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Abstract: With an increased interest in applications that require a clean background image, such as
video surveillance, object tracking, street view imaging and location-based services on web-based
maps, multiple algorithms have been developed to reconstruct a background image from cluttered
scenes. Traditionally, statistical measures and existing image quality techniques have been applied
for evaluating the quality of the reconstructed background images. Though these quality assessment
methods have been widely used in the past, their performance in evaluating the perceived quality of
the reconstructed background image has not been verified. In this work, we discuss the shortcomings
in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI)
that combines color and structural information at multiple scales using a probability summation
model to predict the perceived quality in the reconstructed background image given a reference
image. To compare the performance of the proposed quality index with existing image quality
assessment measures, we construct two different datasets consisting of reconstructed background
images and corresponding subjective scores. The quality assessment measures are evaluated by
correlating their objective scores with human subjective ratings. The correlation results show that
the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets
and the corresponding subjective scores provide a benchmark to evaluate the performance of future
metrics that are developed to evaluate the perceived quality of reconstructed background images.

Keywords: background reconstruction; image quality assessment; image dataset; subjective evaluation;
perceptual quality; objective quality metric

1. Introduction

A clean background image has great significance in multiple applications. It can be used for video
surveillance [1], activity recognition [2], object detection and tracking [3,4], street view imaging and
location-based services on web-based maps [5,6], and texturing 3D models obtained from multiple
photographs or videos [7]. However, acquiring a clean photograph of a scene is seldom possible. There
are always some unwanted objects occluding the background of interest. The technique of acquiring a
clean background image by removing the occlusions using frames from a video or multiple views of a
scene is known as background reconstruction or background initialization. Many algorithms have
been proposed for initializing the background images from videos, for example [8–14]; and also from
multiple images such as [15–17].

Background initialization or reconstruction is crippled by multiple challenges. The pseudo-stationary
background (e.g., waving trees, waves in water, etc.) poses additional challenges in separating the moving
foreground objects from the relatively stationary background pixels. The illumination conditions can vary
across the images, thus changing the global characteristics of each image. The illumination changes cause
local phenomena such as shadows, reflections and shading, which change the local characteristics of the
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background across the images or frames in a video. Finally, the removal of ‘foreground’ objects from the
scene creates holes in the background that need to be filled in with pixels that maintain the continuity
of the background texture and structures in the recovered image. Thus, the background reconstruction
algorithms can be characterized by two main tasks:

(1) foreground detection, in which the foreground is separated from the background by classifying
pixels as foreground or background;

(2) background recovery, in which the holes formed due to foreground removal are filled.

The performance of a background extraction algorithm depends on two factors:

(1) its ability to detect the foreground objects in the scene and completely eliminate them; and
(2) the perceived quality of the reconstructed background image.

Traditional statistical techniques such as Peak Signal to Noise Ratio (PSNR), Average Gray-level
Error (AGE), total number of error pixels (EPs), percentage of EPs (pEP), number of Clustered Error
Pixels (CEPs) and percentage of CEPs (pCEPs) [18] quantify the performance of the algorithm in
its ability to remove foreground objects from a scene to a certain extent, but they do not give
an indication of the perceived quality of the generated background image. On the other hand,
the existing Image Quality Assessment (IQA) techniques such as Multi-scale Similarity metric
(MS-SSIM) [19] and Color image Quality Measures (CQM) [20] used by the authors in [21] to
compare different background reconstruction algorithms are not designed to identify any residual
foreground objects in the scene. Lack of a quality metric that can reliably assess the performance of
background reconstruction algorithms by quantifying both aspects of a reconstructed background
image motivated the development of the proposed Reconstructed Background visual Quality Index
(RBQI). The proposed RBQI is a full-reference objective metric that can be used by background
reconstruction algorithm developers to assess and optimize the performance of their developed
methods and also by users to select the best performing method. Research challenges such as the
Scene Background Modeling Challenge (SBMC) 2016 [22] are also in need of a reliable objective scoring
measure. RBQI uses the contrast, structure and color information to determine the presence of any
residual foreground objects in the reconstructed background image as compared to the reference
background image and to detect any unnaturalness introduced by the reconstruction algorithm that
affects the perceived quality of the reconstructed background image.

This paper also presents two datasets that are constructed to assess the performance of the
proposed as well as popular existing objective quality assessment methods in predicting the perceived
visual quality of the reconstructed background images. The datasets consist of reconstructed
background images generated using different background reconstruction algorithms in the literature
along with the corresponding subjective ratings. Some of the existing datasets such as video
surveillance datasets (Wallflower [23], I2R [3]), background subtraction datasets (UCSD [24], CMU [25])
and object tracking evaluation dataset (“Performance Evaluation of Tracking and Surveillance (PETS)")
are not suited for benchmarking the background reconstruction algorithms or the objective quality
metrics used for evaluating the perceived quality of reconstructed background images as they do
not provide reconstructed background images as ground-truth. The more recent dataset “Scene
Background Modeling Net" (SBMNet) [26,27] is targeted at comparing the performance of the
background initialization algorithms. It provides the reconstructed images as ground truth, but
it does not provide any subjective ratings for these images. Hence, the SBMNet dataset [26,27] is
not suited for benchmarking the performance of objective background visual quality assessment.
Thus, the datasets proposed in this work are the first and currently the only datasets that can be
used for benchmarking existing and future metrics developed to assess the quality of reconstructed
background images. The constructed datasets and the code for RBQI are available for download at
Supplementary Materials.

The rest of the paper is organized as follows. In Section 2, we highlight the limitations of existing
popular assessment methods [28]. We introduce the new benchmarking datasets in Section 3 along
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with the details of the subjective tests. In Section 4, we propose a new index that makes use of a
probability summation model to combine structure and color characteristics at multiples scales for
quantifying the perceived quality in reconstructed background images. Performance evaluation results
for the existing and proposed objective visual quality assessment methods are presented in Section 5
for reconstructed background images. Finally, we conclude the paper in Section 6 and also provide
directions for future research.

2. Existing Full Reference Background Quality Assessment Techniques and Their Limitations

Existing background reconstruction quality metrics can be classified into two categories: statistical and
image quality assessment (IQA) techniques, depending on the type of features used for measuring the
similarity between the reconstructed background image and reference background image.

2.1. Statistical Techniques

Statistical techniques use intensity values at co-located pixels in the reference and reconstructed
background images to measure the similarity. Popular statistical techniques [18] that have been
traditionally used for judging the performance of background initialization algorithms are briefly
explained here:

(i) Average Gray-level Error (AGE): AGE is calculated as the absolute difference between the gray
levels of the co-located pixels in the reference and reconstructed background image.

(ii) Error Pixels (EP): EP gives the total number of error pixels. A pixel is classified as an error pixel
if the absolute difference between the corresponding pixels in the reference and reconstructed
background images is greater than an empirically selected threshold τ.

(iii) Percentage Error Pixels (pEP): Percentage of the error pixels, calculated as EP/N, where N is the
total number of pixels in the image.

(iv) Clustered Error Pixels (CEP): CEP gives the total number of clustered error pixels. A clustered error
pixel is defined as the error pixel whose four connected pixels are also classified as error pixels.

(v) Percentage Clustered Error Pixels (pCEP): Percentage of the clustered error pixels, calculated as
CEP/N, where N is the total number of pixels in the image.

Though these techniques were used in the literature to assess the quality of reconstructed
background images, their performance was not previously evaluated. As we show in Section 5
and as noted by the authors in [28], the statistical techniques were found to not correlate well with the
subjective quality scores in terms of prediction accuracy and prediction consistency.

2.2. Image Quality Assessment Techniques

The existing Full Reference Image Quality Assessment (FR-IQA) techniques use perceptually
inspired features for measuring the similarity between two images. Though these techniques have
been shown to work reasonably well while assessing images affected by distortions such as blur,
compression artifacts and noise, these techniques have not been designed for assessing the quality of
reconstructed background images.

In [21,27], popular FR-IQA techniques including Peak Signal to Noise Ratio (PSNR),
Multi-Scale Similarity (MS-SSIM) [19] and Color image Quality Measure (CQM) [20] were adopted
for objectively comparing the performance of the different background reconstruction algorithms;
however, no performance evaluation was carried out to support the choice of these techniques.
Other popular IQA techniques include Structural Similarity Index (SSIM) [29], visual signal-to-noise
ratio (VSNR) [30], visual information fidelity (VIF) [31], pixel-based VIF (VIFP) [31], universal quality index
(UQI) [32], image fidelity criterion (IFC) [33], noise quality measure (NQM) [34], weighted signal-to-noise
ratio (WSNR) [35], feature similarity index (FSIM) [36], FSIM with color (FSIMc) [36], spectral residual based
similarity (SR-SIM) [37] and saliency-based SSIM (SalSSIM) [38]. A review of existing FR-IQA techniques
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is presented in [39–41]. The suitability of these techniques for evaluating the quality of reconstructed
background images remains unexplored.

As the first contribution of this paper, we present two benchmarking datasets that can be used for
comparing the performance of different techniques in objectively assessing the perceived quality of the
reconstructed background images. These datasets contain reconstructed background images along
with their subjective ratings, details of which are discussed in Section 3.1. A preliminary version of the
benchmarking dataset discussed in Section 3.1.1 was published in [28]. In this paper, we provide an
additional larger dataset as described in Section 3.1.2. We also propose a novel objective Reconstructed
Background Quality Index (RBQI) that is shown to outperform existing techniques in assessing the
perceived visual quality of reconstructed background images.

3. Subjective Quality Assessment of Reconstructed Background Images

3.1. Datasets

In this section, we present two different datasets constructed as part of this work to serve as
benchmarks for comparing existing and future techniques developed for assessing the quality of
reconstructed background images. The images and subjective experiments for both datasets are
described in the subsequent subsections.

Each dataset contains the original sequence of images or videos that are used as inputs to the
different reconstruction algorithms, the background images reconstructed by the different algorithms
and the corresponding subjective scores. For details on the algorithms used to reconstruct the
background images, the reader is referred to [27,28].

3.1.1. Reconstructed Background Quality (ReBaQ) Dataset

This dataset consists of eight different scenes. Each scene consists of a sequence of eight images
where every image is a different view of the scene captured by a stationary camera. Each image
sequence is captured such that the background is visible at every pixel in at least one of the views.
A reference background image that is free of any foreground objects is also captured for every scene.
Figure 1 shows the reference images corresponding to each of the eight different scenes in this dataset.
The spatial resolution of the sequence corresponding to each of the scenes is 736 × 416.

Each of the image sequences is used as input to twelve different background reconstruction
algorithms [8–17]. The default settings as suggested by the authors in the respective papers were used
for generating the background images. For the block-based algorithms of [11,14] and [17], the block
sizes are set to 8, 16 and 32 to take into account the effect of varying block sizes on the perceived quality
of the recovered background. As a result, 18 background images are generated for each of the eight
scenes. These 144 (18× 8) reconstructed background images along with the corresponding reference
images for the scene are then used for the subjective evaluation. Each of the scenes pose a different
challenge for the background reconstruction algorithms. For example, “Street” and “Wall” are outdoor
sequences with textured backgrounds while “Hall” is an indoor sequence with textured background.
The “WetFloor” sequence challenges the underlying principal of many background reconstruction
algorithms with water appearing as a low-contrast foreground object. The “Escalator” sequence has
large motion in the background due to the moving escalator, while “Park” has smaller motion in
the background due to waving trees. The “Illumination” sequence exhibits changing light sources,
directions and intensities while the “Building” sequence has changing reflections in the background.
Broadly, the dataset contains two categories based on the scene characteristics: (i) Static, the scenes
for which all the pixels in the background are stationary; and (ii) Dynamic, the scenes for which
there are non-stationary background pixels (e.g., moving escalator, waving trees, varying reflections).
Four out of the eight scenes in the ReBaQ dataset are categorized as Static and the remaining four are
categorized as Dynamic scenes. The reference background images corresponding to the static scenes
are shown in Figure 1a. Although there are reflections on the floor in the “WetFloor” sequence, it does
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not exhibit variations at the time of recording and hence it is categorized as a static background scene.
The reference background images corresponding to the dynamic background scenes are shown in
Figure 1b.

Street
(Outdoor Scene)

Hall
(Indoor Scene)

Wall
(Textured background)

WetFloor
(Water as low-contrast

foreground)

(a)

Building
(Reflective)

Escalator
(Large Motion)

llumination
(Illumination Variations)

Park
(Small Motion)

(b)

Figure 1. Reference background images for different scenes in the Reconstructed Background Quality
(ReBaQ) Dataset. Each reference background image corresponds to a captured scene background
without foreground objects. (a) Scenes with static backgrounds from the ReBaQ dataset; (b) Scenes
with pseudo-stationary backgrounds from the ReBaQ dataset.

3.1.2. SBMNet Based Reconstructed Background Quality (S-ReBaQ) Dataset

This dataset is created from the videos in the Scene Background Modeling Net (SBMNet)
dataset [26] used for the Scene Background Modeling Challenge (SBMC) 2016 [22]. SMBNet consists
of image sequences corresponding to a total of 79 scenes. These image sequences are representative
of typical indoor and outdoor visual data captured in surveillance, smart environment, and video
dataset scenarios. The spatial resolutions of the sequences corresponding to different scenes vary from
240 × 240 to 800 × 600. The length of the sequences also varies from 6 to 9370 images. The authors of
SBMNet categorize these scenes into eight different classes based on the challenges posed [26]: (a) the
Basic category represents a mixture of mild challenges typical of the shadows, Dynamic Background,
Camera Jitter and Intermittent Object Motion categories; (b) the Background motion category includes
scenes with strong (parasitic) background motion; for example, in the “Advertisement Board” sequence,
the advertisement board in the scene periodically changes; (c) the Intermittent Motion category includes
sequences with scenarios known for causing “ghosting” artifacts in the detected motion; (d) the Jitter
category contains indoor and outdoor sequences captured by unstable cameras; (e) the Clutter category
includes sequences containing a large number of foreground moving objects occluding a large portion
of the background; (f) the Illumination Changes category contains indoor sequences containing strong
and mild illumination changes; (g) the Very Long category contains sequences each with more than
3500 images; and (h) the Very Short category contains sequences with a limited number of images (less
than 20). The authors of SBMNet [26] provide reference background images for only 13 scenes out of
the 79 scenes. There is at least one scene corresponding to each category with reference background
image available. We use only these 13 scenes for which the reference background images are provided.
Figure 2 shows the reference background images corresponding to the scenes in this dataset with
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the categories from SBMNet [26,27] in brackets. Background images that were reconstructed by
14 algorithms submitted to SBMC [12,16,42–51] corresponding to the selected 13 scenes were used in
this work for conducting subjective tests. As a result, a total of 182 (13× 14) reconstructed background
images along with their corresponding subjective scores form the S-ReBaQ dataset.

511
(Basic)

Advertisement Board
(Background Motion)

AVSS2007
(Intermittent motion)

Badminton
(Jitter)

Blurred
(Basic)

Board
(Cluttered)

Boulevard
(Jitter)

Boulevard Jam
(Cluttered)

Bus Station
(Intermittent Motion)

Bus Stop in Morning
(Long Video)

Camera Parameter
(Illumination Changes)

CUHK Square
(Short Video)

Dynamic Background
(Short video)

Figure 2. Reference background images for different scenes in the SBMNet based Reconstructed
Background Quality (S-ReBaQ) Dataset. Each reference background image corresponds to a captured
scene background without foreground objects.

3.2. Subjective Evaluation

The subjective ratings are obtained by asking the human subjects to rate the similarity of the
reconstructed background images to the reference background images. The subjects had to score the
images based on three aspects: (1) overall perceived visual image quality; (2) visibility or presence of
foreground objects; and (3) perceived background reconstruction quality. The subjects had to score the
image quality on a 5-point scale, with 1 being assigned to the lowest rating of ‘Bad’ and 5 assigned
to the highest rating of ‘Excellent’. The second aspect was determining the presence of foreground
objects. For our application, we defined the foreground object as any object that is not present in the
reference image. The foreground visibility was scored on a 5-point scale marked as: ‘1—All foreground
visible’, ‘2—Mostly visible’, ‘3—Partly visible but annoying’, ‘4—Partly visible but not annoying’ and
‘5—None visible’. The background reconstruction quality was also measured using a 5-point scale similar
to that of the image quality, but the choices were limited based on how the first two aspects of an image
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were scored. If either the image quality or foreground object visibility was rated 2 or less, the highest
possible score for background reconstruction quality was restricted to the minimum of the two scores.
For example, as illustrated in Figure 3, if the image quality was rated as excellent, but the foreground
object visibility was rated 1 (all visible), the reconstructed background quality cannot be scored to be very
high. Choices for background reconstruction quality rating were not restricted for any other image quality
and foreground object visibility scores. The background reconstruction quality scores, referred to as raw
scores in the rest of the paper, are used for calculating the Mean Opinion Score (MOS).

Figure 3. Subjective test Graphical User Interface (GUI).

We adopted a double-stimulus technique in which the reference and the reconstructed background
images were presented side-by-side [52] to each subject as shown in Figure 3. Though the same testing
strategy and set up was used for the ReBaQ and S-ReBaQ datasets described in Section 3.1, the tests
for each dataset were conducted in separate sessions.

As discussed in [28], the subjective experiments were carried out on a 23-inch Alienware monitor
with a resolution of 1920 × 1080. Before the experiment, the monitor was reset to its factory settings.
The setup was placed in a laboratory under normal office illumination conditions. Subjects were asked
to sit at a viewing distance of 2.5 times the monitor height.

Seventeen subjects participated in the subjective test for the ReBaQ dataset, while sixteen subjects
participated in the subjective test for the S-ReBaQ dataset. The subjects were tested for vision and color
blindness using the Snellen chart [53] and Ishihara color vision test [54], respectively. A training session
was conducted before the actual subjective testing, in which the subjects were shown a few images
covering different quality levels and distortions of the reconstructed background images and their
responses were noted to confirm their understanding of the tests. The images used during training
were not included in the subjective tests.

Since the number of participating subjects was less than 20 for each of the datasets, the raw
scores obtained by subjective evaluation were screened using the procedure in ITU-R BT 500.13 [52].
The kurtosis of the scores is determined as the ratio of the fourth order moment and the square of
the second order moment. If the kurtosis lies between 2 and 4, the distribution of the scores can be
assumed to be normal. If more than 5% of the scores given by a particular subject lie outside the range
of two standard deviations from the mean scores in case of normally distributed scores, this subject is
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rejected. For the scores that are not normally distributed, the range is determined as
√

20 times the
standard deviation. In our study, two subjects were found to be outliers and the corresponding scores
were rejected for the ReBaQ dataset, while no subject was rejected for the S-ReBaQ dataset. MOS scores
were calculated as the average of the raw scores retained after outlier removal. The raw scores and
MOS scores with the standard deviations are provided along with the dataset.

Figure 4 shows an input sequence for a scene in the ReBaQ dataset together with reconstructed
background images using different algorithms and corresponding MOS scores. Starting from the
leftmost image in Figure 4b, the first image shows an example of a reconstructed background with the
presence of a significant amount of foreground residue, which results in a very low subjective score
in spite of acceptable perceived image quality in the remaining areas of the scene. The second and
the third images have lesser foreground residue as compared to the first and hence are scored higher.
The last image has no foreground residue at all and demonstrates good image quality for the most part
except for structural deformation in the escalator. This image is scored much higher than all the other
three images but still does not get a perfect score.

(a)

[11], MOS = 1.5882 [12], MOS = 2.2353 [13], MOS = 2.2941 [16], MOS = 4.1176

(b)

Figure 4. Example input sequence and recovered background images with corresponding MOS scores
from the ReBaQ dataset. (a) Four out of eight input images from the input sequence “Escalator”;
(b) Background images reconstructed by different algorithms and corresponding MOS scores.

4. Proposed Reconstructed Background Quality Index

In this section, we propose a full-reference quality index that can automatically assess the
perceived quality of the reconstructed background images. The proposed Reconstructed Background
Quality Index (RBQI) uses a probability summation model to combine visual characteristics at multiple
scales and quantify the deterioration in the perceived quality of the reconstructed background image
due to the presence of any residual foreground objects or unnaturalness that may be introduced by the
background reconstruction algorithm. The motivation for RBQI comes from the fact that the quality of
a reconstructed background image depends on two factors namely:

(i) the visibility of the foreground objects, and
(ii) the visible artifacts introduced while reconstructing the background image.

A block diagram of the proposed quality index (RBQI) is shown in Figure 5. An L-level multi-scale
decomposition of the reference and reconstructed background images is obtained through lowpass
filtering using an averaging filter [19] and downsampling, where l = 0 corresponds to the finest scale
and l = L− 1 corresponds to the coarsest scale. For each level l = 0, ..., L− 1, contrast, structure and
color differences are computed locally at each pixel to produce a contrast-structure difference map
and a color difference map. The difference maps are combined in local regions within each scale
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and later across scales using a ‘probability summation model’ to predict the perceived quality of the
reconstructed background image. More details about the computation of the difference maps and the
proposed RBQI based on a probability summation model are provided below.

Reference 
background image 

at scale l

Reconstructed 
background image 

at scale l

Compute block distortion
DR using eq.(18) and eq.(19)

Is l < L?

Compute RBQI as logarithm 
of Dl pooled over all scales 

using eq.(29) and eq.(31)

YesYes
No

Compute:
ds,l using eq.(4)

dc,l using eq.(5)

Compute level distortion 
Dl using eq.(22) and eq.(23)

Go to next scale
l++

Go to next scale
l++

Figure 5. Block diagram describing the computation of the proposed Reconstructed Background
Quality Index (RBQI).

4.1. Structure Difference Map (ds)

An image can be decomposed into three different components: luminance, contrast and
structure, which are local features computed at every pixel location (x, y) of the image as described
in [29]. By comparing these components, similarity between two images can be calculated [19,29].
A reconstructed background image is formed by mosaicing together parts of different input images.
For such an image to appear natural, it is important that the structural continuity be maintained.
Preservation of the local luminance from the reference background image is of low relevance as
long as this structure continuity is maintained. Any sudden variation in the local luminance across
the reconstructed background image manifests itself as contrast or structure deviation from the
reference image. Thus, we consider only contrast and structure for comparing the reference and
reconstructed background images while leaving out the luminance component. These contrast and
structure differences between the reference and the reconstructed background images, calculated at
each pixel, give us the ‘contrast-structure similarity map’ referred to as ‘structure map’ for short in the
rest of the paper.



J. Imaging 2018, 4, 82 10 of 24

First, the structure similarity between the reference and the reconstructed background image,
referred to as Structure Index (SI), is calculated at each pixel location (x, y) using [29]:

SI(x, y) =
2σr(x,y)i(x,y)

+ C

σ2
r(x,y)

+ σ2
i(x,y)

+ C
, (1)

where r is the reference background image, i is the reconstructed background image, and σr(x,y)i(x,y)
is the

cross-correlation between image patches centered at location (x, y) in the reference and reconstructed
background images. σr(x,y) and σi(x,y)

are the standard deviations computed using pixel values in a
patch centered at location (x, y) in the reference and reconstructed background image, respectively.
C is a small constant to avoid instability and is calculated as C = (K · Imax)2, K is set to 0.03 and Imax is
the maximum possible value of the pixel intensity (255 in this case) [29]. A higher SI value indicates
higher similarity between the pixels in the reference and reconstructed background images.

The background scenes often contain pseudo-stationary objects such as waving trees, escalator,
local and global illumination changes. Even though these pseudo-stationary pixels belong to the
background, because of the presence of motion, they are likely to be classified as foreground pixels.
For this reason, the pseudo-stationary backgrounds pose an additional challenge for the quality
assessment algorithms. Just comparing co-located pixel neighborhoods in the two considered images
is not sufficient in the presence of such dynamic backgrounds, our algorithm uses a search window of
size nhood× nhood centered at the current pixel (x, y) in the reconstructed image, where nhood is an
odd value. The SI is calculated between the pixel at location (x, y) in the reference image and (nhood)2

pixels within the nhood× nhood search window centered at pixel (x, y) in the reconstructed image.
The resulting SI matrix is of size nhood× nhood . The modified Equation (1) to calculate SI for every
pixel location in the nhood× nhood window centered at (x, y) is given as:

SI(x,y)(m, n) =
2σr(x,y)i(m,n)

+ C

σ2
r(x,y)

+ σ2
i(m,n)

+ C
, (2)

where

m = x− (nhood− 1)/2 : x + (nhood− 1)/2,

n = y− (nhood− 1)/2 : y + (nhood− 1)/2.

The maximum value of the SI matrix is taken to be the final SI value for the pixel at location (x, y)
as given below:

SI(x, y) = max
(m,n)

(SI(x,y)(m, n)). (3)

The SI map takes on values between [−1, 1].
In the proposed method, the SI map is computed at L different scales denoted as SIl(x, y), l = 0,

..., L− 1. The SI maps generated at three different scales for the background image shown in Figure 4b
and reconstructed using the method of [12] are shown in Figure 6. The darker regions in these images
indicate larger structure differences between the reference and the reconstructed background images
while the lighter regions indicate higher similarities. From Figure 6c, it can also be seen that the computed
SI maps show the structure distortions while being robust to the escalator motion in the background.

The structure difference map is calculated using the SI map at each scale l as follows:

ds,l(x, y) =
1− SIl(x, y)

2
. (4)

ds,l takes on values between [0, 1], where the value of 0 corresponds to no difference while 1 corresponds
to the largest difference.
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(a) (b) (c)

Figure 6. Structure Index (SI) map with nhood = 17 for the background image reconstructed using the
method in [12] as shown in Figure 4b. The darker regions indicate larger structure differences between
the reference and the reconstructed background image. (a) Scale l = 0; (b) Scale l = 1; (c) Scale l = 2.

4.2. Color Distance (dc)

The ds,l map is vulnerable to failures while detecting differences in areas of background images
with no texture or no structural information. For example, the interior region of a large solid foreground
object such as a car does not have much structural information but can differ in color from the
background. It should be noted that we use the term “color” here to refer to both luminance and
chrominance components. It is important to include the luminance difference while computing the
color differences to account for situations where the foreground objects do not vary in color but just
in luminance, for example, shadows of foreground objects in the scene. Hence, we incorporate the
color information at every scale while calculating the RBQI. The color difference between the filtered
reference and reconstructed background images at each scale l is then calculated as the Euclidian
distance between the values of co-located pixels in the Lab color space as follows:

dc,l(x, y) =
√
(Lr,l(x, y)− Li,l(x, y))2 + (ar,l(x, y)− ai,l(x, y))2 + (br,l(x, y)− bi,l(x, y))2. (5)

4.3. Computation of the Reconstructed Background Quality Index (RBQI) Based on Probability Summation

As indicated previously, the reference and reconstructed background images are decomposed
each into a multi-scale pyramid with L levels. Structure difference maps ds,l and color difference
maps dc,l are computed at every level l = 0, ..., L− 1 as described in Equations (4) and (5), respectively.
These difference maps are pooled together within the scale and later across all scales using a probability
summation model [55] to give the final RBQI.

The probability summation model as described in [55] considers an ensemble of independent
difference detectors at every pixel location in the image. These detectors predict the probability
of perceiving the difference between the reference and the reconstructed background images at
the corresponding pixel location based on its neighborhood characteristics in the reference image.
Using this model, the probability of the structure difference detector signaling the presence of a
structure difference at pixel location (x, y) at level l can be modeled as an exponential of the form:

PD,s,l(x, y) = 1− exp

(
−
∣∣∣∣∣ ds,l(x, y)
αs,l(x, y)

∣∣∣∣∣
βs)

, (6)

where βs is a parameter chosen to increase the correspondence of RBQI with the experimentally
determined MOS scores on a training dataset as described in Section 5.2 and αs,l(x, y) is a parameter
whose value depends upon the texture characteristics of the neighborhood centered at (x, y) in the
reference image. The value of αs,l(x, y) is chosen to take into account that differences in structure are
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less perceptible in textured areas as compared to non-textured areas and that the perception of these
differences depends on the scale l.

In order to determine the value of αs,l , every pixel in the reference background image at scale l is
classified as textured or non-textured using the technique in [56]. This method first calculates the local
variance at each pixel using a 3 × 3 window centered around it. Based on the computed variances,
a pixel is classified as edge, texture or uniform. By considering the number of edge, texture and
uniform pixels in the 8 × 8 neighborhood of the pixel, it is further classified into one of the six types:
uniform, uniform/texture, texture, edge/texture, medium edge and strong edge. For our application,
we label the pixels classified as ‘texture’ and ‘edge/texture’ as ’textured’ pixels and we label the rest as
‘non-textured’ pixels.

Let ftex,l(x, y) = 1 be the flag indicating that a pixel is textured. Thus, values of αs,l(x, y) can be
expressed as:

αs,l(x, y) =

{
1.0, if ftex,l(x, y) = 0,

a, where a� 1.0, if ftex,l(x, y) = 1,
(7)

when ftex,l(x, y) = 1, the value of a should be large enough such that PD,s,l(x, y) → 0. In our
implementation, we chose the value of a = 1000.0. Thus, in our current implementation, αs,l(x, y)
takes on the form of a binary function that can be replaced with a computationally efficient
model obtained by replacing division by αs,l(x, y) in Equation (6) with multiplication by weight
ws,l(x, y) = 1/αs,l(x, y) = (1− ftex,l(x, y)). In the remainder of the paper, we keep the notation in
Equation (6) to accommodate a more generalized adaptation model based on local image characteristics
in textured areas.

Similarly, the probability of the color difference detector signaling the presence of a color difference
at pixel location (x, y) at level l can be modeled as:

PD,c,l(x, y) = 1− exp

(
−
∣∣∣∣∣ dc,l(x, y)
αc,l(x, y)

∣∣∣∣∣
βc)

, (8)

where βc is found in a similar way to βs and αc,l(x, y) corresponds to the Adaptive Just Noticeable
Distortion (AJNCD) calculated at every pixel (x, y) in the Lab color space as given in [57]:

αc,l(x, y) = JNCDLab · sL(E(Ll(x, y)), ∆Ll(x, y)) · sC(al(x, y), bl(x, y)), (9)

where al(x, y) and bl(x, y) correspond, respectively, to the a and b color values of the pixel located at
(x, y) in the Lab color space, JNCDLab is set to 2.3 [58], and E(Ll) is the mean background luminance
of the pixel at (x, y) and ∆L is the maximum luminance gradient across pixel (x, y). In Equation (9),
sC is the scaling factor for the chroma components as is given by [57]:

sC(al(x, y), bl(x, y)) = 1 + 0.045 · (a2
l (x, y) + b2

l (x, y))1/2. (10)

sL is the scaling factor that simulates the local luminance texture masking and is given by:

sL(E(Ll), ∆Ll) = ρ(E(Ll))∆Ll + 1.0, (11)

where ρ(E(Ll)) is the weighting factor as described in [57]. Thus, αc,l varies at every pixel location
based on the distance between the chroma values and texture masking properties of its neighborhood.

A pixel (x, y) at the l-th level is said to have no distortion if and only if neither the structure
difference detector nor the color difference detector at location (x, y) signal the presence of a difference.
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Thus, the probability of detecting no difference between the reference and reconstructed background
images at pixel (x, y) and level l can be written as:

PND,l(x, y) = (1− PD,s,l(x, y)) · (1− PD,c,l(x, y)). (12)

Substituting Equations (6) and (8) for PD,s,l and PD,c,l , respectively, in Equation (12), we get:

PND,l(x, y) = exp(−Ds,l(x, y)) · exp(−Dc,l(x, y)), (13)

where

Ds,l(x, y) =

∣∣∣∣∣ ds,l(x, y)
αs,l(x, y)

∣∣∣∣∣
βs

(14)

and

Dc,l(x, y) =

∣∣∣∣∣ dc,l(x, y)
αc,l(x, y)

∣∣∣∣∣
βc

. (15)

A less localized probability of difference detection can be computed by adopting the “probability
summation” hypothesis [55], which pools the localized detection probabilities over a region R.

The probability summation hypothesis is based on the following two assumptions:

Assumption 1. A structure difference is detected in the region of interest R if and only if at least one detector
in R signals the presence of a difference, i.e., if and only if at least one of the differences ds,l(x, y) is greater than
the threshold αs and, therefore, considered to be visible. Similarly, a color difference is detected in region R if and
only if at least one of the differences dc,l(x, y) is above αc.

Assumption 2. The probabilities of detection are independent; i.e., the probability that a particular detector will
signal the presence of a difference is independent of the probability that any other detector will. This simplified
approximation model is commonly used in the psychophysics literature [55,59] and was found to work well in
practice in terms of correlation with human judgement in quantifying perceived visual distortions [60,61].

Then, the probability of no difference detection over the region R is given by:

PND,l(R) = ∏
(x,y)∈R

PND,l(x, y). (16)

Substituting Equation (12) in the above equation gives:

PND,l(R) = exp
(
− Ds,l(R)βs

)
· exp

(
− Dc,l(R)βc

)
, (17)

where

Ds,l(R) =

(
∑

(x,y)∈R

∣∣∣∣∣ ds,l(x, y)
αs,l(x, y)

∣∣∣∣∣
βs) 1

βs

, (18)

Dc,l(R) =

(
∑

(x,y)∈R

∣∣∣∣∣ dc,l(x, y)
αc,l(x, y)

∣∣∣∣∣
βc) 1

βc

. (19)

In the human visual system, the highest visual acuity is limited to the size of the foveal region,
which covers approximately 2◦ of visual angle. In our work, we consider the image regions R as foveal
regions approximated by 8× 8 non-overlapping image blocks.
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The probability of no distortion detection over the l-th level is obtained by pooling the no detection
probabilities over all the regions R in level l and is given by:

PND(l) = ∏
R∈l

PND,l(R), (20)

or
PND(l) = exp

(
− Ds(l)βs

)
· exp

(
− Dc(l)βc

)
, (21)

where

Ds(l) =
(

∑
R∈l

Ds,l(R)βs

) 1
βs

, (22)

Dc(l) =
(

∑
R∈l

Dc,l(R)βc

) 1
βc

. (23)

Similarly, we adopt a “probability summation” hypothesis to pool the detection probability across
scales. It should be noted that the Human Visual Systems (HVS) dependent parameters αs,l and αc,l
that are included in Equations (14) and (15), respectively, account for the varying sensitivity of the
HVS at varying scales. The final probability of detecting no distortion in a reconstructed background
image i is obtained when no distortion is detected at any scale and is computed by pooling the no
detection probabilities PND(l) over all scales l, l = 0, ..., L− 1, as follows:

PND(i) =
L−1

∏
l=0

PND(l) (24)

or
PND(i) = exp

(
− Dβs

s
)
· exp

(
− Dβc

c
)
, (25)

where

Ds =

( L−1

∑
l=0

Ds(l)βs

) 1
βs

, (26)

Dc =

( L−1

∑
l=0

Dc(l)βc

) 1
βc

, (27)

where Ds(l) and Dc(l) are given by Equations (22) and (23), respectively. From Equations (26) and (27),
it can be seen that Ds and Dc take the form of a Minkowski metric with exponent βs and βc, respectively.

By substituting the values Ds, Dc, Ds(l), Dc(l), Ds,l(R) and Dc,l(R) in Equation (25) and
simplifying, we get:

PND(i) = exp(−D), (28)

where

D =
( L−1

∑
l=0

∑
R∈l

∑
(x,y)∈R

[
Ds,l(x, y) + Dc,l(x, y)

])
. (29)

In Equation (29), Ds,l(x, y) and Dc,l(x, y) are given by Equations (14) and (15), respectively. Thus,
the probability of detecting a difference between the reference image and a reconstructed background
image i is given as:

PD(i) = 1− PND(i) = 1− exp(−D). (30)

As it can be seen from Equation (30), a lower value of D results in a lower probability of
difference detection PD(i) while a higher value results in a higher probability of difference detection.
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Therefore, D can be used to assess the perceived quality in the reconstructed background image, with
a lower value of D corresponding to a higher perceived quality.

The final Reconstructed Background Quality Index (RBQI) for a reconstructed background image
is calculated using the logarithm of D as follows:

RBQI = log10(1 + D). (31)

As D increases, the value of RBQI increases implying more perceived distortion and thus lower
quality of the reconstructed background image. The logarithmic mapping models the saturation effect,
i.e., beyond a certain point, the maximum annoyance level is reached and more distortion does not
affect the quality.

5. Results

In this section, we analyze the performance of RBQI in terms of its ability to predict the subjective
ratings for the perceived quality of reconstructed background images. We evaluate the performance
of the proposed quality index in terms of its prediction accuracy, prediction monotonicity and
prediction consistency and provide comparisons with the existing statistical and IQA techniques.
In our implementation, we set nhood = 17, L = 3, βs = βc = 3.5. The choice of these parameters is
described in more details in Section 5.2. We also evaluate the performance of RBQI for different scales
and neighborhood search windows. We conduct a series of hypothesis tests based on the prediction
residuals (errors in predictions) after nonlinear regression. These tests help in making statistically
meaningful conclusions on the obtained performance results. We also conduct a sensitivity analysis
test on the ReBaQ dataset as described in Section 5.3.

We use the two datasets ReBaQ and S-ReBaQ described in Section 3.1 to quantify and compare
the performance of RBQI. For evaluating the performance in terms of prediction accuracy, we used the
Pearson correlation coefficient (PCC) and root mean squared error (RMSE). The prediction monotonicity
is evaluated using the Spearman rank-order correlation coefficient (SROCC). Finally, the Outlier Ratio
(OR) (calculated as percentage of the number of of predictions outside the range of ±2 times the
standard deviations of the MOS scores) is used as a measure of prediction consistency. A 4-parameter
regression function [62] is applied to the IQA metrics to provide a nonlinear mapping between the
objective scores and the subjective mean opinion scores (MOS):

MOSpi =
γ1 − γ2

1 + e
−
(

Mi−γ3
|γ4 |

) + γ2, (32)

where Mi denotes the predicted quality for the ith image and MOSpi denotes the quality score after
fitting, and γn, n = 1, 2, ..., 4, are the regression model parameters. MOSpi along with MOS scores are
used to calculate the values given in Tables 1–3.

Table 1. Comparison of RBQI vs. Statistical measures and IQA techniques on the ReBaQ dataset.

a. Comparison on the ReBaQ-Static Dataset.

ReBaQ-Static

PCC SROCC RMSE OR PPCC PSROCC

Statistical Measures

AGE 0.7776 0.6348 0.6050 9.72% 0.000000 0.000000
EPs 0.3976 0.5093 0.8829 13.89% 0.000000 0.000000
pEPs 0.8058 0.6170 0.5698 6.94% 0.000000 0.000000
CEPs 0.5719 0.6939 0.7893 11.11% 0.000000 0.000000
pCEPs 0.6281 0.7843 0.9622 13.89% 0.000000 0.000000



J. Imaging 2018, 4, 82 16 of 24

Table 1. Cont.

a. Comparison on the ReBaQ-Static Dataset.

ReBaQ-Static

PCC SROCC RMSE OR PPCC PSROCC

Image Quality Assessment Metrics

PSNR 0.8324 0.7040 0.5331 8.33% 0.000000 0.000000
SSIM [29] 0.5914 0.5168 0.7759 11.11% 0.000000 0.000177
MS-SSIM [19] 0.7230 0.7085 0.6648 8.33% 0.000000 0.000000
VSNR [30] 0.5216 0.3986 0.8209 9.72% 0.000003 0.000531
VIF [31] 0.3625 0.0843 0.8968 15.28% 0.001754 0.484429
VIFP [31] 0.5122 0.3684 0.8265 11.11% 0.000004 0.001470
UQI [32] 0.6197 0.7581 0.9622 13.89% 0.000000 0.000000
IFC [33] 0.5003 0.3771 0.8331 11.11% 0.000008 0.001105
NQM [34] 0.8251 0.8602 0.5437 6.94% 0.000000 0.000000
WSNR [35] 0.8013 0.7389 0.5756 5.56% 0.000000 0.000000
FSIM [36] 0.7209 0.6970 0.6668 9.72% 0.000000 0.000000
FSIMc [36] 0.7274 0.7033 0.6603 9.72% 0.000000 0.000000
SRSIM [37] 0.7906 0.7862 0.5892 8.33% 0.000000 0.000000
SalSSIM [38] 0.5983 0.5217 0.7710 9.72% 0.000000 0.000003
CQM [20] 0.6401 0.5755 0.7393 8.33% 0.000000 0.000000
RBQI(Proposed) 0.9006 0.8592 0.4183 4.17% 0.000000 0.000000

b. Comparison on the ReBaQ-Dynamic Dataset.

ReBaQ-Dynamic

PCC SROCC RMSE OR PPCC PSROCC

Statistical Measures

AGE 0.4999 0.2303 0.7644 9.72% 0.005000 0.051600
EPs 0.1208 0.2771 0.8761 13.89% 0.007600 0.018500
pEPs 0.4734 0.2771 0.8825 9.72% 0.007600 0.018500
CEPs 0.5951 0.7549 0.7092 11.11% 0.000000 0.000000
pCEPs 0.6418 0.7940 0.8826 15.28% 0.000000 0.000000

Image Quality Assessment Metrics

PSNR 0.5133 0.4179 0.7575 8.33% 0.000004 0.000263
SSIM [29] 0.0135 0.0264 0.8826 15.28% 0.910238 0.822439
MS-SSIM [19] 0.5087 0.4466 0.7598 9.72% 0.000005 0.000085
VSNR [30] 0.5090 0.1538 0.7597 9.72% 0.000005 0.198310
VIF [31] 0.3103 0.3328 0.8390 13.89% 0.199921 0.236522
VIFP [31] 0.4864 0.1004 0.7711 9.72% 0.000015 0.403684
UQI [32] 0.6262 0.7450 0.8826 15.28% 0.000000 0.000000
IFC [33] 0.4306 0.1024 0.7966 11.11% 0.000160 0.394409
NQM [34] 0.6898 0.6600 0.6390 9.72% 0.000000 0.000000
WSNR [35] 0.6409 0.5760 0.6775 9.72% 0.000000 0.000000
FSIM [36] 0.5131 0.3283 0.7575 9.72% 0.000004 0.004922
FSIMc [36] 0.5144 0.3310 0.7568 9.72% 0.000004 0.004559
SRSIM [37] 0.5512 0.5376 0.7364 11.11% 0.000001 0.000001
SalSSIM [38] 0.4866 0.3200 0.7710 9.72% 0.000015 0.006198
CQM [20] 0.7050 0.7610 0.6259 8.33% 0.000000 0.000000
RBQI(Proposed) 0.7908 0.6773 0.5402 5.56% 0.000000 0.000000

Table 2. Comparison of RBQI vs. Statistical measures and IQA techniques on the S-ReBaQ dataset.

S-ReBaQ

PCC SROCC RMSE OR PPCC PSROCC

Statistical Measures

AGE 0.6453 0.6238 2.2373 14.84% 0.392900 0.000000
EPs 0.4202 0.1426 1.2049 24.73% 0.000000 0.000000
pEPs 0.0505 0.4990 1.6676 26.92% 0.498331 0.000000
CEPs 0.6283 0.6666 0.8491 18.68% 0.000000 0.000000
pCEPs 0.8346 0.8380 0.6011 6.59% 0.000000 0.000000

Image Quality Assessment Metrics

PSNR 0.7099 0.6834 0.7686 6.59% 0.000000 0.000000
SSIM [29] 0.5975 0.5827 0.8751 12.09% 0.000000 0.000000
MS-SSIM [19] 0.8048 0.8030 0.6478 29.12% 0.000000 0.000000
VSNR [30] 0.0850 0.1717 1.0874 13.19% 0.253675 0.486686
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Table 2. Cont.

S-ReBaQ

PCC SROCC RMSE OR PPCC PSROCC

Image Quality Assessment Metrics

VIF [31] 0.1027 0.2064 1.0914 27.47% 0.167842 0.005305
VIFP [31] 0.6081 0.6240 0.8664 26.92% 0.000000 0.000000
UQI [32] 0.6316 0.5932 0.8461 14.84% 0.000000 0.000000
IFC [33] 0.6235 0.6020 0.8533 16.48% 0.000000 0.000000
NQM [34] 0.7950 0.7816 0.6621 14.84% 0.000000 0.000000
WSNR [35] 0.7176 0.6888 0.7601 7.14% 0.000000 0.000000
FSIM [36] 0.7243 0.7157 0.7525 10.44% 0.000000 0.000000
FSIMc [36] 0.7278 0.7172 0.7484 12.09% 0.000000 0.000000
SRSIM [37] 0.7853 0.7538 0.6757 12.09% 0.000000 0.000000
SalSSIM [38] 0.7356 0.7300 0.7393 7.14% 0.000000 0.000000
CQM [20] 0.2634 0.3645 1.0531 8.24% 0.000327 0.000276
RBQI(Proposed) 0.8613 0.8222 0.5545 3.30% 0.000000 0.000000

Table 3. Comparison of RBQI vs. Statistical measures and IQA techniques on a combined ReBaQ and
S-ReBaQ dataset.

ReBaQ and S-ReBaQ Combined

PCC SROCC RMSE OR PPCC PSROCC

Statistical Measures

AGE 0.6667 0.6593 0.8462 14.42% 0.000000 0.000000
EPs 0.5744 0.6353 0.9294 19.02% 0.000000 0.000000
pEPs 0.1456 0.6939 1.1233 29.45% 0.008464 0.000000
CEPs 0.6202 0.6967 0.8906 18.40% 0.000000 0.000000
pCEPs 0.8427 0.8421 0.6113 7.06% 0.000000 0.000000

Image Quality Assessment Metrics

PSNR 0.7306 0.7166 0.7753 10.74% 0.000000 0.000000
SSIM [29] 0.6083 0.5743 0.9011 16.56% 0.000000 0.000000
MS-SSIM [19] 0.7874 0.7907 0.6999 8.59% 0.000000 0.000000
VSNR [30] 0.1789 0.3459 1.1171 29.75% 0.001176 0.001126
VIF [31] 0.3478 0.5601 1.0645 25.77% 0.000000 0.000000
VIFP [31] 0.6281 0.5911 0.8835 14.72% 0.000000 0.000000
UQI [32] 0.7024 0.6778 0.8081 12.27% 0.000000 0.000000
IFC [33] 0.6455 0.5976 0.8671 14.42% 0.00000 0.000000
NQM [34] 0.7800 0.7781 0.7106 9.51% 0.000000 0.000000
WSNR [35] 0.7669 0.7550 0.7286 10.74% 0.000000 0.000000
FSIM [36] 0.7294 0.7088 0.7767 11.35% 0.000000 0.000000
FSIMc [36] 0.7337 0.7117 0.7715 11.35% 0.000000 0.000000
SRSIM [37] 0.7842 0.7875 0.7045 8.90% 0.000000 0.000000
SalSSIM [38] 0.7157 0.6960 0.7930 11.35% 0.000000 0.000000
CQM [20] 0.5651 0.5429 0.9367 21.78% 0.000000 0.000000
RBQI(Proposed) 0.8770 0.8372 0.5456 4.29% 0.000000 0.000000

5.1. Performance Comparison

Tables 1 and 2 show the obtained performance evaluation results of the proposed RBQI technique
on the ReBaQ and S-ReBaQ datasets, respectively, as compared to the existing statistical and FR-IQA
algorithms. The results show that the proposed quality index performs better in terms of prediction
accuracy (PCC, RMSE) and prediction consistency (OR) as compared to any other existing technique.
In terms of prediction monotonicity (SROCC), the proposed quality index is close in performance
to the best performing measure for all datasets except for the ReBaQ-Dynamic dataset. Though the
statistical techniques are shown to not correlated well with the subjective scores in terms of PCC on
either of the datasets, pCEPs is found to perform marginally better in terms of SROCC as compared to
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RBQI. Among the FR-IQA algorithms, the performance of the NQM [34] comes close to the proposed
technique for scenes with static background images, i.e., for the ReBaQ-Static dataset, as it considers the
effects of contrast sensitivity, luminance variations, contrast interaction between spatial frequencies and
contrast masking effect while weighting the SNR between the ground truth and reconstructed image.
The more popular MS-SSIM [19] technique is shown to not correlate well with the subjective scores
for the ReBaQ dataset. This is because the MS-SSIM calculates the final quality index of the image by
just averaging over the entire image. In the problem of background reconstruction, the error might
occupy a relatively small area as compared to the image size, thereby under-penalizing the residual
foreground. Most of the existing FR-IQA techniques perform poorly for the ReBaQ-Dynamic dataset.
This is because the assumption of pixel-to-pixel correspondence is no longer valid in the presence of
pseudo-stationary background. The proposed RBQI technique uses a neighborhood window to handle
such backgrounds, thereby improving the performance over NQM [34] by a margin of 10% and by
30% over MS-SSIM [19]. Additionally, as shown in Table 3, the proposed RBQI technique is found
to perform significantly better in terms of PCC, RMSE and OR as compared to any of the existing
IQA techniques on the larger dataset formed by combining the ReBaQ and S-ReBaQ datasets. Though
RBQI is second best in terms of SROCC, it closely follows the best performing measure (pCEPs) for
the combined dataset. CQM [20], which is used in the Scene Background Modeling Challenge 2016
(SBMC) [21,22] to compare the performance of the algorithms, performs poorly on the combined
dataset and hence is not a good choice for evaluating the quality of reconstructed background images
and not suitable for comparing the performance of background reconstruction algorithms.

The P-value is the probability of getting a correlation as large as the observed value by random
chance. If the P-value is less than 0.05, then the correlation is significant. The P-values (PPCC and
PSROCC) reported in Tables 1–3 indicate that most of the correlation scores are statistically significant.

5.2. Model Parameter Selection

The proposed quality index accepts four parameters:

(1) nhood, dimensions of the window centered around the current pixel for calculating the ds;
(2) L, number of multi-scale levels;
(3) βs, used in the calculation of PD,s,l(x, y) in Equation (6); and
(4) βc, used in the calculation of PD,c,l(x, y) in Equation (8).

In Table 4, we evaluate our algorithm with different values for the parameters. These simulations
were run only on the ReBaQ dataset. Table 4a shows the effect of varying nhood values on the
performance of RBQI. The performance of RBQI for ReBaQstatic improved slightly with the increase in
the neighborhood search window size as expected, but the performance of RBQI increased drastically
for the ReBaQdynamic dataset from nhood = 1 to nhood = 17 before starting to drop at nhood = 33.
Thus, we chose nhood = 17 for all our experiments. Table 4b gives performance results for a different
number of scales. As a trade-off between the computation complexity and prediction accuracy, we
chose the number of scales to be L = 3. The probability summation model parameters βs and βc

were found such that they maximized the correlation between RBQI and MOS scores on the ReBaQ
dataset. As in [63], we divided the ReBaQ dataset into two subsets by randomly choosing 80% of the
total images for training and 20% for testing. The random training-testing procedure was repeated
100 times and the parameters were averaged over the 100 iterations. Values βs = βc = 3.5 were found
to correlate well with the subjective test scores.

These parameters remained unchanged for the experiments conducted on the S-ReBaQ dataset to
obtain the values in Tables 2 and 3.
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Table 4. Performance comparison for different values of parameters on the ReBaQ dataset.

a. Simulation results with different neighborhood search window sizes nhood.

ReBaQstatic ReBaQdynamic

PCC SROCC RMSE OR PCC SROCC RMSE OR

nhood = 1 0.7931 0.8314 0.5077 12.50% 0.6395 0.6539 0.5662 11.11%

nhood = 9 0.9015 0.8581 0.4911 6.94% 0.7834 0.6683 0.5394 6.94%

nhood = 17 0.9006 0.8581 0.4837 4.17% 0.7908 0.6762 0.4374 5.56%

nhood = 33 0.9001 0.8581 0.4896 5.56% 0.7818 0.6683 0.4769 5.56%

b. Simulation results with different number of scales L

ReBaQstatic ReBaQdynamic

PCC SROCC RMSE OR PCC SROCC RMSE OR

L = 1 0.8190 0.8183 0.6667 8.33% 0.5561 0.5520 0.7335 12.50%

L = 2 0.8597 0.8310 0.5521 5.56% 0.7281 0.6482 0.6050 5.56%

L = 3 0.9006 0.8592 0.5077 4.17% 0.7908 0.6773 0.5662 5.56%

L = 4 0.9006 0.8581 0.4915 4.17% 0.7954 0.6797 0.5350 5.56%

L = 5 0.9006 0.8581 0.4883 5.56% 0.8087 0.6881 0.5191 5.56%

5.3. Sensitivity Analysis

In addition to the statistical significance tests, we conduct sensitivity tests on the ReBaQ dataset
by generating multiple smaller datasets and comparing the performance of the different techniques on
these smaller datasets. These experiments were carried out on the ReBaQ-Static and ReBaQ-Dynamic
datasets separately. For this purpose, we create 1000 smaller datasets from the ReBaQ-Static by
randomly sampling n images such that n is smaller than the size of the dataset and such that the
corresponding MOS scores cover the entire scoring range. For every dataset of size n, we calculate
the PCC values after applying the nonlinear mapping of Equation (32). The mean and the standard
deviation of the PCC scores, denoted by µPCC and σPCC respectively, over the 1000 datasets are
calculated for n = 24 and n = 50 and are given in Table 5. Similar sensitivity tests were conducted on
the ReBaQ-Dynamic dataset to obtain the values in Table 5. As it can be seen from Table 5, the standard
deviations of the PCC across 1000 datasets of size n are very small and the relative rank of the different
techniques is maintained as in Table 1.

Table 5. Sensitivity analysis on the ReBaQ dataset with n = 24 and n = 50.

ReBaQ-Static ReBaQ-Dynamic

n = 24 n = 50 n = 24 n = 50

µPCC σPCC µPCC σPCC µPCC σPCC µPCC σPCC

Statistical Measures

AGE 0.8154 0.0451 0.7898 0.0108 0.4824 0.0504 0.5164 0.0123
EPs 0.6333 0.1149 0.4834 0.0801 0.1627 0.0960 0.1499 0.0866
pEPs 0.8309 0.0452 0.8147 0.0088 0.4437 0.0573 0.4819 0.0061
CEPs 0.6851 0.0941 0.6184 0.0923 0.7475 0.0488 0.6223 0.1500
pCEPs 0.8556 0.0500 0.8178 0.0451 0.8327 0.0504 0.6644 0.0185

Image Quality Assessment Metrics

PSNR 0.8620 0.0398 0.8410 0.0067 0.5113 0.0503 0.5290 0.0172
SSIM [29] 0.5578 0.0862 0.5775 0.0084 0.2372 0.2250 0.2290 0.2376
MS-SSIM [19] 0.7729 0.0510 0.7401 0.0123 0.5253 0.0750 0.5232 0.0131
VSNR [30] 0.5365 0.0844 0.5225 0.0182 0.4926 0.0287 0.5212 0.0101
VIF [31] 0.0798 0.3740 0.0571 0.3245 0.2242 0.2474 0.1902 0.1916
VIFP [31] 0.5453 0.1259 0.5264 0.0302 0.4515 0.0167 0.4941 0.0057
UQI [32] 0.7616 0.0831 0.6658 0.0241 0.8105 0.0426 0.6545 0.0210
IFC [33] 0.5249 0.0906 0.5067 0.0189 0.4346 0.0254 0.4410 0.0049
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Table 5. Cont.

ReBaQ-Static ReBaQ-Dynamic

n = 24 n = 50 n = 24 n = 50

µPCC σPCC µPCC σPCC µPCC σPCC µPCC σPCC

Image Quality Assessment Metrics

NQM [34] 0.8619 0.0300 0.8427 0.0120 0.7564 0.0511 0.7127 0.0196
WSNR [35] 0.8520 0.0392 0.8194 0.0149 0.7150 0.0727 0.6617 0.0238
FSIM [36] 0.7749 0.0519 0.7421 0.0144 0.4828 0.0328 0.5202 0.0064
FSIMc [36] 0.7810 0.0507 0.7481 0.0143 0.4840 0.0329 0.5213 0.0065
SRSIM [37] 0.8387 0.0344 0.8132 0.0138 0.6240 0.0895 0.5756 0.0348
SalSSIM [38] 0.5856 0.1313 0.5944 0.0103 0.4698 0.0627 0.4947 0.0059
CQM [20] 0.7437 0.0793 0.6751 0.0373 0.7863 0.0593 0.7336 0.0267
RBQI(Proposed) 0.9320 0.0194 0.9141 0.0084 0.8355 0.0241 0.8154 0.0107

6. Conclusions

In this paper, we addressed the problem of quality evaluation of reconstructed background images.
We first proposed two different datasets for benchmarking the performance of existing and future
techniques proposed to evaluate the quality of reconstructed background images. Then, we proposed
the first full-reference Reconstructed Background Quality Index (RBQI) to objectively measure the
perceived quality of the reconstructed background images.

The RBQI uses the probability summation model to combine visual characteristics at multiple
scales and to quantify the deterioration in the perceived quality of the reconstructed background
image due to the presence of any foreground objects or unnaturalness that may be introduced by the
background reconstruction algorithm. The use of a neighborhood search window while calculating
the contrast and structure differences provides further boost in the performance in the presence of
pseudo-stationary background while not affecting the performance on scenes with static background.
The probability summation model penalizes only the perceived differences across the reference
and reconstructed background images while the unperceived differences do not affect the RBQI,
thereby giving better correlation with the subjective scores. Experimental results on the benchmarking
datasets showed that the proposed measure out-performed existing statistical and IQA techniques in
estimating the perceived quality of reconstructed background images.

The proposed RBQI has multiple applications. It can be used by the algorithm developers to
optimize the performance of their techniques by users to compare different background reconstruction
algorithms and to determine which algorithm is best suited for their task. It can also be deployed in
challenges (e.g., SBMC [22]) that promote the development of improved background reconstruction
algorithms. As future work, the authors will investigate the development of a no-reference quality
index for assessing the perceived quality of reconstructed background images in scenarios where the
reference background images are not available. The no-reference metric can also be used as a feedback
to the algorithm to adaptively optimize its performance.

Supplementary Materials: The ReBaQ and S-ReBaQ datasets and source code for RBQI will be available for
download at the authors’ website https://github.com/ashrotre/RBQI or https://ivulab.asu.edu.
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Abbreviations

The following abbreviations are used in this manuscript:

RBQI Reconstructed Background Quality Index
PSNR Peak Signal to Noise Ratio
AGE Average Gray-level Error
EPs Number of Error Pixels
pEPs percentage of Error Pixels
CEPs number of Clustered Error Pixels
pCEPs percentage of Clustered Error Pixels
IQA Image Quality Analysis
FR-IQA Full Reference Image Quality Assessment
HVS Human Visual System
MS-SSIM Multi-scale Structural SIMilarity index
CQM Color image Quality Measures
PETS Performance Evaluation of Tracking and Surveillance
SBMNet Scene Background Modeling Net
SSIM Structural SIMilarity index
VSNR Visual Signal to Noise ratio
VIF Visual Information Fidelity
VIFP pixel-based Visual Information Fidelity
UQI Universal Quality Index
IFC Image Fidelity Criterion
NQM Noise Quality Measure
WSNR Weights Signal to Noise Ratio
FSIM Feature SIMilarity index
FSIMc Feature SIMilarity index with color
SR-SIM Spectral Residual SIMilarity index
SalSSIM Saliency-based Structural SIMilarity index
ReBaQ Reconstructed Background Quality dataset
S-ReBaQ SBMNet based Reconstructed Background Quality dataset
SBMC Scene Background Modeling
MOS Mean Opinion Score
PCC Pearson Correlation Coefficient
SROCC Spearman Rank Order Correlation Coefficient
RMSE Root Mean Square Error
OR Outlier Ratio
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