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Abstract: In this paper, the full-vectorial three-dimensional (3D) microwave imaging (MI) of sparse
scatterers is dealt with. Towards this end, the inverse scattering (IS) problem is formulated within
the contrast source inversion (CSI) framework and it is aimed at retrieving the sparsest and most
probable distribution of the contrast source within the imaged volume. A customized multi-task
Bayesian compressive sensing (MT-BCS) method is used to yield regularized solutions of the 3D-IS
problem with a remarkable computational efficiency. Selected numerical results on representative
benchmarks are presented and discussed to assess the effectiveness and the reliability of the proposed
MT-BCS strategy in comparison with other competitive state-of-the-art approaches, as well.

Keywords: microwave imaging; inverse scattering; Bayesian compressive sensing (BCS); contrast
source inversion (CSI); 3D

1. Introduction

Microwave imaging (MI) techniques are aimed at inferring the complex permittivity distribution
within an inaccessible investigation domain from the scattering interactions between the matter and
probing electromagnetic (EM) waves [1]. They have been successfully applied in several diagnostic
scenarios including non-destructive testing and evaluation [2,3], through-wall imaging [4], subsurface
prospecting [5–10], and structural health monitoring [11]. Moreover, they represent a very appealing
technology in many biomedical applications [12] such as, for instance, breast cancer detection [13–22]
thanks to the use of non-ionizing radiations. To date, significant efforts have been mostly devoted
to the development of two-dimensional (2D) MI algorithms, mainly based on transverse-magnetic
(TM) [23–28] or transverse-electric (TE) polarized [29] configurations, rather than fully-vectorial
three-dimensional (3D) ones [30]. As a matter of fact, under the assumption that the EM properties
of the unknown scattering scenario are invariant along a longitudinal direction, the arising inverse
scattering (IS) problem can be recast to the solution of simplified scalar Helmholtz equations [1]. On the
other hand, 2D-MI approaches are prone to errors when finite-volume scatterers are under test [31]
because of the over-simplified modelling of the scattering phenomena. The slower evolution of 3D-MI
techniques has been mainly caused by the higher complexity of both data-collection/storage and
image reconstruction processes with respect to the tomographic (2D) case. Moreover, a significantly
larger number of unknowns has to be retrieved and it becomes very hard to manage when there is
the need of high-resolution images (e.g., a realistic discretization of a human thorax needs millions of
voxels for having a clinical significance [32]). Furthermore, the amount of non-redundant information
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on the investigation domain achievable from measurements is upper-bounded and the ratio between
unknowns and scattering data turns out to be very high [33]. Owing to such limitations, solving
3D-MI problems faces hard challenges and it requires the non-trivial implementation of effective
countermeasures to both the non-linearity and the ill-posedness issues of the arising full-vectorial
IS problem.

Dealing with 3D scenarios, synthetic aperture radar (SAR)-based methodologies such as confocal
MI [34] and synthetic near-field focusing [5] have been proposed. They are based on the emission of
wide-band pulses from multiple transmitting positions and the successive processing of the collected
echoes. Only target detection and localization (i.e., a qualitative imaging of the investigation domain)
is typically yielded, while quantitatively retrieving the distribution of the EM properties needs the
numerical solution of the non-linear scattering equations. Towards this end, effective 3D-MI approaches
have been presented in the scientific literature. They are based on the processing of time-domain [19,35]
or frequency-domain [36,37] data and, due to the extremely-wide dimension of the solution space,
which is usually proportional to the number of discretization domains, state-of-the-art methodologies
are primarily based on deterministic methods (e.g., Gauss-Newton (GN) [36,38], Conjugate-Gradient
(CG) [39], Level Set (LS) [16], and Inexact-Newton (IN) [40] methods, possibly formulated in different
functional spaces [41]), even though they do not a priori guarantee to reach the actual solution (i.e.,
the global optimum of the cost function quantifying the mismatch between measured and estimated
scattering data). To overcome such a drawback, either very efficient forward solvers [42,43] have been
introduced or stochastic multi-agent inversion algorithms, suitably integrated with multi-resolution
strategies [37] for a sustainable customization to the 3D case, have been successfully exploited.
Alternatively, computationally-efficient approaches to the MI problem have been recently explored
within the compressive sensing (CS) framework [23,29,44–49]. Despite the early stage [47,50] of their
implementation in 3D cases, very interesting applicative examples are already available [20].

According to the CS theory, sparseness priors can be enforced to solve the IS problem and to yield
a regularized solution provided that it admits a representation with few non-null coefficients in a
suitably chosen basis [44,45]. However, since available CS solvers generally deal with linear problems,
many sparsity-promoting approaches have been formulated within Born-like approximations, their
success being limited to weak scatterers or to specific applications where a qualitative imaging is
enough [29]. Alternatively, contrast source inversion (CSI)-based formulations of the IS problem can be
successfully employed to yield accurate reconstructions also in the presence of scatterers with high EM
contrast with respect to the surrounding medium [23]. Following such a line of reasoning, this paper is
aimed at presenting a novel computationally-efficient approach, based on a Bayesian CS (BCS) method,
to solve the 3D-IS problem concerned with non-weak scatterers. Towards this end, the full-vectorial IS
problem is formulated within a probabilistic CSI framework and then it is efficiently solved through a
customized multi-task BCS (MT-BCS) strategy.

The outline of the paper is as follows. The formulation of the 3D-CSI MI problem is detailed in
Section 2, while the proposed BCS-based solution strategy is described in Section 3. Selected numerical
results, from representative test cases, are presented and compared with competitive state-of-the-art
alternatives in Section 4. Finally, some concluding remarks are drawn (Section 5).

2. Mathematical Formulation

Let us consider a 3D isotropic non-magnetic [µ (r) = µ0] scattering scenario characterized by a
relative permittivity distribution, ε (r), and a conductivity profile, σ (r), r being the position vector
defined as r = xux + yuy + zuz, up being the unit vector along the p-th (p = {x, y, z}) direction.
The goal of the MI problem at hand is to estimate the contrast function [51]

τ (r) , [ε (r)− 1]− j
σ (r)− σ0

ωε0
(1)
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within the investigation domain D (i.e., ∀r ∈ D), ω = 2π f , ε0, and σ0 being the angular frequency
(A time dependency factor exp (jωt) is assumed and omitted hereinafter to simplify the notation,
but without loss of generality in the mathematical formulation.), the background permittivity and
conductivity (with σ0 = 0 hereinafter), respectively, and , standing for “defined as”. Towards this
end, a set of V monochromatic ( f being the working frequency) plane-waves impinging from known
angular directions (θv, ϕv), v = 1, ..., V, with known electric field

Ei
v (r) = ∑

p={x, y, z}
Ei

v,p (r)up v = 1, ..., V (2)

is used to successively probe the unaccessible domain D ( Figure 1).
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Figure 1. Geometry of the 3D-MI microwave imaging problem.

Under such hypotheses and by adopting a CSI formulation [52] for the scattering problem,
the electromagnetic interactions between the scatterers in D and the v-th (v = 1, ..., V) incident wave
can be mathematically described through the following integral data equation

Es
v (r) = −ω2ε0µ0

∫ ∫ ∫
D

Jv
(
r′
)
·G
(
r, r′

)
dr′ r ∈ Ω (3)

where Ω is an observation domain external to D (Ω ∩ D = ∅—Figure 1), Es
v (r) [Es

v (r) =

∑p={x, y, z} Es
v,p (r)up ] is the v-th (v = 1, ..., V) scattered field defined as the difference between the

v-th (v = 1, ..., V) electric field with, Ev (r) = ∑p={x, y, z} Ev,p (r)up (i.e., the v-th total electric field),
and without, Ei

v (r) (i.e., the v-th incident electric field), the scatterers in the background medium
(Es

v (r) ,
[
Ev (r)− Ei

v (r)
]
), · stands for the scalar product, and

G
(
r, r′

)
= ∑

q={x, y, z}
∑

p={x, y, z}
Gpqupuq =

1
4π

(
I +

1
ω2ε0µ0

55
)

exp
(
−jω
√

ε0µ0 |r− r′|
)

|r− r′| (4)

is the dyadic Green’s function for the homogeneous free-space background medium of dielectric
and magnetic properties ε0 and µ0, respectively, I being the unit tensor. In (3), Jv [Jv (r) =
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∑p={x, y, z} Jv,p (r)up] is the v-th (v = 1, ..., V) unknown contrast current density induced in the
investigation domain (r ∈ D) by the v-th probing field (i.e., the v-th illumination of D)

Jv (r) = τ (r) ∑
p={x, y, z}

Ev,p (r)up (5)

that models the scattering profile of D and it is defined as the v-th (v = 1, ..., V) equivalent source
radiating in the background medium an electromagnetic field equal to the v-th (v = 1, ..., V) scattered
field Es

v (r). Furthermore, the v-th (v = 1, ..., V) incident field Ei
v (r) complies with the so-called

integral state equation

Ei
v (r) = Ev (r) + ω2ε0µ0

∫ ∫ ∫
D

Jv
(
r′
)
·G
(
r, r′

)
dr′ (6)

within the investigation domain (r ∈ D).
To numerically deal with the inverse problem at hand, a set of N 3D rectangular pulse functions

Ψ(n) (r) =

{
1 if r ∈ D(n)

0 otherwise
; n = 1, ..., N (7)

defined in a set of N cubic (also called voxels) sub-domains (D = ∪N
n=1D(n)—Figure 1) is adopted

for yielding the following piece-wise constant representation of the v-th (v = 1, ..., V) unknown
contrast source

Jv (r) = ∑
p={x, y, z}

N

∑
n=1

J(n)v,p Ψ(n) (r)up (8)

where J(n)v,p = Jv,p (rn) (p = {x, y, z}) and rn denotes the barycentre of the n-th (n = 1, ..., N) voxelD(n).
By sampling the scattered field in M probing locations of Ω (rm ∈ Ω, m = 1, ..., M), it is possible

to rewrite (3) in the following discrete form [1]

Es
v (rm) = ∑

p={x, y, z}
∑

q={x, y, z}

N

∑
n=1

J(n)v,q G(mn)
pq up, (9)

where G(mn)
pq = −ω2ε0µ0

∫ ∫ ∫
D(n) Gpq (rm, r′) dr′ (p, q = {x, y, z}), or in compact matrix notation

as follows [
Es

v,x, Es
v,y, Es

v,z

]T
= Gext

[
Jv,x, Jv,y, Jv,z

]T
(10)

where .T indicates the transpose operator, Es
v,p ,

[
Es

v,p (rm) ; m = 1, ..., M
]

(Es
v,p ∈ C1×M), Jv,p ,[

J(n)v,p ; n = 1, ..., N
]

(Jv,p ∈ C1×N), p = {x, y, z}, and

Gext ,


Gext

xx Gext
xy Gext

xz
Gext

yx Gext
yy Gext

yz
Gext

zx Gext
zy Gext

zz

 (11)

is the external 3D Green’s operator (Gext ∈ C3M×3N) where the (m, n)-th (m = 1, ..., M; n = 1, ..., N)

entry of the (p, q)-th (p, q = {x, y, z}) sub-matrix, Gext
pq ∈ CM×N , is equal to G(mn)

pq .
Under the hypothesis that the contrast distribution in D is sparse with respect to the basis at

hand (7), it also turns out that the v-th (v = 1, ..., V) contrast source (8) can be numerically modeled
with just 3×O (O � N) non-zero coefficients

{[
J(o)v,x ; J(o)v,y ; J(o)v,z

]
; o = 1, ..., O

}
, O being the number



J. Imaging 2019, 5, 19 5 of 24

of sub-domains D(o) ∈ D, o = 1, ..., O, occupied by scatterers (i.e., dielectric discontinuities of the
background medium within the investigation domain).

3. Inversion Method

The matrix relation in (10) is representative of a severely ill-posed problem being (i) ill-defined
since its solution is not-unique due to the presence of non-radiating sources in D that afford a
null/not-measurable field in Ω and (ii) ill-conditioned since the condition number of Gext, η, is large
(η � 1). To counteract such a negative feature for yielding stable reconstructions of the EM properties
of the investigation domain from the solution of (10) when processing noisy data, as well, enforcing the
a-priori knowledge of the sparseness of the unknown equivalent source with respect to a suitable basis
turns out to be an effective regularization strategy. Towards this end, the CS formulation based on the
Bayesian theory is adopted to re-formulate the 3D-CSI problem at hand in a probabilistic sense. Such a
choice is done to avoid the need of numerically checking the fulfillment of the restricted isometry
property (RIP) of the 3D Green’s operator (11) as required by deterministic CS solvers. Indeed, whether
such a compliance test is already very hard from a computational viewpoint for small-scale problems,
it becomes computationally unfeasible in 3D scattering scenarios since exponentially heavier than for
2D cases.

In order to apply computationally-efficient BCS solvers, (10) is first rewritten as a larger real-valued
linear problem

E v,p = G
p
J v (12)

where E v,p ,
[
R
(

Es
v,p

)
, I
(

Es
v,p

)]T
and J v ,

[
R
(

Jv,p; p = {x, y, z}
)

, I
(

Jv,p; p = {x, y, z}
)]T

are the p-th (p = {x, y, z}) data vector, E v,p ∈ R2M×1, and the v-th (v = 1, ..., V) unknown source
vector, J v ∈ R6N×1, respectively, while the Green’s matrix operator, G

p
∈ R2M×6N , is given by

G
p
,

 R ( Gext
px Gext

py Gext
pz

)
−I

(
Gext

px Gext
py Gext

pz

)
I
(

Gext
px Gext

py Gext
pz

)
R
(

Gext
px Gext

py Gext
pz

)  (13)

R ( . ) and I ( . ) being the real and the imaginary part function, respectively. According to such a
description, the original inverse scattering problem can be then formulated as follows

3D-CSI BCS-Based Problem Formulation—Starting from the measurement of E v,p (v =

1, ..., V, p = {x, y, z}), and the knowledge of G
p

(p = {x, y, z}), determine the sparsest

guess of J v, Ĵ v =
{
Ĵ (t)

v ; t = 1, ..., 6× N
}

as the maximum a-posteriori probability (MAP)
estimate

Ĵ v = arg

{
max
J v

[
P
(
J v

∣∣ E v,p

)]}
(14)

provided that the support of Ĵ v, Sv =
{

t ∈ [1, ..., 6× N]| Ĵ (t)
v 6= 0

}
(v = 1, ..., V) is the

same for all V different illuminations (i.e., S1 = S2 = ... = SV).

In order to enforce the physical correlation existing among the V solutions of (14) as well as
between the unknown contrast sources and the vectorial components of the known scattered field, a
customized version of the MT-BCS solver [53] is adopted by setting the number of parallel “tasks” to
H = (3×V) (owing to the 3D nature of the problem). More in detail, (14) is firstly reformulated in the
Bayesian MT framework as [29,53]

Ĵ v = arg

max
J v

P
(
E v,p

∣∣∣J v

)
P
(
J v
)

P
(
E v,p

)
 (15)
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starting from the definition of a shared prior P
(
J v
)

that statistically links the 3×V parallel problem
unknowns as [29,53]

P
(
J v
)
=
∫
P
(
J v

∣∣ψ
)

dψ (16)

where ψ (ψ ,
{

ψ(t); t = 1, ..., 6× N
}

) is the set of shared—among the V-views and the three Cartesian
scattered field components—hyper-parameters. By assuming a hierarchical Gaussian model for
P
(
J v

∣∣ψ
)

and substituting (16) in (15) [29,53], the MT-BCS v-th (v = 1, ..., V) source term is then
given after simple manipulations [29] by the following expression

Ĵ v =
1
3 ∑

p={x, y, z}

(
GT

p
G

p
+A

)−1
GT

p
E v,p (17)

where A = diag
(

ψ̂
)

and ψ̂ ,
{

ψ̂(t); t = 1, ..., 6× N
}

. These latter are determined with a
computationally-efficient relevant vector machine (RVM) [54] by solving the following maximum
marginal likelihood problem

ψ̂ = arg
{

maxψ

[
L
(

ψ |α, β
)]}

(18)

L
(

ψ |α, β
)

being the logarithmic marginal likelihood function for the fully-vectorial problem given by

L
(

ψ |α, β
)
= − 1

2 ∑V
v=1 ∑p={x, y, z}

{
2 (M + α) log

[
ET

v,p(
I + G

p
A−1GT

p

)−1
E v,p + 2β

]
+ log

∣∣∣I + G
p
A−1GT

p

∣∣∣} (19)

where I is the identity matrix, while α and β are user-defined control parameters. Once Ĵ v (v = 1, ..., V)
has been estimated through (17), the contrast function, τ̂ (r) = ∑N

n=1 τ̂(n)Ψ(n) (r), is retrieved by

computing the corresponding expansion coefficient vector τ̂ =
{

τ̂(n) ∈ C; n = 1, ..., N
}

, whose n-th
(n = 1, ..., N) entry is given by

τ̂(n) = ∑
p={x, y, z}

V

∑
v=1

Ĵ(n)v,p

3×V × Êv,p (rn)
(20)

where Êv,p (rn) is the p-th (p = {x, y, z}) component of the v-th (v = 1, ..., V) total field in the n-th
voxel (rn ∈ D(n)) (n = 1, ..., N) yielded from the following field relation

Êv,p (rn) = Ei
v,p (rn)−ω2ε0µ0 ∑

q={x, y, z}

N

∑
n=1

Ĵ(n)v,q

∫ ∫ ∫
D(n)

Gpq
(
rn, r′

)
dr′, (21)

while the coefficient Ĵ(n)v,p (n = 1, ..., N; v = 1, ..., V; p = {x, y, z}) is derived from Ĵ v (17) according to
the following mapping

Ĵ(n)v,p =


Ĵ (n)

v + jĴ (n+3×N)
v if p = x

Ĵ (n+N)
v + jĴ (n+4×N)

v if p = y
Ĵ (n+2N)

v + jĴ (n+5×N)
v if p = z

. (22)

4. Numerical Assessment

In this Section, representative results from a wide numerical analysis are presented and discussed
to assess the reconstruction capabilities and the robustness of the proposed 3D-MI approach. Moreover,
some practical guidelines for the optimal setting of its key calibration parameters will be provided for
helping the interested users. Towards this end, the following reference scenario has been considered.
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A cubic volume of side L = 1.25 [λ], λ being the free-space wavelength, has been chosen as
investigation domain D and it has been probed by V = 48 plane-waves impinging from the V
angular directions (θv, ϕv) =

(
π
2 , (v− 1) 2π

V
)
, v = 1, ..., V. The scattered field has been collected in

M = 48 locations 
xm = ρ cos

[(
m + 1− κm

M
3

)
6π
M

]
ym = ρ sin

[(
m + 1− κm

M
3

)
6π
M

]
zm = L

2 (κm − 1)

; m = 1, ..., M (23)

where κm =
⌊

3(m−1)
M

⌋
(b·c being the floor operator) and ρ = 3.2 [λ]. To avoid the so-called

inverse crime [1], two different voxel-based discretization of D have been considered for the inverse
(N = 10× 10× 10) and the forward (N f wd = 20× 20× 20) problem, respectively. As for a quantitative
evaluation of the reconstructions, the following error metric has been computed

ξR ,
1

NR

NR

∑
n=1

∣∣∣τ̂(n) − τ(n)
∣∣∣∣∣τ(n)

∣∣+ 1
(24)

for the whole investigation domain (R = tot⇒ Ntot = N), the scatterers support (R = int⇒ Nint = O),
and its complementary region (It is worthwhile to remark that the scatterer support is not an a-priori
information exploited during the inversion, but it is rather employed in the post-processing phase only
to compute the error metrics (24).) [R = ext⇒ Next = (N −O)], τ(n) and τ̂(n) being the actual and the
estimated contrast of the n-th (n = 1, ..., N) voxel in D, respectively.

The first test case is concerned with the retrieval of a single (K = 1, K being the number of
disconnected scattering regions lying in D) off-centered scatterer composed by a single-voxel (O = 1)
of side `x = `y = `z = 0.125 [λ] with contrast τ = 1.0 (Figure 2a). First, a sensitivity analysis for setting
the optimal trade-off values of the control parameters of the MT-BCS solver [i.e., α and β in (19)] has
been carried out. More specifically, the reconstruction error (24) has been computed by varying the
values of the calibration coefficients within the ranges α ∈

[
1, 102] and β ∈

[
10−5, 10−2] for different

signal-to-noise ratios (SNRs). Figure 2b shows that the reconstruction “quality” is almost insensitive to
the choice of α when SNR > 5 [dB] and it mainly depends on the noise level.

Differently, significant degradations occur when letting β > 5 × 10−4 whatever the SNR

(Figure 2c). By computing the optimal trade-off value as ς(opt) ,
∫

SNR ς(opt)cSNRdSNR∫
SNR dSNR , ς(opt)

⌋
SNR

,

arg {minς ( ξtot| SNR)} being the best value of ς = {α, β} at a fixed SNR ( ·c standing for “evaluated
at”), it turned out that α(opt) = 10 and β(opt) = 10−4. These thresholds have then been used throughout
the whole numerical validation. A pictorial view of the 3D MT-BCS reconstructions when processing
different noisy data is shown in Figure 3.

As it can be observed, the object support is always faithfully detected regardless of the amount
of noise. There are only slight deviations from the actual contrast value (e.g., τ̂cSNR=50 [dB] =

0.81—Figure 3a; τ̂cSNR=5 [dB] = 0.77—Figure 3d) as quantitatively indicated by the corresponding
values of the error index ξtot being equal to ξtotcSNR=50 [dB] = 9.58 × 10−5 (Figure 3a) and
ξtotcSNR=5 [dB] = 1.16× 10−4 (Figure 3d) at the highest and lowest SNRs, respectively.

In order to prove that such results are not due to a customization of the MT-BCS solver to
the specific scenario at hand, a set of W = 100 inversions has been performed by randomly
changing the position of the same target within the investigation domain. The results of such a
statistical analysis are summarized in Table 1 where the minimum (ξmin

tot , minw=1, ..., W {ξtot,w}),
the maximum (ξmax

tot , maxw=1, ..., W {ξtot,w}), the average (ξavg
tot , 1

W ∑W
w=1 ξtot,w), and the variance

[ξvar
tot , 1

W ∑W
w=1

(
ξtot,w − ξ

avg
tot

)2
] values of the total error among the W experiments are reported.

Whatever the SNR, the scatterer retrieval is very accurate since on average ξ
avg
tot < 1.0× 10−4 (Table 1)

and the variance of the reconstruction error, ξvar
tot , is very small (i.e., ξvar

tot < 5.0× 10−11—Table 1).
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Such a positive outcome holds true when dealing with stronger scatterers, as well. Thanks to the
CSI formulation, which avoids any physical assumption/approximation in the application of the CS to
the 3D scattering equations (Section 2), faithful data inversions are yielded also when increasing the
actual contrast well-beyond the value of the first example. As a proof, the plots of ξtot (Figure 4a), ξint
(Figure 4b), and ξext (Figure 4c) versus τ and the noise level indicate that D can be carefully imaged
when the scatterer is at least up to τ = 4.0.

As expected, the reconstruction progressively degrades when higher and higher contrasts are at
hand especially when processing highly blurred data. Figure 5 shows the actual and the retrieved
volumetric distributions when τ = 4.0 and SNR ≤ 10 [dB]. As it can be inferred, some artifacts are
present only in very harsh conditions (Figure 5c—SNR = 5 [dB]) when the external error (Figure 4c)
grows from ξextcτ=1.0

SNR=5 [dB] = 0.0 (Figure 3d) to ξextcτ=4.0
SNR=5 [dB] = 8.96× 10−6 (Figure 5c). Nevertheless,

it is worth pointing out that these inaccuracies correspond to voxels with a very low contrast (i.e.,
τ̂ < 3× 10−4—Figure 5c) that can be easily filtered out by a simple (i.e., the result is not so sensitive to
the choice of the threshold value τth) thresholding (Figure 5d—τth = 10−3) and the scatterer is always
correctly localized (Figure 5c as well as Figure 5d vs. Figure 5a).
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Figure 2. Sensitivity Analysis (K = 1, O = 1, τ = 1.0, SNR ∈ [5, 50] [dB])—Actual contrast
function (a). Behavior of the total error, ξtot, versus the MT-BCS control parameters: (b) α ∈

[
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Figure 3. Numerical Assessment (K = 1, O = 1, τ = 1.0) - MT-BCS reconstructions when processing the
scattering data with (a) SNR = 50 [dB] (τ̂ = 0.81); (b) SNR = 20 [dB] (τ̂ = 0.79); (c) SNR = 10 [dB]
(τ̂ = 0.78), and (d) SNR = 5 [dB] (τ̂ = 0.77).

Table 1. Numerical Assessment (K = 1, O = 1, τ = 1.0, W = 100, MT-BCS)—Total error statistics.

SNR [dB] ξmin
tot ξmax

tot ξ
avg
tot ξvar

tot

50 7.99× 10−5 9.69× 10−5 9.10× 10−5 1.11× 10−11

20 8.37× 10−5 9.75× 10−5 9.12× 10−5 1.21× 10−11

10 8.66× 10−5 9.86× 10−5 9.27× 10−5 1.87× 10−11

5 8.68× 10−5 1.21× 10−4 9.78× 10−5 4.66× 10−11

K=O=1

 1  1.5  2  2.5  3  3.5  4

τ [Arbitrary Unit]

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

S
N

R
 [

d
B

]

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

ξ t
o
t 
 [

A
rb

it
ra

ry
 U

n
it
] 

(×
1

0
-4

)

K=O=1

 1  1.5  2  2.5  3  3.5  4

τ [Arbitrary Unit]

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

S
N

R
 [

d
B

]

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

ξ i
n
t 
 [

A
rb

it
ra

ry
 U

n
it
] 

(×
1

0
-1

)

K=O=1

 1  1.5  2  2.5  3  3.5  4

τ [Arbitrary Unit]

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

S
N

R
 [
d
B

]

 0

 2

 4

 6

 8

 10

ξ e
x
t 
 [
A

rb
it
ra

ry
 U

n
it
] 
(×

1
0

-6
)

(a) (b) (c)

Figure 4. Numerical Assessment (K = 1, O = 1, τ ∈ [1.0, 4.0], SNR ∈ [5, 50] [dB])—Behavior of the
(a) total (ξtot); (b) internal (ξint); and (c) external (ξext) reconstruction errors when processing the
scattering data with the MT-BCS.
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Figure 5. Numerical Assessment (K = 1, O = 1, τ = 4.0)—(a) Actual contrast function and (b,c)
MT-BCS reconstructions when processing the scattering data with (b) SNR = 10 [dB] (τ̂ = 3.40),
(c) SNR = 5 [dB] (unfiltered) (τ̂ = 3.28), and (d) SNR = 5 [dB] (filtered τth = 10−3) (τ̂ = 3.28).

The previous examples have dealt with real-valued target contrasts. However, the imaginary part
of τ is not enforced to be zero during the inversion (see Section 3). In order to assess the reliability
of the MT-BCS also when complex contrast values are at hand, the retrieval of a K = 1, O = 1
target with τ = 1.0 − 0.6j (Figure 6a,b) has been considered next. The analysis of the retrieved
profiles (Figure 6) shows that the location, size, and contrast of the scatterer is correctly retrieved
by the proposed imaging strategy both in low (e.g., SNR = 50 [dB]—Figure 6c,d) and in high noise
conditions (e.g., SNR = 5 [dB]—Figure 6e,f), as shown by the corresponding error indexes (e.g.,
ξtotcSNR=50 [dB] = 8.63× 10−5—Figure 6c,d; ξtotcSNR=5 [dB] = 1.06× 10−4—Figure 6e,f).

Being assessed the effectiveness of the proposed approach in reconstructing the sparsest (O = 1)
actual profile, let us now analyze its performance for scenarios exhibiting a lower sparsity order with
respect to the selected voxel basis (7). Towards this end, a second single-voxel scatterer has been
added to the configuration of the first test case (Figure 2a), but in a different position in D (K = O = 2,
τ = 1.0—Figure 7a).
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Figure 6. Numerical Assessment (K = 1, O = 1, τ = 1.0− 0.6j)—Real (a,c,e) and imaginary parts (b,d,f)
of the (a,b) actual contrast function and of the (b–f) MT-BCS reconstructed profiles when processing
the scattering data with (c,d) SNR = 50 [dB] (τ̂ = 0.84− 0.49j), (e,f) SNR = 5 [dB] (τ̂ = 0.81− 0.45j).
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Figure 7. Numerical Assessment (K = 2, O = 2, τ = 1.0)—(a) Actual contrast function and
MT-BCS reconstructions when processing the scattering data with (b) SNR = 50 [dB] (τ̂max = 0.82),
(c) SNR = 20 [dB] (τ̂max = 0.84), (d) SNR = 10 [dB] (τ̂max = 0.84), and (e) SNR = 5 [dB] (τ̂max = 0.83).

As it can be inferred from the plots in Figure 7b–e, the MT-BCS is always able to correctly
retrieve both scatterers even from very low-noise data (e.g., ξtotcSNR=5 [dB] = 9.80× 10−4—Figure 7e).
However, the same statistical analysis of the single-scatterer/single-voxel case (i.e., randomly changing
the locations of the scatterers) here results in wider variations of the integral error (i.e., ξvar

tot ≥ 4.5× 10−7

(Table 2) vs. ξvar
tot ≥ 1.11× 10−11 (Table 1)). Therefore, to better understand how the inversion accuracy

is affected by the positions of the scatterers within the investigation domain, a further set of experiments
has been performed by deterministically changing the relative locations of the K = 2 scatterers, d being
the distance of each one of them from the origin.
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Table 2. Numerical Assessment (K = 2, O = 2, τ = 1.0, W = 100, MT-BCS)—Total error statistics.

SNR [dB] ξmin
tot ξmax

tot ξ
avg
tot ξvar

tot

50 1.49× 10−4 2.57× 10−3 4.60× 10−4 4.50× 10−7

20 1.56× 10−4 2.59× 10−3 4.63× 10−4 4.96× 10−7

10 1.61× 10−4 2.62× 10−3 4.72× 10−4 5.20× 10−7

5 1.83× 10−4 2.63× 10−3 5.30× 10−4 5.27× 10−7

Some representative test cases are reported in Figure 8: d = dmin = `
√

3
2 = 0.11 [λ] (Figure 8a,b),

d = 0.54 [λ] (Figure 8c,d), and d = dmax = (L− `)
√

3
2 = 0.97 [λ] (Figure 8e,f). As expected,

the reconstruction worsens when the two objects get closer (Figure 9) until some artifacts appear

when d = dmin [
ξtotc

SNR=10 [dB]
d=0.11 [λ]

ξtotc
SNR=10 [dB]
d=0.97 [λ]

' 2.41—Figure 8b vs. Figure 8f].
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Figure 8. Cont.
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Figure 8. Numerical Assessment (K = 2, O = 2, τ = 1.0, SNR = 10 [dB])—(a,c,e) Actual contrast
function and (b,d,f) MT-BCS reconstructions when the distance of the scatterers from the origin is equal
to (a,b) d = dmin = 0.11 [λ] (τ̂max = 0.73), (c,d) d = 0.54 [λ] (τ̂max = 0.83), and (e,f) d = dmax = 0.97
[λ] (τ̂max = 0.84).
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Figure 9. Numerical Assessment (K = 2, O = 2, τ = 1.0, SNR ∈ [5, 50] [dB])—Behavior of the total error,
ξtot, versus the distance of the scatterers from the origin, d.

Further lowering the sparseness of the actual profile causes a decrement of the CS performance
as proven by the results of the third test case when O = 4 and the K = 4 single-voxel scatterers are
randomly placed in D (Figure 10a).
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Figure 10. Numerical Assessment (K = 4, O = 4, τ = 1.0)—(a) Actual contrast function and MT-BCS
reconstructions when processing the scattering data characterized by (b) SNR = 50 [dB] (τ̂max = 0.84),
(c) SNR = 20 [dB] (τ̂max = 0.84), (d) SNR = 10 [dB] (τ̂max = 0.80), and (e) SNR = 5 [dB] (τ̂max = 0.70).

Unavoidably, the MT-BCS gets worse and undesired artifacts occur also when processing
low-noisy data (e.g., ξtotcSNR=50 [dB] = 2.37× 10−3—Figure 10b), but still without preventing the
possibility to correctly identify K = 4 separate objects (Figure 10b–e). In addition, in this case, changing
the distance d of the objects with respect to the origin influences the quality of the retrieval as pictorially
shown in Figure 11 (SNR = 10 [dB]).
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Figure 11. Numerical Assessment (K = 4, O = 4, τ = 1.0, SNR = 10 [dB])—(a,c,e) Actual contrast
function and (b,d,f) MT-BCS reconstructions when the objects distance from the origin is (a,b)
d = dmin = 0.11 [λ] (τ̂max = 0.73), (c,d) d = 0.54 [λ] (τ̂max = 0.70), and (e,f) d = dmax = 0.97 [λ]
(τ̂max = 0.71).

Indeed, it turns out that more accurate images of D are yielded when the scatterers are far (i.e.,
d ↑ ⇒ ξtot ↓) as confirmed by the plot of ξtot vs. d (Figure 12a). However, it cannot be neglected that a
simple filtering (Figure 12b—τth = 10−3) allows one to clearly resolve the scatterer support even in the
most critical case (Figure 11a).
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Figure 12. Numerical Assessment (K = 4, O = 4, τ = 1.0, SNR ∈ [5, 50] [dB])—(a) Behavior of the total
error, ξtot, as a function of the objects distance from the origin, d and (b) filtered (τth = 10−3) MT-BCS
reconstruction when the objects distance from the origin is d = dmin = 0.11 [λ] (τ̂max = 0.73).

The next numerical test is devoted to validate the MT-BCS in a more complex 3D imaging
scenario concerned with non-uniformly shaped scatterers. More specifically, K = 3 objects sized
`1

x = `1
y = `1

z = 0.125 [λ],
[
`2

x, `2
y, `2

z

]
= [0.125, 0.25, 0.125] [λ], and

[
`3

x, `3
y, `3

z

]
= [0.25, 0.25, 0.125]

[λ] (O = 7) with contrast τ = 1.0 have been imaged (Figure 13a).
Despite the increased complexity and the reduced intrinsic-sparsity order of the scattering

configuration, faithful reconstructions of the 3D contrast distribution are yielded (Figure 13b–e)
even though there is an over-estimation of the scatterers supports when highly-blurred data are at
hand (e.g., Figure 13b vs. Figure 13e) and, consequently, an increase of the reconstruction error with

the noise level (e.g., ξtotcSNR=5 [dB]

ξtotcSNR=50 [dB] ≈ 2.04). Moreover, the previous considerations regarding the fidelity

of the proposed strategy with respect to the target contrast are confirmed also when dealing with
non-uniformly shaped scatterers (Figure 14).

Finally, it is interesting to underline the advantage of using the MT extension of the BCS-based
approach for solving the 3D-CSI inversion problem instead of its “naive” single-task implementation
(ST-BCS [23]) that does not impose any physical correlation in solving (14). Towards this end, let us
consider the benchmark O = 6 voxel arrangement in Figure 15a with two (K = 2) “L-shaped”
homogeneous (τ = 2.0) objects.
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Figure 13. Numerical Assessment (K = 3, O = 7, τ = 1.0)—(a) Actual contrast function and
MT-BCS reconstructions when (b) SNR = 50 [dB] (τ̂max = 1.08); (c) SNR = 20 [dB] (τ̂max = 1.05);
(d) SNR = 10 [dB] (τ̂max = 1.09); and (e) SNR = 5 [dB] (τ̂max = 1.37).

For illustrative purposes, the reconstructions with the MT-BCS (Figure 15b,c) and the ST-BCS
(Figure 15d,e) when processing two different sets of noisy data [SNR = 20 [dB]—Figure 15b,d;
SNR = 10 [dB]—Figure 15c,e] are shown. As it can be visually inferred, the MT strategy turns out to
be more effective than the ST one in both locating and shaping the non-connected scattering regions
as well as in estimating the actual contrast value. Such an inference is quantitatively confirmed by

the error indexes since
ξtotc

SNR=20 [dB]
ST−BCS

ξtotc
SNR=20 [dB]
MT−BCS

≈ 33.36 (Figure 15b vs. Figure 15d) and
ξtotc

SNR=10 [dB]
ST−BCS

ξtotc
SNR=10 [dB]
MT−BCS

≈ 7.04
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(Figure 15c vs. Figure 15e) (Table 3). Similar outcomes can also be drawn when changing the contrast
of the scatterers as indicated by the behaviour of the reconstruction error ξtot versus τ in Figure 16.
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Figure 14. Numerical Assessment (K = 3, O = 7, SNR ∈ [5, 50] [dB])—Behavior of the total
reconstruction error (ξtot) when processing the scattering data with the MT-BCS.
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Figure 15. Cont.
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Figure 15. Comparative Assessment (K = 2, O = 6, τ = 2.0)—(a) Actual contrast function and retrieved
solutions by the (b,c) MT-BCS and (d,e) ST-BCS when processing noisy data at (b,d) SNR = 20 [dB]
(τ̂MT−BCS

max = 1.96, τ̂ST−BCS
max = 0.33) and (c,e) SNR = 10 [dB] (τ̂MT−BCS

max = 1.68, τ̂ST−BCS
max = 0.36).
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Figure 16. Comparative Assessment (K = 2, O = 6, τ ∈ [1.0, 4.0], SNR ∈ [10, 20] [dB])—Behavior of the
total error, ξtot, as a function of the object contrast, τ, when processing the scattering data with the
MT-BCS, the ST-BCS, and the CG methods.

To conclude the numerical assessment of the reconstruction capabilities of the MT-BCS, it has
been compared with a competitive non-CS state-of-the-art approach. Towards this end, a deterministic
CG-based inversion tool—still based on a CSI formulation of the scattering problem—has been applied
to the same scenario in Figure 15a. The retrieved images of the dielectric profile of the investigation
domain are shown in Figure 17a (SNR = 20 [dB]) and Figure 17b (SNR = 10 [dB]).
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Figure 17. Comparative Assessment (K = 2, O = 6, τ = 2.0)—CG reconstructions when processing noisy
data characterized by (a) SNR = 20 [dB] (τ̂CG

max = 0.33) and (b) SNR = 10 [dB] (τ̂CG
max = 0.36).

Without imposing sparseness priors, only the presence of K = 2 scatterers lying in D can be
deduced, but their contrasts are strongly under-estimated and their supports/shapes are unreliably
predicted. Comparatively, the MT-BCS enables a reduction of the reconstruction error of about
ξtotc

SNR=20 [dB]
CG

ξtotc
SNR=20 [dB]
MT−BCS

≈ 43.75 (Figure 17a vs. Figure 15b—Table 3) and ξtotc
SNR=10 [dB]
CG

ξtotc
SNR=10 [dB]
MT−BCS

≈ 8.92 (Figure 17b vs.

Figure 15c—Table 3) times. Such conclusions are not limited to the contrast τ = 1.0, but they also arise
for stronger scatterers as detailed by the plot of ξtot versus τ in Figure 16.

As for the computational efficiency, the MT-constrained exploitation of a sparseness promoting
inversion technique allows a non-negligible reduction of the computational time, ∆t, when processing
3D scattering data (For the sake of fairness, all the computational times refer to non-optimized Matlab
codes executed on a single-core laptop running at 2.20 GHz). Indeed, the MT-BCS is not only faster

than the ST-BCS, thanks to the joint processing of the data (i.e., ∆tcMT−BCS
∆tcST−BCS

≈ 0.52—Table 3), but it also

overcomes the CG speed (i.e., ∆tcMT−BCS
∆tcCG

≈ 0.032—Table 3).

Table 3. Comparative Assessment (K = 2, O = 6, τ = 2.0, SNR ∈ [10, 20] [dB])—Inversion
performance indexes.

SNR = 20 [dB] SNR = 10 [dB] ∆t
Method

ξtot ξint ξext ξtot ξint ξext [s]

MT − BCS 2.56× 10−4 4.07× 10−2 0.00 1.39× 10−3 1.53× 10−1 3.94× 10−4 15.12

ST − BCS 8.54× 10−3 6.28× 10−1 2.95× 10−3 9.79× 10−3 8.16× 10−1 3.06× 10−3 29.08

CG 1.12× 10−2 5.78× 10−1 7.79× 10−3 1.24× 10−2 5.91× 10−1 8.92× 10−3 4.66× 102

5. Conclusions

An innovative approach to efficiently solve the full-vectorial 3D-IS problem has been presented.
The retrieval of the volumetric contrast distribution of sparse non-weak scatterers has been tackled as
a probabilistic CSI-based problem, which has been efficiently solved through a customized MT-BCS
approach. The numerical analysis has pointed out the following key features of the proposed technique:

• Reliable 3D reconstructions of the EM properties of the imaged domain are yielded processing
scattering data also blurred with a non-negligible amount of additive noise;

• The inversion accuracy of the proposed CS-based approach depends on the degree of sparseness
of the actual scenario with respect to the expansion basis at hand. However, it can be
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fruitfully and profitably applied when other/different (non-voxel) representations of the contrast
source/contrast function are chosen [46];

• The MT implementation of the BCS-based inversion remarkably overcomes its single-task (ST-BCS)
counterpart thanks to the profitable exploitation of the existing correlations between the V views
and the scattered field components;

• The MT-BCS positively compares with other state-of-the-art approaches, also deterministic and
non-CS, in terms of both reconstruction accuracy and computational efficiency.

Moreover, the methodological advancements of this work with respect to the state-of-the-art on the
topic [47,48] include (i) the generalization of the MT-BCS strategy to handle 3D-IS problems, differently
from previous customizations of such an inversion paradigm which deal only with two-dimensional
formulations [48], (ii) the derivation of a BCS-based imaging approach able to retrieve 3D target contrast
information, unlike state-of-the-art Bayesian CS contributions only dealing with the reconstruction
of equivalent sources [47], and (iii) the analysis and validation of suitable operative guidelines for the
optimal setting of the key calibration parameters of the introduced methodology. Future works will be
aimed at extending the capabilities of the proposed approach to effectively deal with non voxel-sparse
targets as well as with other applicative scenarios of great interest (e.g., subsurface imaging) including
the processing of multi-frequency data [55].
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