

∆φi(j) = ∆φi +∇hφi (h− h0) +∇vφi (v− v0) +∇hvφi (h− h0)(v− v0) +∇h2 φi (h− h0)
2 , (19)

with the coefficients ∇hφi, ∇vφi, ∇hvφi and ∇h2 φi quantifying the respective gradients in horizontal
and vertical direction as well as the mixed term and the curvature in horizontal direction, and h and v
being spatial detector pixel indices related to the linear pixel index j through the amount Nh of pixels
within one detector row:

j = vNh + h

h = j mod Nh

v = (j− h)/Nh .

(20)

The constant offsets h0 and v0 characterize the detector center.

translation

const. offset

magnification

(h h0)

rotation 

(v v0)

tilt 

(h h0)(v v0)

slant 

(h h0)2

Figure 5. Grating misalignments (top row) and corresponding spatial phase variations (bottom row).
From left to right: Translation, magnification, rotation, tilt, and slant. The latter two effects (as well as
translation induced magnification) are only observable in cone beam setups. The employed color bar
ranges from orange for negative values over white (zero) to blue for positive values.

The optimization of the extended objective function in Equation (18) can be performed analog
to that of Equation (6) with the only difference lying in the evaluation of the spatial phase difference
maps ∆φji defined by Equation (14) (an example of which is shown in Figure 6). The weighted
average derived in the previous section to determine the homogeneous offset ∆φi can be extended to a
generalized linear least squares fit of the model ∆φi(j) = ∆φi(h(j), v(j)) defined by Equation (19) to
the local estimates ∆φji (Equation (14), Figure 6), also taking the weights defined by Equation (16) into
account. Said procedure is stated more formally in Algorithm 2.

Basic geometric considerations neglecting higher order interrelations of the considered
effects (e.g., rotation and effective period change) result in the following relations between the
observable parameters ∇hφi, ∇vφi, ∇hvφi, ∇h2 φi and relative translatory and rotatory motions of
the interferometer’s gratings. To relate various magnification changes to spatial motions based on the
intercept theorem, an assumption has to be made as to which of the gratings actually moved. Here,
the grating that is mounted on the linear phase stepping actuator is assumed to be the cause of all
relative motions of both gratings also including tilts and rotations. The “source–grating distance” in
the following equations will thus refer to the stepped grating.
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∆φi quantifies the translational error analog to Section 2.2.2. In contrast to the previous section,
the present model distinguishes between homogeneous phase deviations induced by translation and
the mean component induced by the∇h2 φi(h− h0)

2 term in the case of non-vanishing curvature of the
spatial phase deviation.

0 px 850 px
850 px

0 px
 [rad]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0 px 850 px

averaging weight

0

max.

Figure 6. Example of sampling phase deviations (left) obtained from Equation 14 (cf. also Figure 3) for
the first frame of the phase stepping series shown in Figure 1 with corresponding importance weights
(right) as defined by Equation (16). White regions (0 on the colorbar) in the ∆φ map (left) correspond
to samples close to or exactly on turning points of the fitted sinusoids, where phase deviations cannot
be effectively determined. These areas get little weighting in the determination of the average phase
deviation as can be seen by the corresponding dark fringes in the weighting map on the right.

The vertical gradient parameter ∇vφi is related to a relative rotation η of both gratings about the
optical axis:

tan η =
∇vφi
2π

effective grating period
detector pixel pitch

, (21)

where the “effective grating period” refers to the projected period length at the location of the detector,
which should be identical for both interferometer gratings (not considering the optional additional
coherence grating close to the X-ray source).

The horizontal gradient parameter ∇hφi is related to a relative mismatch in effective grating
periods of the gratings either due to relative distance changes along the optical axis or due to actual
expansions (e.g., thermally induced):

relative period mismatch =
effective period difference

effective grating period
=
∇hφi
2π

effective grating period
detector pixel pitch

. (22)

When assuming relative grating period mismatches to be caused by changes in magnification due
to translations of one of the gratings along the optical axis, the following relation applies to first order:

translation distance = (relative period mismatch)
(source–grating distance)2

source–detector distance

=
∇hφi
2π

effective grating period
detector pixel pitch

(source–grating distance)2

source–detector distance
.

(23)

The change ∇hvφi of the horizontal gradient throughout the vertical direction corresponds to a
relative change in magnification from top to bottom, e.g., due to a tilt θ of one of the gratings about the
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horizontal axis. Using the above relation between magnification changes and spatial displacements,
the tilt θ about the horizontal axis is related to ∇hvφi approximately by

tan θ =
∇hvφi

2π

effective grating period
detector pixel pitch

(
(detector pixel pitch)

source–grating distance
source–detector distance

)−1

× (source–grating distance)2

source–detector distance

=
∇hvφi

2π

(effective grating period)(source–grating distance)
(detector pixel pitch)2 .

(24)

A non-vanishing curvature∇h2 φi arises in the case of a rotary motion about the vertical axis (slant)
and is analogously related to the slant angle ϕ to first order by

tan ϕ =
∇h2 φi

2π

(effective grating period)(source–grating distance)
(detector pixel pitch)2 . (25)

2.3. Experimental Setup

The interferometer used to demonstrate the described analysis techniques consists of a set of
three gratings (coherence grating G0, phase grating G1 and absorption grating G2) manufactured
by microworks GmbH (Karlsruhe, Germany) for a design energy of 54 keV and mounted in an in
house cone beam micro-CT setup comprising a commercial microfocus X-ray source operated at
80 kV acceleration voltage as well as a commercial flat panel detector with a pixel pitch of 74.8 µm.
The grating periods are 4.8 µm (G0), 2.4 µm (G1) and 4.8 µm (G2), and the gratings are placed at 100 cm,
125 cm and 150 cm distance from the X-ray source, respectively. The field of view is limited by the
diameter of G2 of approximately 10 cm. The G1 grating is mounted on a piezo driven linear actuator
responsible for the phase stepping. The detector is placed right behind the absorption grating in about
155 cm distance from the source. Images are averaged over 10 exposures of 0.5 s each and are cropped
to a region of 850 × 850 px2 corresponding to an area of 6.4 × 6.4 cm2 on the detector. A piece of plastic
hose of 2 cm diameter placed about 143 cm distance from the source serves as the sample object.

3. Experiment and Results

Phase stepping series of 15 images sampled at varying relative grating shifts uniformly distributed
over three grating periods have been acquired both with and without sample in the beam path. Figure 1
shows the first five frames of the empty beam series. The resulting phase stepping curves at each
pixel (indexed by j) of the detector have been evaluated using a least squares fit to a sinusoid model
parameterized by mean oj, amplitude aj and phase offset φ0,j under the initial assumption of perfectly
stepped gratings. These preliminary results are shown in Figure 2 and correspond to those obtained
by classic Fourier analysis of the phase stepping curves. Deviations of the sampling positions from the
intended ones are then determined based on systematic deviations of the sampled data from the fitted
sinusoids by means of Equation (17) for all 15 frames of the phase stepping series. Figure 6 provides
an example for the first frame of the series. By iterating the sinusoid fits and the corrections to the
sampling positions to reduce the overall least squares error (cf. Equation (6)) by means of Algorithm 1,
the sampling positions’ deviations are found as shown in Figure 7. Figure 8 shows the reduction of
Moiré modulated systematic errors in the final results, i.e., the transmission, visibility and differential
phase images. The root mean square error is reduced by almost a factor of two in the present example
and is already close to convergence after the first iteration as can be seen in Figure 9. Correspondingly,
the deviations from the intended phase stepping positions are almost completely deduced within the
first iteration, as shown in Figure 7 (bottom). Nevertheless, complete suppression of the Moiré artifacts
within the final images requires some further iterations, as illustrated in Figure 10.
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Figure 7. Above: An example phase stepping curve consisting of 15 steps over three grating periods.
Sampled values are shown both at the originally intended as well as at the inferred sampling positions
(blue and orange markers respectively) along with the corresponding initial and corrected sinusoid
fits. Although the difference in the resulting fit appears small, it is clearly noticeable in the final
images, as shown in Figure 8. Below: Deviations of the phase stepping series’ sampling positions from
the intended ones in units of radians as found at 0, 1 and 9 iterations of Algorithm 1. The range of
deviations corresponds to roughly ±10% of the intended stepping increments of 2

5 π.
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Figure 8. Transmission, visibility and phase images (from left to right) of the sample referenced to
empty beam images. The top and bottom rows show results based on phase stepping curve evaluations
with and without correction of the actual sampling positions, respectively. The evaluation based on
the assumption of error free sampling positions (bottom row) exhibits distinctive systematic errors
modulated by the Moiré structure of the reference phase image (cf. Figure 2).
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Figure 9. Root mean square error (RMSE) of the sinusoid fits to the empty beam phase stepping series
throughout the iterations of Algorithm 1. After the first correction of the actual sampling locations by
Equation (17), the error is reduced by almost a factor of two. The following iterations further reduce the
error confirming the validity of Algorithm 1 for the solution of Equation (6). Additional consideration
of spatially inhomogeneous stepping distances (Equation (2)) further reduces the RMSE by merely 0.1%.

0px 850px
850px

0px

2cm

0px 850px 0px 850px 0px 850px
0.85

0.90

0.95

1.00
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Figure 10. From left to right: Visibility images normalized to the respective empty beam images for 0
(regular analysis assuming perfect stepping), 1, 3 and 9 iterations of Algorithm 1 applied to the phase
stepping series with and without sample, respectively. The grayscale window has been chosen to
emphasize the Moiré artifacts.

In addition to the mean deviations of the phase steps from the intended positions, spatial gradients
throughout the detection area have also been considered (cf. Algorithm 2). Figure 11 shows the
respective differential deviations from the intended phase steps between the first nine frames of the
phase stepping series, normalized to the nominal homogeneous phase stepping increment of 2π/5.
The mean contributions of each component are listed in Table 1. While the homogeneous error of
0.1 rad ranges within 10% of the nominal step size (or 2% of the grating period), the remaining effects
are two to three orders of magnitude smaller. The root mean square error of the sinusoid fits for
the whole phase stepping series is reduced by 0.1% relative to the optimization considering only
homogeneous phase step deviations, as shown in Figure 9. Consequently, the derived images (not
shown) are visually equivalent to those obtained previously (cf. Figure 8).

Figure 12 shows variations in the relative alignment of the gratings derived from the
inhomogeneous phase stepping analysis by means of Equations (21)–(25). Besides deviations from
the nominal linear motion of the gratings, minute rotations as well as subtle changes in relative
magnification can also be detected. The correlation between grating rotations and translational errors
visible in the left hand side graph in Figure 12 indicate rotations about an off-center pivot point
about 10−1 m below the grating center, which is consistent with the actual placement of the phase
stepping actuator in the experimental setup. Although the analog correlation between tilts about
the horizontal axis and translation (along the optical axis) induced variations in magnification is
much less pronounced (Figure 12, right hand side), the mean trend and magnitude are also consistent
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with the assumption of a pivot point below the field of view. However, the observed magnitude
(10−7) of the relative mismatch of the effective grating periods is well explicable by temperature
variations in the order of magnitude of 10−1 K given a thermal expansion coefficient in the order
of magnitude of 10−6 K−1 for the typical wafer materials silicon and graphite. Finally, the phase
stepping inhomogeneities further suggest rotational motions about the vertical axis on the microrad
scale (also shown in Figure 12).

As a crude error assessment, the standard error of the mean phase deviation can be estimated
from the sinusoid fits’ root mean square error:

σmean ≈
1√

contributing detector pixels
sinusoid fit RMSE

mean sinusoid amplitude

≈
√

2
detector pixels

sinusoid fit RMSE
mean sinusoid amplitude

.
(26)

The latter corresponds for the present data set to about 6% of the mean observed sinusoid
amplitude, which directly translates to 6× 10−2 rad on the abscissa. Given the amount of detector
pixels contributing to the least squares fits of ∆φi(j) within each frame of the phase stepping series,
a standard error in the order of magnitude of

σmean ≈ 10−4 rad (27)

results. This implies that, according to the results given in Table 1, the tilt and slant contributions ∇hvφ

and ∇h2 φ are close to the expected noise level for the present case.
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Figure 11. Relative deviations of the actual phase steps from the intended step width of 2π
5 between

the first nine frames of the phase stepping series ( 5
2π (∆φi+1(j)− ∆φi(j)− 2π

5 )). The variations ∆φi(j)
have been determined by optimization of Equation (18) assuming the spatial dependence defined by
Equation (19) (see also Algorithm 2).
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Figure 12. Quantitative results derivable from the inhomogeneities in the phase stepping deviations
∆φi(j) (Equation (19)). On the left, the change in tilt angle about the optical axis from frame to
frame within the phase stepping series is shown along with the accompanying linear motion error.
Rotation correlated translations indicate an off-center pivot point. On the right hand side, the relative
grating scaling error is shown along with the found tilt and slant about the horizontal and vertical axis.
These quantities represent deviations from the mean grating alignment throughout the phase stepping
series. The tilt and slant angles range close to the expected noise level (cf. Table 1 and Equation (27)).

Table 1. Root mean square contributions of the mean, gradient and curvature components of ∆φi(j)
to the sampling phase deviations found for the present phase stepping series in units of radians.
The homogeneous error ∆φi is by far the dominating effect. The contributions of∇hvφi and∇h2 φi range
in the order of magnitude of the expected noise level of 10−4 rad (cf. Equations (26) and (27)).

√
∆φ2

i

√
(∇hφi (h− h0))

2
√
(∇vφi (v− v0))

2
√
(∇hvφi (h− h0)(v− v0))

2
√
(∇h2 φi (h− h0)2)2

1.2× 10−1 2.4× 10−3 3.6× 10−3 3.6× 10−4 7.5× 10−4

4. Discussion and Conclusions

A fast converging iterative algorithm for the joint optimization of both the sinusoid model
parameters and the actual sampling locations for the evaluation of grating interferometric phase
stepping series has been proposed. The additional effort (with respect to [5,6]) of explicitly optimizing
phases rather than Fourier coefficients allows for a straight forward extension of the optimization
algorithm also in the case of spatially varying phase stepping increments due to further mechanical
degrees of freedom besides the intended translatory stepping motion. By division of the full
optimization task into three easily tractable subproblems (phase stepping curve fitting, identification
of sampling position deviations and fitting of the latter to an expected spatial model), the use of
generic nonlinear optimization algorithms as, e.g., used in [7] is avoided. Of these subtasks, only the
second one is actually nonlinear, and a significant portion of the present article has been devoted
to its approximate linearization (also taking noise propagation into consideration). The problem of
simultaneous phase stepping curve evaluation and (spatially varying) sampling position determination
is thus reduced to the iterative alternation of two generalized linear least squares problems and one
linear approximation to a nonlinear problem. Due to this almost linear nature, sufficient convergence is
achieved within less than five iterations for the presented example. Although no rigorous convergence
analysis has been performed, the outlined structure of the optimization problem does not raise severe
concerns regarding its stability. In cases of doubt, convergence can simply be slowed down by means
of the relaxation parameter λk.

For the presented example data set, mean phase stepping errors of up to 10% of the nominal step
width have been found, and their correction results in both a considerable reduction of the overall
root mean square error by almost a factor of two and a significant visual improvement of the final
images. Although higher order effects are observable, their contribution was found to be two to three
orders of magnitude smaller than that of the mean stepping error, and their correction thus did not
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contribute to further improvements in visual image quality in the present case. However, the higher
order deviations allow the detection of minute motions of the gratings and thus provide a valuable tool
for the monitoring and debugging of experimental setups. First order approximations for the relations
between spatial phase variations and mechanical degrees of freedom of the moved grating have been
given. For the present data set, linear motion errors up to 25 nm as well as rotational motions on the
microrad scale have been inferred from the phase stepping series. While the tilt and slant angles about
the horizontal and vertical axes, respectively, have been found to range close to the expected noise
level and should rather be interpreted as upper limits to actual motions, magnification changes in the
range of 10−7 and sub-microrad rotations about the optical axis were well detectable. The expected
correlations between rotation and translation due to an off-center pivot point further support the
plausibility of the results. This crosstalk between sub-microrad rotations and effective translations
further indicates that noticeable phase stepping errors will be almost inevitable even for very carefully
designed experiments, wherefore an optimization based evaluation of the phase stepping series as
proposed in Algorithm 1 is generally advisable. With processing speeds in the range of 0.1 s per phase
stepping series (using graphics processors), it is well suitable as a standard processing method also for
large image series.
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