
Journal of

Imaging

Article

High-Throughput Line Buffer Microarchitecture for
Arbitrary Sized Streaming Image Processing

Runbin Shi , Justin S.J. Wong and Hayden K.-H. So *

Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong;
rbshi@eee.hku.hk (R.S.); jsjwong@hku.hk (J.S.J.W.)
* Correspondence: hso@eee.hku.hk

Received: 21 January 2019; Accepted: 25 February 2019; Published: 6 March 2019
����������
�������

Abstract: Parallel hardware designed for image processing promotes vision-guided intelligent
applications. With the advantages of high-throughput and low-latency, streaming architecture on
FPGA is especially attractive to real-time image processing. Notably, many real-world applications,
such as region of interest (ROI) detection, demand the ability to process images continuously at
different sizes and resolutions in hardware without interruptions. FPGA is especially suitable for
implementation of such flexible streaming architecture, but most existing solutions require run-time
reconfiguration, and hence cannot achieve seamless image size-switching. In this paper, we propose
a dynamically-programmable buffer architecture (D-SWIM) based on the Stream-Windowing
Interleaved Memory (SWIM) architecture to realize image processing on FPGA for image streams at
arbitrary sizes defined at run time. D-SWIM redefines the way that on-chip memory is organized
and controlled, and the hardware adapts to arbitrary image size with sub-100 ns delay that ensures
minimum interruptions to the image processing at a high frame rate. Compared to the prior
SWIM buffer for high-throughput scenarios, D-SWIM achieved dynamic programmability with
only a slight overhead on logic resource usage, but saved up to 56% of the BRAM resource.
The D-SWIM buffer achieves a max operating frequency of 329.5 MHz and reduction in power
consumption by 45.7% comparing with the SWIM scheme. Real-world image processing applications,
such as 2D-Convolution and the Harris Corner Detector, have also been used to evaluate D-SWIM’s
performance, where a pixel throughput of 4.5 Giga Pixel/s and 4.2 Giga Pixel/s were achieved
respectively in each case. Compared to the implementation with prior streaming frameworks,
the D-SWIM-based design not only realizes seamless image size-switching, but also improves
hardware efficiency up to 30×.

Keywords: streaming architecture; low-latency; high-throughput; FPGA; D-SWIM; line buffer

1. Introduction

Real-time image processing applications, such as for high-speed image-guided vehicle control [1],
requires the underlying image-processing hardware to be both high-throughput and low-latency.
Furthermore, for many real-world scenarios, such as in detecting and processing the region of interest
(ROI) of arbitrary sizes, the underlying hardware must also be flexible to adapt to the varying
input-sized images as needed [2]. With ample high-bandwidth I/O and on-chip programmable
logic resources, researchers have demonstrated the benefits of using Field Programmable Gate Arrays
(FPGAs) to address the throughput and latency challenges in a wide range of image processing
applications. For instance, Wang et al. [3] demonstrated that by using an FPGA to directly process
output from a high-speed time-stretch imaging camera, they can successfully classify cell images in
real-time with data throughput exceeding 4 Giga Pixels Per Second (GPPS). Similarly, Ma et al. [4]
demonstrated an automatic tool for porting general Deep Neural Networks (DNN) to FPGA,

J. Imaging 2019, 5, 34; doi:10.3390/jimaging5030034 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0003-4901-5476
https://orcid.org/0000-0002-4378-1199
https://orcid.org/0000-0002-6514-0237
http://dx.doi.org/10.3390/jimaging5030034
http://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/5/3/34?type=check_update&version=2

J. Imaging 2019, 5, 34 2 of 20

which achieves a maximum processing throughput of 710 Giga Operations Per Second (GOPS) and a
latency of 31.85 ms for each image frame.

As illustrated by the above examples, one key to achieving high-throughput low-latency image
processing on FPGAs is by leveraging carefully pipelined hardware that can operate on the input image
as pixel streams without excessive buffering. These hardware architectures are able to commence
processing of the image as soon as the necessary pixels are received and continue processing
the rest of the arriving image as a pipeline, giving rise to both low-latency and high-throughput
operations. Indeed, to facilitate the design of complex streaming image-processing hardware, some
FPGA-hardware generators have already been proposed, often relying on the use of domain-specific
languages (DSLs) as a bridge between the algorithm designer and the lower-level hardware [5–8].
In our previous work, SWIM [9], a streaming line buffer generator, was also proposed to address the
complexities of rearranging misaligned multi-pixel blocks for ultra high-input throughput applications.
It demonstrated that by carefully arranging on-chip memory resources to align with the input image
size, a fully pipelined image processing system on FPGA could be realized that operates close to the
FPGA maximum clock frequency.

However, while these hardware generation frameworks can efficiently produce designs for a
particular target application, they must be pre-configured to a fixed input image size before the FPGA
synthesis. The FPGA has to be reconfigured when the input image size changes, limiting their use in
real-time applications that operate on input images with varying sizes.

Building on top of the work of SWIM, we present in this paper an improved high-throughput
hardware architecture that can adapt to the size of the input image dynamically during runtime
without hardware reconfiguration. The improved scheme, called Dynamic-SWIM (D-SWIM), utilizes
an improved on-chip memory organization that can adapt to changing the image size dynamically.
Different to SWIM, the D-SWIM framework generates light-weighted control instructions for different
image sizes. The hardware architecture can be rapidly programmed in sub-100 nanoseconds instead of
seconds to half a minute of FPGA reconfiguration, making it suitable to process images of different sizes
seamlessly. Such dynamic programmability with D-SWIM is achieved with only a slight overhead
on logic resource usage. Furthermore, D-SWIM lowers overall power consumption by 45.7% due to
reduced BRAM usage. This paper also provides a D-SWIM based hardware design method with two
real-world applications as a case study.

The rest of the paper is organized as follows: Section 2 presents the basis of streaming architecture
and the motivative scenarios of high-throughput and arbitrary sized image processing. Section 3
describes the D-SWIM framework, including the hardware structure and instruction compilation for
any image size. Section 4.2 gives the logic implementation of the fully pipelined hardware. We deeply
evaluated the D-SWIM with practical image applications. Section 5 shows the experiments and the
results compared to SWIM and other streaming architectures. Section 6 is the conclusion.

2. Background

2.1. Streaming Architecture for Image Processing on FPGA

Similarly to the traditional computer system, memory hierarchy exists in FPGA-centric systems.
On-chip memory inside the FPGA has low access latency, but relatively small capacity. In contrast,
off-chip memory (DRAM) has a larger capacity, but longer latency and lower bandwidth. Furthermore,
DRAM access consumes significantly more energy than on-chip memory. Therefore, in the field of
FPGA architecture for image processing, it is a hot topic to trade off the on-chip buffer cost and
system performance. For streaming architecture, it is widely adopted that the FPGA receives the pixels
line-by-line as they are captured by the image sensor. The on-chip buffer is employed to store multiple
lines for the 2D pixel access in the computation. Note that the buffer is optimized to the minimum size,
and only the stores the pixels if they will be reused in subsequent computations.

J. Imaging 2019, 5, 34 3 of 20

Previous works presented general methods for designing a streaming architecture for image
processing with a 2D access pattern [5,7,10]. Figure 1 shows an example. There are three components
within this streaming architecture: Buffer (BUF), operator, and interconnections. The BUF stores multiple
image lines that arrive sequentially in a line-by-line manner from the input stream, and the operators
can simultaneously access pixels across multiple lines within a local area defined by a 2D window or
stencil pattern. For instance, in Figure 1, the operator 1 (OP1) performs 2D filtering with a 3× 3 sliding
window, and the step size of sliding window is one pixel in both vertical and horizontal directions.
Assuming the FPGA receives one new pixel from the input stream per cycle to sequentially fill the
input Buffer 1 (BUF1). Concurrently, BUF1 outputs 3× 3 pixels in a window that is needed by OP1 to
produce one resultant pixel. In each clock cycle, the window advances to the right by one step, and the
output pixel is stored in BUF2. Note that while the window is moving to the boundary of each line,
the output window of BUF1 concatenates the pixel columns from both the end and start in the buffer,
as Figure 1a shows. The windows across the boundary are invalid, and the corresponding resultant
pixels are dropped, such that the line width of BUF2 is less than the width of BUF1.

As illustrated, BUF1 dynamically maintains three image lines that will be reused. Note that the
on-chip BUF can be optimized to a minimum size where the new pixels are consumed as soon as they
become available in the BUF and the old pixels are discarded. The BUF design for the other 2-D stencil
patterns follows a similar principle. Operator is composed of arithmetic units (adder, multiplier, etc.)
tailored for the image application. The results from the operators can be either output as the final result,
or stored in another BUF which provides the input of the subsequent operator. The interconnections
are the dedicated data paths that follows the data flow graph (DFG) of the application. For instance,
in Figure 1d, Operator 2 (OP2) uses both the pixels in the initial BUF1 and the output of OP1 stored in
BUF2 for further processing. In addition to the direct wires, first-in, first-out (FIFO) was inserted on
the data flow path to guarantee all pixels of the required pattern arrived at the operator in the correct
clock cycle.

Buffer1
Input

Operator1 Store

Load

W
indow

Invalid W
indow

Operator1

FIFO

Buffer2 Operator2

Load

output

(a) Buffer 1
(b) Operator 1 (c) Buffer 2

(d) DFG in D-SWIM streaming architecture

New input pixel

Bu
ffe

r

Interconnection

Figure 1. A streaming architecture example for image processing with a 2D pattern. The architecture
has three components: buffer, operator, and interconnections.

2.2. Demand on Arbitrary Sized Image Processing

In many real-world image processing scenarios, the size of the image is unpredictable before the
system run-time. To demonstrate, Figure 2 presents two example cases.

The first case is the Region of Interest (ROI) processing. As Figure 2a shows, the ROI is selected
from the entire view of the image for analysis. This mechanism exists in most image applications that
effectively reduce the computation workload. However, the ROI is defined by the end-user—hence,
the size of ROI is unpredictable during the hardware design time. Furthermore, multiple ROIs may
exist on the same view, such that the hardware is required to accommodate images of different sizes in
processing one frame.

The second case presents how the arbitrary size image processing is also demanded in cloud
computing. As Figure 2b shows, the users at the edge side upload images to the cloud for the

J. Imaging 2019, 5, 34 4 of 20

computation-intensive applications (such as inference of deep learning, etc.). The cloud server sends
the workload to the FPGA accelerator to reduce CPU processing time.

In both cases, the streaming architecture on FPGA is required to process arbitrary sized images.
Furthermore, the working mode of hardware should be quickly switched for seamlessly processing the
images. The conventional FPGA reconfiguration costs seconds to half a minute, which greatly reduces
the system efficiency. Thus, we investigate a streaming architecture that can be rapidly programmed
to process images in an arbitrary size.

(a) Case1: Arbitrary sized ROI in image processing

D-SWIM
Architecture

on FPGA

Stream

User images
in different sizesCloud

Stream
…

Images downstream
to FPGA-accelerator

(b) Case2: Arbitrary sized image processing in cloud computing

ROI

Figure 2. Motivation for arbitrary sized image processing: (a) user-defined Region of Interest (ROI)
processing; (b) arbitrary sized image processing in cloud computing.

2.3. Demand on Ultra-Fast Stream Processing

In previous works, the FPGA streaming architectures accept pixel streams with a throughput of
one or two pixels per clock cycle (pix/cycle) [5,7]. Due to the fast-growing bandwidth of peripherals,
demand comes that FPGA should process multi-pixel blocks instead of independent pixels in each
cycle. For instance,

• Near-storage processing: High-bandwidth memory (HBM) stacks multiple DRAM dies to achieve
a bandwidth of 250 GByte/s [11]. Assuming the operating frequency of FPGA is 250 MHz,
the max data rate of a FPGA input stream is 1000 Byte/cycle. For images with 1 byte per pixel,
this translates into a pixel throughput of 1000 pix/cycle.

• Near-sensor processing: The high-resolution image sensor represents a high pixel throughput.
For instance, the up-to-date CMOS sensor Sony IMX253 is capable of capturing 68 frames per
second, with a resolution of 4096× 3000 [12]. Thus, the minimum processing throughput on
FPGA is 4 pix/cycle (d4096× 3000× 68/250 MHze).

2.4. BRAM-Misalignment Challenge and SWIM Framework

An increase in processing throughput demands a more complex buffer that relies on the parallel
pixel access using multi-pixel blocks. This, however, introduces potential memory alignment issues
when utilizing BRAMs in the buffer design. An example in Figure 3a illustrates this problem, where the
original image lines are sequenced into a high-throughput 1D pixel stream, and then clipped to pixel
blocks by the serial-to-parallel hardware (deserializer) inside the FPGA. The image-processing logic
accepts one pixel block in each cycle. Complication due to memory block misalignment arises when
the pixel number of one image line (denoted as Nline) is not an integer multiple of the pixel number in
an input block (Nblk). In this case, some of the blocks ended up encapsulating pixels from two image
lines. As an example, in Figure 3a, we have Nline = 36 and Nblk = 16. Thus, blk2, blk4, blk6, at the
end of line0, line1, line2, contains 12, 8, and 4 pixels, respectively, that belong to the start of the
next line. These pixels are labeled as remainder pixels in the example. As Figure 3b shows, the general
pixel buffer is composed of multiple line buffers (LBs) and each LB stores an entire image line. The LB
is implemented with one BRAM with a size of Nblk to fulfill the parallel pixel access. We annotated
the BRAM index (n) and the address (addr) in the diagram as Bn(addr) to present the storage pattern.
Note that the remainder of the pixels within the last block of each line will be stored in the following
LB. Therefore, the storage of subsequent blocks may inherit an alignment offset relative to the BRAM
boundary. For example, in Figure 3b, the last block of line0(blk2) contains 12 remainder pixels that are

J. Imaging 2019, 5, 34 5 of 20

written to LB1. To store the blk3 continuously in LB, two addresses of LB1 (B1(0),B1(1)) are accessed.
However, this behavior overwrites the pixels of blk2 stored in B1(0).

To address the misalignment issue, Wong et al. [9] proposed SWIM, a BRAM partition method
for the pixel buffer design. With the same case, Figure 3c shows the SWIM buffer architecture and
the pixel storage pattern. Each LB is composed of two BRAMs, and the width of the first BRAM is
equal to the number of remainder pixels. For example, LB0 is composed of only one BRAM because
there is no remainder pixel at the end of the previous line; LB1 is partitioned into BRAM1 and BRAM2

with widths of 12 and 4, respectively. Thus, the 12 remainder pixels in blk2 are stored at B1(0),
and blk3 are stored separately at B2(0) and B1(1). With this method, SWIM guarantees that the
block storage is aligned to the BRAM boundary. Although the SWIM framework generates BRAM
partition configurations that avoid the BRAM-misaligned access, the hardware configuration needs to
be re-generated through FPGA synthesis flow for a different image width (Nline). Even if the FPGA
configuration files for different Nline can be pre-generated before the run-time, the long disruption
caused by FPGA reconfiguration for differently sized images significantly decreases the throughput.

B1 (2)B1 (1)

…
16 pixels16 pixels16 pixels16 pixels16 pixels

…

deserialize to blocks

image line to pixel stream

line0
line1
line2
line3

blk0
blk1
blk2
blk3
blk4
blk5

Nblk = 16 pixels

Nline = 36 pixels

(a)

pixel blocks to FPG
A

blk6
blk7

…

B0 (0) B0 (1)

B1 (0) B1 (1)

B0 (2)

blk0 blk1 blk2

blk3blk2 blk4

B1 (2)

LB0

LB1

B0 (0) B0 (1)

B1 (0)

B0 (2)

blk0 blk1 blk2

blk3blk2 blk4

LB0

LB1

BRAM-misaligned store

B2 (0) B2 (1) B2 (2)LB2

blk4 blk5

B2 (0) B2 (1) B2 (2)

B3 (0) B4 (0) B3 (1) B4 (1) B3 (2) B4 (2)

blk4 blk5

LB2

(b) (c)

BRAM-aligned storeR
em

ai
nd

er
Pi

xe
ls

Figure 3. (a) Shows that the image lines are sequenced into a stream and then clipped to multi-pixel
blocks; FPGA accepts one block in each cycle. (b) Shows the general pixel buffer in which the BRAM-
misalignment issue occurs. (c) Shows the SWIM buffer avoids the BRAM-misalignment using specific
BRAM partition.

3. Method

This section describes the Dynamic-SWIM (D-SWIM), a flexible buffer architecture that can
be rapidly reconfigured to accommodate arbitrary sized images via instruction updates. First,
an overview of the D-SWIM framework (hardware-, software-tools, and design parameters) is given;
then, the hardware of D-SWIM is described. Subsequently, the control method of D-SWIM and the
custom instruction-set are described, followed by the system working-flow illustration.

3.1. Framework Overview

As shown in Figure 4, the D-SWIM framework is composed of two parts: the software compilation
tool, (SW tool), and hardware generation tool (HW tool). The HW tool generates hardware components
following the D-SWIM method. Note that D-SWIM mainly optimizes the buffer hardware which is
a general component of the streaming architecture, where specific arithmetic units (operators) are

J. Imaging 2019, 5, 34 6 of 20

generated by FPGA synthesis tools without further optimization. According to the principle of stream
processing in Figure 1, the Buffer of D-SWIM is composed of multiple line buffers (LBs), and the
number of LB (NLB) is equal to the height of a 2D stencil (denoted as H). Details on the construction of
LBs will be elaborated in Section 3.2. Inside the buffer hardware, the Controller module provides the
control signals to the underlying BRAMs to realize certain buffer behavior. Note that we employed
an Instruction Memory to provide the control words which can be pre-generated and loaded into
the memory during run-time. By doing so, the D-SWIM hardware can accommodate the arbitrary
image size by quickly switching the control words in the Instruction Memory in a few cycles instead
of performing FPGA reconfiguration. The SW tool generates the specific instruction words for the
Controller based on the pixel block size and image size, that will be described in Section 3.3.

SW-tool

Nblk

BRAM0

BRAM1

BRAMP

…

LB0

…

Instruction
Memory Controller stencil

output
Arithmetic

Unit
(Operator)

Data path

Control signal path

Parameters to SW-tool

Parameters to HW-tool

Nblk

Instruction of Buffer
LB1 LBH-1

BRAM0

BRAM1

BRAMP

…

BRAM0

BRAM1

BRAMP

…

Hight-throughput
 input stream

H

Nline

Arbitrary sized
images

HW-tool

D-SWIM
Buffer

Nline-max

Nheight

FPGA

Server
§3.3

§3.2

Figure 4. Overview of D-SWIM framework.

The design parameters used in D-SWIM are listed in Table 1. Nblk is the number of pixels in one
block; Nline is the number of pixels in one image line (image width), and Nheight is the image height;
Nline-max is the largest possible value of Nline that decides the volume of the Buffer; and H is the height
of the 2D stencil pattern that determines the number of image lines stored in the buffer (number of LB).
Table 1 also highlighted the use scope of each parameter. Note that the HW tool only invokes Nblk,
Nline-max, and H, which are independent to the image size.

Table 1. Design parameters in D-SWIM framework.

Design Parameters Description Use Scope

Nblk Number of pixels in one stream block HW & SW
Nline Number of pixels in the image line (image width) SW

Nheight Image height SW
Nline-max Largest possible value of Nline HW

H Height in the vertical axis of the 2D stencil pattern HW

3.2. Buffer Architecture in D-SWIM

3.2.1. BRAM Organization of Line Buffer

Similarly to SWIM, the D-SWIM buffer is composed of BRAM that saves the FPGA hardware
resource and avoids the complex routing requirement. This section describes the BRAM-centric
technique for the D-SWIM buffer construction.

BRAM Configuration: D-SWIM directly employs the BRAM primitive for the buffer. The port
width of BRAM can be configured. To accommodate the parallel pixels access of the input block and
fully utilize the BRAM bandwidth, we configured all the BRAMs to a port width of 64 bits in the simple

J. Imaging 2019, 5, 34 7 of 20

dual-port (SDP) mode. Note that the real maximum port width is 72 bits, whereas only 64 bits are
under the control of the byte-wise write-enabling signal. The conventional usage of BRAM considers
all bits in one address as an element in memory access. As Figure 5a shows, the store of the input block
should align to the BRAM boundary—otherwise, the misaligned store will overwrite the other bits in
the same address. To avoid interference between two consecutive blocks which is misaligned with
the BRAM, we used the BRAM primitive instantiation within Xilinx Vivado that provides a byte-wise
write-enable signal [13]. For instance, in Figure 5b, the input block (8 pixels, 8 bits/pixel) is misaligned
to the BRAM boundary because the 4 pixels in the head of BRAM0 are stored along with the previous
block. With the byte-wise write enable, the specific control bits in BRAM0 and BRAM1 are set to indicate
the store positions of the incoming 8 pixels and the 4 remainder pixels ahead will not be overwritten.
In summary, with the BRAM primitive instantiation, the controlling of the pixel-block store becomes
more fine-grained. Furthermore, the write enable signal can be changed in the FPGA run-time such
that the LB accommodates arbitrary writing offset introduced by the remainder pixels.

ADDR 1

ADDR n

…

BRAM 0

ADDR 0
ADDR 1

ADDR n

…

BRAM 1

ADDR 1

ADDR n

…

BRAM 0

ADDR 1

ADDR n

…

BRAM 1
LB LB

Input Block Input Block Positions marked by
Byte-wise write enable signal

(a) (b)
Remainder pixels

Figure 5. (a) shows LB write behavior with conventional BRAM usage. (b) shows LB write behavior
with the byte-wise write enable signal using BRAM primitive instantiation.

Number of BRAM in LB: The number of BRAM invoked by one LB (denoted as Nbram) is
determined by the system parameters in Table 1. D-SWIM targets minimizing the BRAM consumption
under the constraints in Equation (1). Firstly, the capacity of the LB should be larger than Nline-max.
Secondly, the overall port width of the LB should be large enough to tackle the pixel block and ensure
that only one address in each BRAM will be accessed in one cycle, such as the minimum Nbram is 2 in
the Figure 5b case. Otherwise, two addresses of BRAM0 will be accessed in the same cycle that violates
the port limitation of BRAM in the SDP mode.

minimize Nbram

subject to Nbram × Dbram ×Wbram ≥ Nline-max × 8(bits/pix)

Nbram ×Wbram ≥ (Nremain-max%(Wbram/8) + Nblk)× 8

Nbram ∈ Z>0.

(1)

In Equation (1), Dbram and Wbram is the depth and width of a BRAM that is equal to 512 and
64, respectively, in Xilinx FPGA. Nremain-max is the largest possible number of the remainder pixel
which is equal to Nblk − 1. % is the modulo operation. Therefore, we obtained the value of Nbram as
Equation (2).

Nbram = max(Nline-max/4096, d((Nblk − 1)%8 + Nblk)/8e) (2)

3.2.2. Line-Rolling Behavior of Line Buffers

The buffer in D-SWIM stores and loads the successive image lines with the line-rolling mechanism.
To demonstrate the line-rolling clearly, we show an example with H = 3, Nblk = 4 in Figure 6. At the
beginning, the LB0-LB2 are stored in the Line0-Line2, respectively. When the buffer receives the
incoming Line3, the input block is stored in LB0 and replaces the old pixels of Line0 which is no
longer needed. With this line-rolling mechanism, the successive image lines are stored in all LBs in a
cyclic manner.

J. Imaging 2019, 5, 34 8 of 20

Meanwhile, the buffer outputs a 2D window including pixels from H image lines, and the blocks
in the window are spatially aligned to the input block. As Figure 6 shows, the first two blocks of the
output window are loaded from the LBs, while the last one is directly sourced from the input block.
Because the output blocks are aligned in the vertical direction, the 2D windows are continuous in the
horizontal direction. Thus, the output 2D windows cover all the pixels required by an arbitrary 2D
pattern with a height of H.

… …

… …

… …

Line 0 Line 1 Line 2 Line 3

LB0

LB1

LB2

Input Block

Output 2-D Window

Figure 6. Example of buffer load and store with the line-rolling behavior.

3.3. Line Buffer Access Pattern and Control Instruction

3.3.1. Access Pattern of Line Buffer

Since the image lines are vertically aligned in the LBs, the load addresses are synchronized to the
store address of the LB which accepts the input block. We use an example in Figure 7 to demonstrate
the pixel access pattern in the underlying BRAMs. The parameters, Nline, Nblk and H are set to
44, 16, and3, respectively in the example. With the D-SWIM method, we set 3 LBs (H = 3) in the
streaming architecture, and each LB is composed of 3 BRAMs (Nbram = 3). The store position of input
blocks (blk0-blk15) are highlighted in the LBs. In each cycle, one BRAM address is accessed at most to
ensure that the previous constraint of BRAM port is not violated. For the blocks that are not aligned to
the BRAM boundary, such as blk3-blk5, a byte-wise write enable signal was used to make sure only
the positions marked by the enable signal were updated and the other pixels in the same address are
not overwritten. Note that the remainder pixels in the last block of each line are duplicated and stored
at the beginning of the successive LB. For example, blk2 contains 4 pixels of Line1 (Nremain = 4). Thus,
these pixels are written to both BRAM2 of LB0 and BRAM0 of LB1, concurrently.

Note that from the Blk11, the storage pattern in LBs will be the same as that from Blk0. This is
because the values of Nremain in continuous lines show a periodic pattern, and the period is determined
by Nline and Nblk. The period measured in clock cycle (Pclk) or in image line (Pline) is given by
Equation (3).

Pclk = LCM(Nline, Nblk)/Nblk

Pline = LCM(Nline, Nblk)/Nline
(3)

where LCM is the least common multiple. In addition, Nremain of line l (denoted as Nremain,l) is
calculated as Equation (4).

Nremain,l =

{
Nblk − Nline%Nblk, l = 0

Nblk − (Nline − Nremain,l−1)%Nblk, l ∈ [1, Pline)
(4)

where l is the index of the line. With the equations above, the buffer access pattern is deterministic.
Thus, in the Figure 7 example, every 4 lines have the same LB storage pattern, and the value of Nremain,l
shows a periodic pattern of {4, 8, 12, 0}.

J. Imaging 2019, 5, 34 9 of 20

blk0 blk1
blk2

blk3 blk4

blk10

blk5

blk6
blk7 blk8

blk9

blk11 blk12
blk13

blk14 blk15

0
1
2

BRAM0

Line 0

Remainder pixels

LB
0

Line 1 Line 2 Line 3 Line 4 Line 5

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

LB
1

LB
2

LB
0

LB
1

LB
2

BRAM1 BRAM2

400 3 0

840 3 0

1201 3 0

041 2 1

400 3 0

840 3 0

REMAINMEMoffsetMEMstart CYCLE RETURN

REMAINMEMoffsetMEMstart CYCLE RETURN

REMAINMEMoffsetMEMstart CYCLE RETURN

REMAINMEMoffsetMEMstart CYCLE RETURN

REMAINMEMoffsetMEMstart CYCLE RETURN

REMAINMEMoffsetMEMstart CYCLE RETURN

In
st

ru
ct

io
n

In
de

x

0

1

2

3

0

1

(b) D-SWIM Buffer Instructions

Ph
ys

ic
al

 A
dd

re
ss

 o
f B

R
AM

s
Periodic Instructions

(a)

Remainder pixels

Remainder pixels

Remainder pixels

Figure 7. (a) shows an example of the block storage pattern with parameters Nline = 44, Nblk = 16, and
H = 3. (b) shows the buffer instruction list for achieving the access pattern in (a).

3.3.2. Control Code Generation

To perform the buffer store and load with the proposed access pattern, D-SWIM adopts customized
instructions along with hardware logic to control the LBs. The BRAM control signals inside each LB are
given by the instruction codes and decode logic, and the line-rolling behavior (store block/load block)
is controlled by the hardware logic. The instruction codes for a specific image size were generated and
loaded into the Instruction Memory before run-time. The instruction-based control method has two
key benefits: firstly, it saves hardware logic for control signal generation; and secondly, the content in
the Instruction Memory can be rapidly switched for processing differently sized images. Note that
each instruction manages the buffer behavior over multiple cycles corresponding to one image line.

As Table 2 listed, the customized instruction is composed of five sections, and each of them is
translated into specific BRAM control signals by the control logic. Because an arbitrary number of
remainder pixels (Nremain) may exist ahead of the first block of a line (line-initial block), we set section
MEMstart to give the BRAM index from which to store the line-initial block. Furthermore, since the
block access may not be aligned to the BRAM boundary, the offset position inside a BRAM is given by
section MEMoffset. In the D-SWIM design, we constrained Nblk to be an integer multiple of the BRAM
width (Nblk/(Wbram/8) ∈ Z). Thus, all pixel blocks in one image line have the same offset inside a
BRAM, which is given by MEMoffset. This constraint leads to a regular storage pattern and reduces
the hardware logic usage for control signal generation. Section REMAIN gives the value of Nremain,
which represents the number of pixels in the last block of a line that overflows into the successive line,
and they are duplicated and stored in the next LB. Section CYCLE gives the number of blocks in the line,
which indicates the cycle number of the control period for the current instruction code. In addition,
CYCLE determines the interval period of fetching a new instruction.

The periodic access pattern of continuous image lines presented in Equation (3) enables instruction
reuse. For instance, Pline is 4 in Figure 7a; thus, only four instructions are needed. To reuse the
instruction periodically, section RETURN gives the flag to reset the instruction-fetch address and restart
a new period of the access pattern. The periodic reuse of control code saves the instruction memory
and reduces time delay caused by instruction reloading while switching the image size. Theoretically,
the maximum possible number of instruction is Nblk.

J. Imaging 2019, 5, 34 10 of 20

Table 2. Sections of the customized instruction for D-SWIM architecture.

Section Bit-Length Description
MEMstart dlog2 Nbrame Start BRAM index of line-initial block
MEMoffset dlog2 Wbrame Start position (inside BRAM) of line-initial block
REMAIN dlog2 Nblke Nremain of the current image line
CYCLE dlog2dNline-max/Nblkee Number of blocks in the current image line
RETURN 1 Flag to reset the instruction-fetch address

Algorithm 1 gives the instruction generation flow in D-SWIM’s SW-tool. Each iteration of the
program calculates five sections and then assembles the instruction to binary codes. The iteration
continues till Nremain(value of REMAIN section) gets to zero. In the last instruction of the list, RETURN
is set to 1, that leads to re-execution of the entire instruction list. For instance, Figure 7b gives the
instruction code for each image line in Figure 7a, which is generated by Algorithm 1. For Line0,
the line-initial block starts from BRAM0 without pixel offset. Thus, MEMstart and MEMoffset are 0. It takes
3 blocks to fulfill the Line0, and the last block contains 4 pixels belonging to the following Line1.
Thus REMAIN and CYCLE is equal to 4 and 3, respectively. Algorithm 1 starts with an initial state that all
variables are set to 0, and input parameters Nline, Nblk, and Wbram are set to 44, 16, and 64, respectively.
In the loop iteration, the variables are calculated sequentially, and they are corresponding to the
value of each instruction section for Line0. Then, the values of five sections are assembled into the
Instruction0 and appended to the instruction list. Following the Line0, the line-initial block of Line1
starts from BRAM0 of LB1 with a inner-BRAM offset of 4 pixels, which can be translated to MEMstart= 0 and
MEMoffset= 4 in Instruction1, respectively. The other sections are conducted using the same manner
as Instruction0. In particular, only 2 blocks are required to fulfill Line3 (CYCLE in Instruction3= 2),
because there are 12 remainder pixels contained in the last block of Line2. The Line3 does not contain
remainder pixels, that results in pixel blocks from Blk11 which perform the same storage pattern with
that of blocks from Blk0. Therefore, in the algorithm loop iteration for Instruction3, variable RETURN

is set to 1, and the loop stops. Then, the algorithm outputs the instruction list (Instruction0-3) that
can be periodically executed in processing continuous image lines.

Algorithm 1: Instruction Generation Algorithm in D-SWIM Streaming Architecture
Input: Application parameters: Nline, Nblk, Hardware information: Wbram
Output: Instruction code: Inst
Inst= ∅;
MEMstart = 0; MEMoffset = 0; REMAIN = 0; RETURN = 0;
while RETURN== 0 do

MEMstart= bREMAIN/(Wbram/8)c;
MEMoffset=REMAIN%(Wbram/8);
CYCLE=d(Nline − REMAIN)/Nblke;
REMAIN=Nblk − (Nline − REMAIN)%Nblk;
if REMAIN=0 then

RETURN=1;
end
Inst.append(Assemble(MEMstart, MEMoffset, REMAIN, CYCLE, RETURN));

end
return Inst

J. Imaging 2019, 5, 34 11 of 20

3.4. Run-Time Dynamic Programming for Arbitrary-Sized Image

With the specific instruction set, the D-SWIM buffer can be rapidly re-programmed for processing
arbitrary sized images. Figure 8 demonstrates the system workflow on both the FPGA and the server.
The server obtains the images from users and prepares the D-SWIM instruction list for the image
size. Due to the low complexity of the instruction generator in Algorithm 1, the server generates
the instruction list online and then writes it to the Instruction Memory of D-SWIM at the FPGA side.
Besides the instruction, the server also sends the value of image height (Nheight) to the control register
in D-SWIM that determines the life-cycle of the instruction list. Subsequently, the server sends the
corresponding image to the FPGA and obtains the computational results in a continuous data stream.
Note that the communication latency is hidden in the fully pipelined workflow. Thus, the image
computation logic on FPGA only stalls for a brief period of time during instruction loading.

Load Instruction Image/Result I/O

Server

FPGA Board

0001010

…1010001

Instructions

FPGA Workflow

Images Results
…

1001011

…0110101

Instructions Images Results

…
Time

Figure 8. D-SWIM workflow with dynamic programming for arbitrary sized image processing.

4. Logic Implementation of D-SWIM

This section explains the detailed implementation of the underlying logic hardware of D-SWIM.
Note that the main focus here is a universal buffer design for image-processing-based streaming
architectures on modern FPGA architectures. Further optimizations may apply to specific applications
on FPGA architectures, but it is outside the scope of this section.

4.1. Logic of Line Buffer

Figure 9 shows the hardware composition of the Line Buffer (LB) and the related control signals
from the Controller module. Each LB is composed of Nbram BRAMs and the associated control
logic. According to the LB access pattern described in Section 3.3, the BRAM addressing pattern is
sequential. Thus, we employed an AddrCounter module to each BRAM to manage the write address.
The AddrCounter accepts the AddrInc and AddrRst signals from the Controller that determines
whether to increase the address register by one or reset it to zero, respectively. The other signals related
to the block store process, including WrMask, WrData, and WrEn, were generated by the Controller

and directly connected to the BRAM primitives. Note that we annotate the width of each signal bus in
the brace following the signal name in Figure 9.

According to the line-rolling buffer access behavior, the read addresses of multiple LBs were
synchronized to the write address of the LB which stores the input block. In the logic design, the WrAddr
from AddrCounters were sent to a MUX, and the MUX selected the proper value as the RdAddr signal of
all LBs under the control of the AddrSel signal.

J. Imaging 2019, 5, 34 12 of 20

Controller

LB1

WrMask{Nbram} WrData{Nbram} WrEn{Nbram} RdAddr{Nbram}

RdData{Nbram} WrAddr{Nbram}

LB2 LBH

Addr MUX
InBlk{Nblk}InstructionLoadBus

AddrRst{Nbram} AddrInc{Nbram}

W
rA

dd
r{N

br
am

}

W
rA

dd
r{N

br
am

}

Out2DWin{H}{Nblk} AddrSel{2}

…

BRAM
1

WrMask[1]

Addr
Counter

AddrRst[1]AddrInc[1]

WrData[1]

WrEn[1] RdData[1]

RdAddr[1]

WrAddr[1]

…
BRAM

2
WrMask[2]

Addr
Counter

AddrRst[2]AddrInc[2]

WrData[2]

WrEn[2] RdData[2]

RdAddr[2]

WrAddr[2]

BRAM
Nbram

WrMask[Nbram]

Addr
Counter

AddrRst[Nbram]AddrInc[Nbram]

WrData[Nbram]

WrEn[Nbram] RdData[Nbram]

RdAddr[Nbram]

WrAddr[Nbram]

Figure 9. The D-SWIM buffer is composed of LBs and Controller. Each BRAM in the LB is equipped
with an Address Counter to manage the write address. It performs address incrementation or reset
according to the signal on the controller bus. The Addr MUX allows the write addresses to be broadcasted
during a block write operation of a specific LB as the read addresses of the other LBs for block loading.

4.2. Logic of Controller

The Controller performs three functions in D-SWIM: (1) decode the instruction word to the
control signals of each LB; (2) transform the input pixel block (InBlk) to the proper storage pattern as
the WrData signal of the BRAMs; (3) transform the pixels loaded from LBs to the certain 2D window
required by the operators (Out2DWin). Thus, the buffer-write and buffer-read logic are implemented
independently as follows.

4.2.1. Buffer-Write Logic

In the D-SWIM design, the length of input block (InBlk) is larger than the width of LB. Thus,
the buffer-write logic extends the InBlk signal to the same width of LB in a certain pattern, and the
BRAM byte-wise write enable signal (WrMask) is generated concurrently. As Figure 10 shows, two
stages exist in the signal generation. In the first stage, place-holding bytes (cross marked in Figure 10)
are padded at the beginning and the end of the input block. By doing so, the padded block has the
same width as the LB. The number of place-holders at the start of the block is equal to MEMoffset in the
instruction word. Thus, the PHPad hardware in this stage is controlled by the corresponding register
decoded from the instruction. In the second stage, the pixels from the first stage are rearranged by
a circular right-shift (CRS) operator. The shift distance is an integer multiple of the BRAM width,
and it is given by MEMstart in the instruction that ensures the pixel-block storage starts from the proper
BRAM in the LB. Note that the pattern of place-holder padding is fixed for blocks in the entire image
line, but the shift distance in the second stage changes for every block. Thus, the CRS hardware in the
second stage is controlled by the MEMstart and a run-time Counter which provides the input block index
of one image line. Along with the WrData signal, the WrMask signal is generated in a similar manner.
After the two-stage processing, a set of binary flags are generated, where 0 corresponds to the positions
of the place-holders in WrData and 1 indicates that the BRAM byte position will be overwritten by the
value in WrData.

In particular, when the input block exceeds the end of the image line, the logic stores the remainder
pixels belonging to the next image line to the beginning of the next LB concurrently, where specific

J. Imaging 2019, 5, 34 13 of 20

logics are set to process these remainder pixels. Because the number of remainder pixels is provided
by the REMAIN section in the instruction, the MUX in the logic separates remain pixels (red pixels in
Figure 10) and pads place-holders in the tail as the WrData signal of the next LB, while the WrMask signal
with Nremain ones at the beginning of the binary set is generated. Subsequently, the WrData and WrMask

signals from the circuits for general pixels and remainder pixels are concatenated as the output bus
of the Controller. Other buffer-write related signals, WrEn, AddrInc, and AddrRst, were generated
concurrently by the Counter and specific logics.

{8*Nblk}
InBlk

place-holders padding

0 1 2 2 0 1

M
U

X

M
U

X

REGs REGs

10 0 0 1 1 1 1 1 1 1 0 10 0 0 1 1 1 11 1 1 0

1

0

REGs REGsREGs

M
U

X

REGs REGsREGs

M
U

X

REGs

1 0 0 01 1 0 0 0 0 0 0

REGs

WrData

WrMask
{8*Nbram*H}

{64*Nbram*H}

Decoder

Instruction

MEMoffset MEMstartREMAIN

C
ou

nt
er

Lo
gi

c

CYCLE

Lo
gi

c
Lo

gi
c

Lo
gi

c
WrEn

{Nbram*H}

AddrInc
{Nbram*H}
AddrRst
{Nbram*H}

Input block

1

0

{32}

General pixel
processing

Remainder pixel
processing

Stage1 Stage2

circular right-shift

C
R

S

PH Pa
d

Figure 10. Buffer-write logic.

4.2.2. Buffer-Read Logic

As introduced previously, the BRAM read address was synchronized to the write address of
the LB being written. Thus, the Controller generates the AddrSel signal to indicate the LB index
that stores the input block. The RdData loaded from multiple LBs are processed by the buffer-read
logic to form the output 2D pixel window (Out2DWin) from multiple image lines. The buffer-read
logic reverses transformation performed during the buffer-write process, and the circuit is shown
in Figure 11. The logic contains three stages to transform the RdData into Out2DWin. The first stage
performs line-wise reordering that changes the line-order of the LBs’ output blocks to the spatial order
of the image. As per the line-rolling behavior in Figure 6, (H-1) blocks of Out2DWin are read from the
LBs, and the last block is directly sourced from InBlk with delay logic. The second stage performs
a circular left-shift (CLS) which reorders the pixels from different BRAMs. The third stage removes
several pixels at the beginning and the end of results from the previous stage, which ensures the
output blocks are spatially aligned to the InBlk. Subsequently, the pixel blocks after the three-stage
processing are concatenated with the delayed InBlk to construct the Out2DWin.

J. Imaging 2019, 5, 34 14 of 20

LB3

{H* 64*Nbram}
RdData

REGs REGsREGs

Out2DWin
{8*Nblk*H}

Lo
gi

c

Loaded block

Decoder

Instruction

MEMstart MEMoffset

C
ou

nt
er

Lo
gi

c

CYCLE

Lo
gi

c AddrSel
{32}

Stage1 Stage2 Stage3

LB1
LB2
LB3

Line-wise reordered
& selected

LB1
LB3

Circular left-shift

LB1
0 1 2 1 2 0

LB3
Pixel removal

LB1

M
U

X
REGs

{8*Nblk}
InBlk

REGs REGs

C
LS

Pi
xe

l
RM

Figure 11. Buffer-read logic.

5. Evaluation

This section describes the experimental setup for evaluating the D-SWIM implementation. In the
evaluation, we compare this work with SWIM in terms of hardware resource usage, timing, and power
consumption on FPGA. Subsequently, we evaluate the D-SWIM workflow with dynamic programming
for continuously processing images in different sizes. Furthermore, we present D-SWIM based
hardware architectures for two real-world image applications (2D-Convolution and Harris Corner
Detector). The implementations are compared to streaming architectures in prior works.

5.1. Experiment Setup and Evaluation Metric

The hardware generator of D-SWIM was realized using Verilog RTL and implemented with
Xilinx Vivado. Our selected target FPGA device was Xilinx-XC7VX690, where the tool synthesizes the
Verilog into logic circuits and generates FPGA-specific mapping. Meanwhile, it also gives the resource
utilization and timing performance, which are generally employed as the evaluation metrics of FPGA
implementation. The resource utilization can be broken down into four FPGA building-blocks: the
look-up table (LUT), Flip-Flop Register (REG), BRAM, and DSP. On the timing performance, the worst
negative slack (WNS) of the critical path is given by Vivado and can be translated to the maximum
operating frequency (fmax). The vendor tool gives the power consumption of the D-SWIM module as
well. Besides the hardware tools, we implemented the D-SWIM instruction generator on the server to
provide the control codes for any given image width (Nline) and block size (Nblk).

5.2. Evaluation of Buffer Hardware

We evaluated the buffer design in D-SWIM and compared it with the previous work of SWIM,
which tackles the similar BRAM-misalignment issue for the multi-pixel block but only supports
static image sizes that are pre-defined before FPGA synthesis. In the experiment, we configure the
SWIM and D-SWIM with different parameter sets for a complete evaluation. As Table 3 shows,
the parameters (Nline, H, and Nblk) are set to different values, and the implementation results are listed.
In Configurations 1–6, we set the image width (Nline) to arbitrary values. The window height (H) was
set to 3 or 5, which are frequently used in image applications. The pixel number of one input block
(Nblk) was set to 8, 16, 32. Note that in the SWIM method, the number of LB (NLB) was deduced by Nblk
and Nline; thus, it may exceed H, whereas NLB is equal to H in D-SWIM. The optimization technique
of multi-pass BRAM partitioning in SWIM was also invoked to reduced NLB, and the corresponding
results are shown in the SWIM-2pass column of Table 3.

J. Imaging 2019, 5, 34 15 of 20

Table 3. Buffer resource consumption in SWIM and D-SWIM.

Config.
Parameters D-SWIM SWIM SWIM-2pass

Nline H Nblk NLB LUT REG BRAM NLB LUT REG BRAM NLB LUT REG BRAM
1 630 3 8 3 1950 (1.45) 2140 (1.35) 6 (0.75) 4 1346 1589 8 4 1346 1589 8
2 630 3 16 3 3427 (1.33) 3553 (1.29) 9 (0.56) 8 3895 5127 32 4 2650 2653 16
3 1020 3 16 3 3427 (1.30) 3553 (1.16) 9 (0.56) 4 2643 3051 16 4 2643 3051 16
4 1020 3 32 3 7656 (1.18) 6338 (0.94) 15 (0.47) 8 8745 12662 60.5 4 6491 6743 32
5 1020 5 16 5 5608 (1.04) 4931 (0.80) 15 (0.47) 8 5367 6142 32 8 5367 6142 32
6 1375 5 16 5 5608 (0.87) 4931 (0.69) 15 (0.44) 16 10,833 13,305 64 8 6452 7182 34

5.2.1. Resource Evaluation

Table 3 lists the resource consumption of LUT, REG, and BRAM for different buffer schemes.
Note that the results of D-SWIM and SWIM-2pass schemes are compared, and the ratio values of
D-SWIM to SWIM-2pass are listed in the parenthesis of the D-SWIM column. In Configuration 1,
D-SWIM consumes 44.9% and 34.7% more LUT and REG than that in SWIM. However, the BRAM
consumption in D-SWIM is less—this is because NLB is 4 in SWIM as 4 lines compose a BRAM-partition
period, but this issue does not exist in D-SWIM. When Nblk is set to 16, as per Configuration 2, NLB
of SWIM increases to 8, which consumes more logic and BRAMs than D-SWIM. Although the 2-pass
optimization halves the NLB, the BRAM cost in SWIM is 16, which is 1.8 times that of 9 in D-SWIM.
SWIM costs more BRAMs of specific widths to compose the LB, whereas D-SWIM sets all BRAM ports
to the maximum width, which fully utilizes the bandwidth and reduces the resource. Note that the
D-SWIM buffer accommodates arbitrary image width, and configurations use different Nline values
but identical H and Nblk (e.g., Configuration 2 and Configuration 3) share the same hardware via
dynamic programming. In Configurations 5–6 where H is 5, D-SWIM’s consumptions of both logic
and BRAM are less than SWIM. D-SWIM saves 13.1% LUT, 31.4% REG, and 55.9% BRAM compared
with SWIM-2pass in Configuration 6. With Configuration 6, the NLB of SWIM is 8, which costs more
logic on the line-selection multiplexer.

We also investigate the impact of parameters on the resource consumption in the D-SWIM
scheme. Comparing the results in Configurations 1–4, we note that Nblk greatly affects the logic and
BRAM resources. This is because a larger Nblk requires more complex multiplexers for pixel-block
manipulation. Note that H also affects the hardware (comparing Configuration 3 to Configuration 5)
because a larger H costs more LUTs for the line-selecting multiplexer and more REGs on the temporary
pixel-storage.

5.2.2. Timing and Power Evaluation

In addition to the hardware resource usage, timing performance and power consumption were
also evaluated. The results of the post place-and-route design were obtained from the vendor tools
(Xilinx Vivado) and presented in Figure 12, where (a) is the fmax with different configurations in
Table 3 and (b) is the power consumption. Compared with SWIM, the D-SWIM design slightly
decreases the fmax. This is because the multi-stage logics for dynamic controlling lengthen the critical
path. We selected the proper pipeline stage as described in Section 4.2, while trading the fmax and
resource overhead in further pipelining. We observed that Nblk is a significant factor to the fmax.
In Configurations 1–6, the worst fmax is 329.5 MHz with Configuration 4 in which Nblk is 32.

Figure 12b presents the power consumption of buffer modules with SWIM and D-SWIM design
methods. Each power bar is composed of two portions that represent static power (lighter part)
and dynamic power (darker part). Apparently, SWIM and D-SWIM have identical static power
with all configurations, but D-SWIM performs better in the dynamic power aspect. This is mainly
due to fewer LBs (NLB) used in the D-SWIM case, which leads to less BRAM usage. For example,
with Configuration 5, SWIM consumes 2.1× BRAMs of that in D-SWIM; thus, the dynamic power

J. Imaging 2019, 5, 34 16 of 20

is increased proportionally. Compared with SWIM, the D-SWIM buffer saves up to 45.7% power
consumption in the case of Configuration 6.

(b)(a)

M
ax

 W
or

ki
ng

 F
re

qu
en

cy
 (M

H
z)

0

115

230

345

460

Config.

1 2 3 4 5 6

D-SWIM SWIM-2pass

Po
w

er
 (w

)

0

0.45

0.9

1.35

1.8
static dynamic

Config.
1 2 3 4 5 6

D
-S

W
IM

SW
IM

-2
pa

ss

D
-S

W
IM

SW
IM

-2
pa

ss

D
-S

W
IM SW

IM
-2
pa

ss

D
-S

W
IM

SW
IM

-2
pa

ss

SW
IM

-2
pa

ss

SW
IM

-2
pa

ss

D
-S

W
IM

D
-S

W
IM

Figure 12. (a) shows the fmax of D-SWIM and SWIM designs with the configurations in Table 3.
(b) shows the power consumption of D-SWIM and SWIM, with the breakdown of static and
dynamic power.

5.3. Evaluation of Dynamic Programming in D-SWIM

The dynamic programming described in Section 3.4 contributes to the ability of rapid
context-switching for arbitrary sized images. We evaluated the D-SWIM system with the workload
containing images in different sizes. Table 4 lists the period of computation and dynamic programming
for one image. The independent variables are image size and Nblk (input throughput), which affects
the measured periods. The values were measured in clock cycles. However, for direct comparison,
they were converted to the numbers in micro-seconds with an operating frequency of 350 MHz.
The proportion column gives the ratio of the programming period to the entire working period
(programming period + computation period). The overhead of dynamic programming in D-SWIM is
significantly less than 1% in most cases, and the context-switching can be regarded as seamless.

In contrast, while employing the SWIM buffer for the same workload, a FPGA reconfiguration is
required to switch the specific hardware corresponding to the size of the input image. The average
period for reconfiguring the entire FPGA device (Xilinx-XC7VX690) is 20 s. For a fair comparison,
we listed the time period for the partial reconfiguration technique [14], which reduces the
reconfiguration time to the order of milliseconds via programming only a portion of the FPGA.
Similarly, we obtained the proportion of FPGA reconfiguration time based on the image-processing
period. Assuming the SWIM hardware is reconfigured for each image, the results show that the FPGA
performs reconfiguration in over 80% of the entire working period. This means that the FPGA spends
the most time on reconfiguration rather than actual image processing, causing a huge reduction in
processing throughput.

Table 4. Time period of dynamic programming of D-SWIM and partial reconfiguration of SWIM.

Image Size Nblk Computation Time D-SWIM Programming Time SWIM Reconfiguration Time
H×W (pixel) (pixel) (cycle) (µs) (cycle) (µs) Proportion (cycle) (µs) Proportion

431 × 392 8 21,227 60.649 8 0.023 0.04% 465,500 1330 95.64%
431 × 392 16 10,614 30.326 16 0.046 0.15% 465,500 1330 97.77%
431 × 392 32 5307 15.163 32 0.091 0.60% 465,500 1330 98.87%

1342 × 638 8 107,360 306.743 4 0.011 0.00% 465,500 1330 81.26%
1342 × 638 16 53,680 153.371 8 0.023 0.01% 465,500 1330 89.66%
1342 × 638 32 26,840 76.686 16 0.046 0.06% 465,500 1330 94.55%

J. Imaging 2019, 5, 34 17 of 20

5.4. Case Study of Image Processing with D-SWIM

With the D-SWIM buffer, an architecture for a specific image application can be easily constructed.
This section presents D-SWIM-based architectures for two real-world image applications and their
performance study.

To evaluate the practicability of D-SWIM in real applications, we compare the D-SWIM designs
with similar streaming architectures for image processing [7,10]. In prior studies, Reiche et al. [7]
improved the HIPACC image-processing framework to generate effective High-level Synthesis (HLS)
codes for FPGA with a specific memory architecture, and Özkan et al. [10] optimized the OpenCL
framework of Intel (Altera) FPGA to a domain-specific language (DSL) for image processing.
These works are widely accepted by the community, and were developed based on the latest tools from
the industry and academia. Thus, we consider these two as the state-of-the-art works for comparison.

5.4.1. Conv2D

2D convolution (Conv2D) is a popular operation for image feature extraction. Figure 1 shows
a typical Conv2D operation with 3 × 3 convolutional kernels. Pixels in a kernel-sized window
were fetched and multiplied to the kernel weights and then accumulated to the Conv2D result.
The subsequent operation moves the window 1 pixel to the right, and performs the same arithmetic.
In the high-throughput scenario of D-SWIM, multiple overlapped windows are processed in the same
clock cycle. Thus, the logic components are connected as Figure 13. In every clock cycle, the buffer
output pixel block has a height of H, and width of Nblk. The pixels were directly delivered to the
parallel operators (OP) which performed the MACC operation. The results of OPs were concatenated to
the output block. Note that there are windows, such as Win0 and Win1, in Figure 13, containing pixels
from two consecutive output blocks of the buffer. Thus, we set registers to store the last pixel-columns
of the previous cycle to construct these windows.

D-SWIM
buffer

Cycle nCycle n-1

Nblk=16
…

…

Win0 Win1 Win15

OP

Input

REG

OP OP

Output

…

16

…

Figure 13. D-SWIM-based architecture for Conv2D (3× 3 window).

Following the architecture above, we implemented the Conv2D with Nblk = 16 and H = 3. For a
fair comparison, the hardware of OP was simply implemented with naïve RTL with a pre-defined
pipeline stage. The implementation results are listed in Table 5. We name the works in [7,10] Design2
and Design1, respectively, in the following content. The devices adopted in each work have been
listed as a reference. Note that the size of BRAM in Intel FPGA is 20 Kbits, whereas it is 36 Kbits in
Xilinx FPGA. Nblk represents the hardware throughput (pixel/cycle). Meanwhile, the fmax of each
design has been given, and we obtained the system pixel throughput (giga pixel per second (GPPS))
by Nblk × fmax.

Because D-SWIM and Design1–2 have different throughputs, it was unfair to compare the resource
number in Table 5 directly. Thus, we obtained the hardware efficiency of FPGA logic (LUT and REG)
with Equation (5). Comparing with the highest-throughput design (Design1), the hardware efficiency
of D-SWIM is 4.8× and 8.2× in LUT and REG, respectively. Comparing with the smallest design
(Design2), D-SWIM also achieves competitive hardware efficiency. Note that Design2 achieves higher
hardware efficiency on LUT, as it has traded off throughput severely for simpler logic. Moreover, it does

J. Imaging 2019, 5, 34 18 of 20

not consider the issues in the multi-pixel input scenario (such as BRAM-misalignment), which allows
further reduction in overall hardware usage.

E f f iciency = Throughput/Hardware Consumption× 105 (5)

Table 5. Hardware resource consumption and throughput in a Conv2D implementation.

Work Device
Nblk Precision Hardware Consumption fmax Throughput Efficiency

(pixel) (bit/pixel) LUT REG BRAM DSP (MHz) (GPPS) LUT REG
Design1 [10] Intel-5SGXEA7 32 8 47,045 73,584 363 0 303.6 9.71 20.7 1.3
Design2 [7] Xilinx-XC7Z045 1 8 288 521 2 0 349.9 0.35 121.5 6.7

D-SWIM Xilinx-XC7VX690 16 8 4514 4232 9 76 283 4.5 100.3 10.7

5.4.2. Harris Corner (HC) Detector

The Harris Corner (HC) detector [15] is commonly used in computer vision applications that detects
the corner position for feature matching. The HC operator swaps the window (e.g., 3× 3 pixels in the
benchmark) on the image and determines if the window contains a corner pattern. The HC algorithm
on each window is listed in Equation (6). Firstly, HC obtains the gradient matrix M, where I(i, j) is
the intensity value of the pixel inside the window; ∂I(i,j)

∂x and ∂I(i,j)
∂y are the intensity derivative in the

horizontal and vertical axes, respectively. Secondly, R was calculated to estimate the eigenvalue of
M, where k is a constant of 0.04–0.06, and det and trace calculates the determinant and trace of the
matrix, respectively. If the value of R is larger than the threshold, the current window contains the
corner pattern.

M =

 ∑W
i,j (

∂I(i,j)
∂x)2 ∑W

i,j (
∂I(i,j)

∂x)(∂I(i,j)
∂y)

∑W
i,j (

∂I(i,j)
∂x)(∂I(i,j)

∂y) ∑W
i,j (

∂I(i,j)
∂y)2


R =det(M)− k× trace(M)2

(6)

Figure 14 demonstrates the D-SWIM-based architecture for HC. This streaming architecture is
composed of a buffer (rectangular shape), operator (circular shape), and interconnections. Note that the
derivative calculation in different axes can be realized by a Conv2D operation with the Sobel kernels.
We used a 3× 3 Sobel kernel in the example, and the operators are denoted as dx and dy for the two
axes. The derivative results (∂I(i,j)

∂x , ∂I(i,j)
∂y) were stored in Buf2 and Buf3 because they were accessed

with a 2D window pattern in the subsequent operations. The sx, sy, and sxy operators perform the
element-wise multiplication and accumulate the values in the window. After M is obtained, operator
rc calculates the R in Equation (6) and compares it with the threshold to determine whether the
window contains a corner or not.

Buf1

dx

dy

Buf2

Buf3

sx

sxy

sy

rc
Input Output

D-SWIM buffer
Operator

Figure 14. D-SWIM-based architecture for HC detector (3× 3 window).

The evaluation method of HC is the same as the Conv2D case. Table 6 shows the implementation
results of D-SWIM and Design1–2. In the HC case, the D-SWIM-based design achieves both the highest
throughput and the best hardware efficiency. Comparing with the superior design (Design1), D-SWIM
increases the throughput to 3.5×. Furthermore, with D-SWIM, the efficiency of LUT and REG is 25×
and 30× that in prior studies.

J. Imaging 2019, 5, 34 19 of 20

Table 6. Hardware resource consumption and throughput in HC detector implementation.

Work Device
Nblk Precision Hardware Consumption fmax Throughput Efficiency

(pixel) (bit/pixel) LUT REG BRAM DSP (MHz) (GPPS) LUT REG
Design1 [10] Intel-5SGXEA7 4 8 135,808 192,397 493 36 303.4 1.2 0.9 0.1
Design2 [7] Xilinx-XC7Z045 1 8 23,331 31,102 8 254 239.4 0.24 1.0 0.1

D-SWIM Xilinx-XC7VX690 16 8 16769 14439 27 444 267 4.2 25.5 3.0

6. Conclusions

This work has presented D-SWIM, a dynamic programmable line buffer microarchitecture
for arbitrary sized streaming image processing on FPGAs. The D-SWIM architecture facilitates
high-throughput realignment of multi-pixel blocks into line buffers suitable for further streaming
image processing. In addition, through a rapid instruction code update, D-SWIM allows for the size of
line buffers to adjust dynamically to accommodate varying size requirements of the application during
run time. Compared to prior studies where SWIM can only work on a predetermined image size,
D-SWIM achieves dynamic programmability for varying image sizes with a slight logic resource
overhead. In our experiment, the D-SWIM buffer reached a maximum operating frequency of
329.5 MHz and saved BRAM resources up to 56% that contributed to a power consumption reduction
of 45.7%. When compared to other state-of-the-art FPGA-based streaming architectures using two
real-world image applications as benchmarks, D-SWIM contributes to a significant hardware efficiency
improvement of 25× in LUT and 30× in REG. For the benchmark cases, the D-SWIM based design
reaches a pixel throughput of 4.2 GPPS when 16 pixels are input every cycle.

As more applications domain begin to take advantage of vision-based intelligence, the number of
systems that demand high-performance image processing is going to increase. D-SWIM represents our
first step in systematically generating flexible high-throughput low-latency streaming image processing
hardware. In the future, we expect to further the capability of D-SWIM to facilitate generation of the
complete intelligent image processing system automatically for FPGAs.

Author Contributions: Conceptualization, R.S. and H.K.-H.S.; Investigation and implementation, R.S. and
J.S.J.W.; Validation, J.S.J.W.; Writing-original draft, R.S. and J.S.J.W.; Writing-review and editing J.S.J.W.;
Funding acquisition, H.K.-H.S.

Funding: This research was funded in part by the Croucher Foundation (Croucher Innovation Award 2013) and
the Research Grants Council of Hong Kong grant number CRF C7047-16G, GRF 17245716.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BRAM Block Random Access Memory
CLS Circular Left Shift
CRS Circular Right Shift
DFG Data Flow Graph
DNN Deep Neural Networks
DRAM Dynamic Random Access Memory
DSL Domain Specific Languages
DSP Digital Signal Processing
FIFO First-In, First-Out
FPGA Field Programmable Gate Array
GPPS Giga Pixels Per Second
GOPS Giga Operations Per Second
LB Line Buffer
LUT Look-up Table
REG Register

J. Imaging 2019, 5, 34 20 of 20

ROI Region of Interest
RTL Register Transfer Level
SDP Simple Dual Port
SWIM Stream-Windowing Interleaved Memory
TDP True Dual Port

References

1. Guo, C.; Meguro, J.; Kojima, Y.; Naito, T. A multimodal ADAS system for unmarked urban scenarios based
on road context understanding. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1690–1704. [CrossRef]

2. Rosenfeld, A. Multiresolution Image Processing and Analysis; Springer Science & Business Media: Berlin,
Germany, 2013; Volume 12.

3. Wang, M.; Ng, H.C.; Chung, B.M.; Varma, B.S.C.; Jaiswal, M.K.; Tsia, K.K.; Shum, H.C.; So, H.K.H. Real-time
object detection and classification for high-speed asymmetric-detection time-stretch optical microscopy on
FPGA. In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT), Xi’an,
China, 7–9 December 2016; pp. 261–264.

4. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. An automatic RTL compiler for high-throughput FPGA implementation
of diverse deep convolutional neural networks. In Proceedings of the 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 September 2017; pp. 1–8.

5. Pu, J.; Bell, S.; Yang, X.; Setter, J.; Richardson, S.; Ragan-Kelley, J.; Horowitz, M. Programming heterogeneous
systems from an image processing DSL. ACM Trans. Archit. Code Optim. (TACO) 2017, 14, 26. [CrossRef]

6. Chugh, N.; Vasista, V.; Purini, S.; Bondhugula, U. A DSL compiler for accelerating image processing pipelines
on FPGAs. In Proceedings of the 2016 International Conference on Parallel Architecture and Compilation
Techniques (PACT), Haifa, Israel, 11–15 September 2016; pp. 327–338.

7. Reiche, O.; Schmid, M.; Hannig, F.; Membarth, R.; Teich, J. Code generation from a domain-specific
language for C-based HLS of hardware accelerators. In Proceedings of the 2014 International Conference
on Hardware/Software Codesign and System Synthesis, New Delhi, India, 12–17 October 2014; ACM:
New York, NY, USA, 2014; p. 17.

8. Serot, J.; Berry, F.; Ahmed, S. Implementing stream-processing applications on fpgas: A dsl-based approach.
In Proceedings of the 2011 International Conference on Field Programmable Logic and Applications (FPL),
Chania, Greece, 5–7 September 2011; pp. 130–137.

9. Wong, J.S.; Shi, R.; Wang, M.; So, H.K.H. Ultra-low latency continuous block-parallel stream windowing
using FPGA on-chip memory. In Proceedings of the 2017 International Conference on Field Programmable
Technology (ICFPT), Melbourne, VIC, Australia, 11–13 December 2017; pp. 56–63.

10. Özkan, M.A.; Reiche, O.; Hannig, F.; Teich, J. FPGA-based accelerator design from a domain-specific
language. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9.

11. Salehian, S.; Yan, Y. Evaluation of Knight Landing High Bandwidth Memory for HPC Workloads.
In Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms, Denver,
CO, USA, 12–17 November 2017; ACM: New York, NY, USA, 2017; p. 10.

12. Mono Camera Sensor Performance Review 2018-Q1. Available online: https://www.ptgrey.com/support/
downloads/10722 (accessed on 6 March 2019).

13. Xilinx. UG473-7 Series FPGAs Memory Resources. Available online: https://www.xilinx.com/support/
documentation/user_guides/ug473_7Series_Memory_Resources.pdf (accessed on 6 March 2019).

14. Pezzarossa, L.; Kristensen, A.T.; Schoeberl, M.; Sparsø, J. Using dynamic partial reconfiguration of FPGAs in
real-Time systems. Microprocess. Microsyst. 2018, 61, 198–206. [CrossRef]

15. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision
Conference, Manchester, UK, 31 August–2 September 1988; Volume 15, pp. 10–5244.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITS.2014.2368980
http://dx.doi.org/10.1145/3107953
https://www.ptgrey.com/support/downloads/10722
https://www.ptgrey.com/support/downloads/10722
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://dx.doi.org/10.1016/j.micpro.2018.05.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Streaming Architecture for Image Processing on FPGA
	Demand on Arbitrary Sized Image Processing
	Demand on Ultra-Fast Stream Processing
	BRAM-Misalignment Challenge and SWIM Framework

	Method
	Framework Overview
	Buffer Architecture in D-SWIM
	BRAM Organization of Line Buffer
	Line-Rolling Behavior of Line Buffers

	Line Buffer Access Pattern and Control Instruction
	Access Pattern of Line Buffer
	Control Code Generation

	Run-Time Dynamic Programming for Arbitrary-Sized Image

	Logic Implementation of D-SWIM
	Logic of Line Buffer
	Logic of Controller
	Buffer-Write Logic
	Buffer-Read Logic

	Evaluation
	Experiment Setup and Evaluation Metric
	Evaluation of Buffer Hardware
	Resource Evaluation
	Timing and Power Evaluation

	Evaluation of Dynamic Programming in D-SWIM
	Case Study of Image Processing with D-SWIM
	Conv2D
	Harris Corner (HC) Detector

	Conclusions
	References

