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Abstract: The main goal of this paper is to study Image Aesthetic Assessment (IAA) indicating
images as high or low aesthetic. The main contributions concern three points. Firstly, following
the idea that photos in different categories (human, flower, animal, landscape, . . . ) are taken with
different photographic rules, image aesthetic should be evaluated in a different way for each image
category. Large field images and close-up images are two typical categories of images with opposite
photographic rules so we want to investigate the intuition that prior Large field/Close-up Image
Classification (LCIC) might improve the performance of IAA. Secondly, when a viewer looks at a
photo, some regions receive more attention than other regions. Those regions are defined as Regions
Of Interest (ROI) and it might be worthy to identify those regions before IAA. The question “Is it
worthy to extract some ROIs before IAA?” is considered by studying Region Of Interest Extraction
(ROIE) before investigating IAA based on each feature set (global image features, ROI features and
background features). Based on the answers, a new IAA model is proposed. The last point is about a
comparison between the efficiency of handcrafted and learned features for the purpose of IAA.

Keywords: image aesthetic assessment; region of interest; sharpness map; color saliency map; large
field image; close-up image; image classification; exif; handcrafted features; learned features

1. Introduction

Nowadays, the development of technology leads to the dramatic increase of digital
photos since photos can be taken easily by using smartphones, tablets, laptops, cameras . . .
Users have to confront with the lack of storage so they cannot keep all photos. Thus, there
is a need of evaluating photos automatically to keep the best ones and especially to remove
the worst ones. One of the most important criteria for assessing photos is image aesthetic.
Beside that, image aesthetic features are the base for many applications such as image
quality enhancement, photo management and sharing applications, . . . Therefore, studying
image aesthetic could help improving several applications.

Image aesthetic is an abstract notion related to the measure of delight or annoyance of
an observer about a photo fulfilling aesthetically or not his/her expectations. When looking
at an image, sharp and/or salient color regions often attract more viewers’ eyes while
background areas often get less viewers’ attention. Thus, sharpness and color saliency are
two factors defining the Region of Interest (ROI) we are looking for. In Figure 1, the first
photo is a close-up image of tulip flowers while the third photo is the large field scene of
a tulip field. In the close-up photo, the blur background and the high contrasted colors
between the flowers and the background are exploited to highlight the sharp and high
contrasted color flowers so the background is not consider as a bad quality area of the
image even if it is blurry. On the contrary, although the main objects in the right photo
are the colorful tulip field and the windmills, the roles of the blue sky and white clouds
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are significant in the aesthetic quality of the image because the whole image is considered
when assessing aesthetic of large field images. The two image categories focused here
are large field images (images of large field scenes taken with a long distance from the
camera to the scene) and close-up images (images focusing on close-up objects captured
with a short distance from the camera to the objects) because of the obvious differences
of photographic rules and aesthetic evaluation criteria between them. Moreover, those
both categories contain a huge amount of possible images. Based on this intuitive idea, the
first contribution of this work is to demonstrate more rigorously if an image classification
between large field and close-up images before IAA is worthy. The primary idea here is
to assess image aesthetic of large field and close-up images separately and to consider
different aesthetic features for both image categories. The illustration of the proposed
process is presented in Figure 2. Images are first classified as large field or close-up images.
Aesthetic quality of the two categories is then assessed separately as high or low with two
different classifiers: one designed for large field images and the other designed for close-up
images. Those results are compared with the results of IAA without prior classification to
evaluate the influence of LCIC in IAA.

Figure 1. Example of close-up images (on the left), large field images (on the right) and the corre-
sponding ROI map (the binary images).
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Figure 2. The process of image aesthetic study based on LCIC results.

Secondly, as a matter of fact, there is an implicit assumption that the aesthetic quality
of an image is more related to the aesthetic quality of the ROI in this image than on the
aesthetic quality of the whole image. Looking at Figure 1, the ROIs (represented by white
regions) are more salient and attract more viewers’ attention than the background (repre-
sented by the black regions). The second contribution of the paper is then to investigate if it
would be worthy to extract some ROIs before IAA. The illustration of the idea is presented
in Figure 3. Looking at the process, the first step is to extract the ROIs and the background
from an input image. Aesthetic features are then computed from the whole image, the ROIs
and the background. IAA based on each feature set (global image features, local features
including ROI features and background features) are performed and compared with IAA
based on both global and local features to evaluate the roles of ROIE in IAA. This problem
is studied in two cases: IAA for large field images only and IAA for close-up images only
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because large field images and close-up images are two typical image categories having
opposite photographic rules related to ROIs and background.
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Figure 3. The process of image aesthetic study based on ROIE results.

The third contribution of the paper is to compare the efficiency of handcrafted features
and learned features for the purpose of IAA. Aesthetic features are computed either by
hand or via a learning algorithm.

Based on the evaluations of LCIC and ROIE in IAA, a new IAA model is finally
proposed.

There are two additional contributions regarding pre-processing for IAA. An ROIE
algorithm using the combination of sharpness and color contrast information and a deep
model are introduced. The second contribution is to consider different types of features
including Exchangeable Image File Format (EXIF) features, handcrafted features and
learned features to perform the Large field/Close-up Image Classification (LCIC) task.

This paper is organized as follows. Section 2 presents a state of the art about IAA,
ROIE and LCIC. Section 3 describes the proposed pre-processings for IAA: on one side,
ROIE based on both sharpness, color information and on the other side, LCIC based on
EXIF features, handcrafted features and learned features. Section 4 is to define features for
IAA. The study of IAA with prior image classification is described in Section 5. Section 6
presents the study of IAA with prior region segmentation. The conclusions and a new IAA
model based on LCIC and ROIE are drawn in the last section.

2. State of the Art
2.1. Image Aesthetic Assessment Studies

Many attempts have been made to train computers how to automatically assess the
aesthetic quality of images. Generally, there are two main phases in an IAA process [1]. The
first one is to extract features from images: handcrafted features or learned features. In the
second phase, a decision is made. The decision could be a binary classification indicating
the input image as high or low aesthetic. It also could be a regression decision (returning
aesthetic scores) or aesthetic ranking orders.

Following handcrafted approaches, most of studies focus on photographic rules to
design aesthetic features. Dhar et al. [2] propose to use low level features to form high
level features for IAA. There are three groups of features including compositional features
(presence of a salient object, rules of composition, depth of field, opposing colors), content
features (presence of objects or object categories) and Sky-Illumination features (natural
illumination). A Support Vector Machine(SVM) classifier is trained to predict aesthetic
and interestingness by using 26 high level features. In [3], an IAA method using a generic
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content-based local image signature is proposed. Bag of visual words descriptors, Fisher
vector and GIST descriptors are considered to form generic content-based features. Bag
of visual words descriptors, Fisher vector, gradient information are encoded by using
SIFT and color information. Two SVM classifiers are trained for binary image aesthetic
classification, one with SIFT and the other with color features. The average of the two
results is considered as the final result. Mavridaki et al. [4] propose to use five feature
groups including simplicity, colorfulness, sharpness, pattern and composition to perform
IAA. Their feature vector is constructed from both low and high level features computed
on both the whole image and local regions. In [5], Aydin et al. introduce an aesthetic
signature concept and an aesthetic quality assessment method based on sharpness, depth,
clarity, tone and colorfulness features. Their results prove that the aesthetic signature can
help improving automatic aesthetic judgment, automated aesthetic analysis, tone mapping
evaluation, . . .

Deep learning approach might be a good solution for IAA and many researches about
image aesthetic using deep learning have been introduced. Tian et al. [6] introduce a query-
dependent aesthetic model based on deep learning for IAA. They combine a retrieval
system and a deep Convolutional Neural Network (CNN) to improve the performance
of IAA. Given an input image, visual features and textual features are extracted first as
the input for the retrieval system. Images in similar categories are retrieved to construct a
training set for the aesthetic model. The model is then trained on the constructed training
set to predict aesthetic labels. Their idea is interesting but the execution time could be
an issue since whenever evaluating the aesthetic quality of an image, a retrieval task
has to be executed first and the aesthetic model then has to be trained before predicting
aesthetic labels. In [7], a double-column deep CNN is proposed to perform IAA. Two
parallel CNNs are used: one learning aesthetic features from the whole image and the
other learning aesthetic features from local parts. Those features are then combined to
classify images as high or low aesthetic quality. Additionally, style and semantic attributes
are leveraged in their work. In [8], Wang et al. introduce an CNN including three groups
of layers to evaluate image aesthetic of multi-scenes. The first group of layers contains
four convolutional layers pre-trained on the ImageNet dataset. The second one consists
of seven parallel groups in which each group is corresponding to a kind of scene in the
CUHKPQ dataset (animal, architecture, human, landscape, night, plant and static). Each
group of layers is pre-trained on the corresponding image group of the CUHKPQ dataset.
The last group includes three fully connected layers to evaluate image aesthetic as high or
low. Their model is a combination of transferred layers, scene convolutional layers and
fully connected layers.

In general, image aesthetic has been studied in various ways in which prior region
segmentation [5,9,10] or prior image classification [6] have been considered. However, those
studies focus mainly on applying prior region segmentation and prior image classification
in IAA (how to exploit or apply them in IAA? How good the performances of methods are?).
On the contrary, our purpose is to compare the performances of IAA when considering the
image dataset without any pre-processing with those obtained with pre-processing like
prior image classification and/or prior image segmentation. Additionally, the question
“What is the efficiency of handcrafted features with regard to learned features in IAA?”
still needs to be answered. In this study, we are going to tackle those problems and a
binary IAA is chosen because of its simplicity. Obtained conclusions can be extended to
regression IAA.

2.2. Large Field/Close-up Image Classification Studies

Image classification has been studied for many years and the main idea is to use
image features that are computed from image data either by hand [11,12] or via a learning
algorithm [13,14] to separate images into different categories. The focused problem in
this part is to classify large field images and close-up images (image samples can be
seen in Figure 1). Until now, there are few researches about this particular classification.
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In [15], Wang et al. propose a method using color coherence vector and color moments
to classify close-up and non close-up images. In another study, Zhuang et al. [16] divide
an image into 256 parts. The number of edge points in each part is counted to build a
256 bin histogram. The 256 bin values and standard deviation of those values are the key
features to classify close-up and distance view images. In [12], Tong et al. use features
representing the distributions of high frequencies in the first classification stage. In the
second one, the spatial size and the conceptual size (object size in reality) are used to
classify distance/close-up view images.

All features used in those classification methods are handcrafted features. The role
of EXIF features and learned features for LCIC is still an open question. Handcrafted
features and learned features have been widely used for general image classification [17].
Nowadays, deep learning approaches are the must for object classification [18]. At the same
time, EXIF data has not been widely used for image classification. EXIF data are metadata
(data information of data) and tags revealing photo information such as picture-taking time,
picture-taking conditions [19]. Surprisingly, EXIF features have been occasionally used in
researches. In [20], Huang et al. use the manufacturer, camera model, date and time stamp
and some other EXIF parameters as watermark information to protect image copyright.
In [21], aperture, exposure value, ISO and picture-taking time are exploited to enhance
ROI detection. In [22,23], Boutell et al. integrate image content and EXIF data consisting of
exposure time, flash use and focal length to classify in-door and out-door images.

In this paper, the performances of LCIC pre-processing based on EXIF features, hand-
crafted features and learned features are compared in terms of accuracy and computational
complexity.

2.3. Region of Interest Studies

There are many ways to extract ROIs. The first way is to consider image sharpness
because viewers are often attracted by sharp and clear regions. Following this idea, from
an input image, Luo et al. [24] use blurring kernels, horizontal and vertical derivatives to
compute sharpness information. Each pixel is labelled as blur or clear and the ROIs are
considered as the rectangular regions with the highest sharpness values. However, it is
obvious that the shape of any ROI is not always rectangular. Re-using Luo’s sharpness cal-
culation, Tang et al. [25] propose first to segment the input image into super-pixels (groups
of neighboring pixels having similar colors) [26] and then the labels of neighboring pixels
are used to improve the precision of ROIE. A super-pixel is determined as belonging to an
ROI if over half of its pixels are labelled as clear. In [5], Aydin et al. use an edge stopping
pyramid to blur the input image multiple times. By considering the differences between
the blurred versions of the sequential pyramid levels, a sharpness map is computed first
and the in-focus regions are then extracted based on it.

The second approach is based on the fact that regions with salient and/or high
contrasted colors often get more viewers’ attention. In [27], Perazzi et al. use color contrast
and color distribution to estimate the color saliency level of each super-pixel. Color
variations, spatial frequencies, structure and distribution of image segments are considered
in their study. In [28] an algorithm using the combination of color dissimilarity with
background prior for color saliency level computation is proposed. In [29], exploiting
both weak and strong models, a salient object detection method combining color saliency
and bootstrap learning to extract salient regions is proposed. A weak saliency map is
constructed first based on image priors to generate training samples for a strong model.
Then, the strong classifier is learned to detect salient pixels from images directly. In [30],
a color saliency detection method analyzing color histogram and spatial information-
enhanced region based contrast is proposed.

Beside handcrafted methods, deep learning based methods have been developed
for region detection and saliency prediction [31–34]. In [32], CNNs are used to modelize
saliency of objects in images by considering both global and local contexts. Saliency fea-
tures are extracted from two models, one trained on the global context and the other
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trained on local contexts. Both feature types are then used for color saliency computation.
Li et al. [31] propose to use CNNs to learn saliency features from multiscale images for vi-
sual recognition tasks. Different visual saliency maps are generated from multiscale images
coming from an original one. Those maps are then combined to create the final saliency
map. In [34], an end-to-end deep hierarchical network based on CNN for salient object
detection is proposed. The first network learns global contrast, objectness, compactness
features. Then a hierarchical recurrent CNN is used to hierarchically refine the details of
saliency maps by integrating local context information. Cornia et al. [33] propose to predict
viewers’ attention on image pixel by using an CNN containing three main blocks: a feature
extraction CNN, a feature encoding network and a prior learning network. That model
extracts deep features from different levels of the CNN and combines them to predict eye
fixations over the input image.

In our work, ROIs are defined as regions attracting viewers’ attention because of
both sharpness AND color saliency (see Figure 4d,e). They are not only sharp regions or
only regions with high color saliency levels or regions containing objects (see Figure 4a,
Figure 4b, Figure 4c respectively).

         (a)                         (b)                         (c)                       (d)                         (e)

Figure 4. Examples of different definitions of ROIs. The first row contains color images and the
second row contains the corresponding ROI maps (a) ROIs defined according to sharpness. (b) ROIs
defined according to color saliency. (c) ROIs defined as object regions (d,e) Our ROI definition based
on both sharpness AND color saliency.

3. Pre-Processing Phases for IAA
3.1. Large Field/Close-up Image Classification

Before exploring the interest of a prior image classification for IAA, the aim of this
section is to determine which are the best features to consider in order to proceed to LCIC.

3.1.1. EXIF Features for LCIC

In photography, camera tunnings are stored by digital cameras as EXIF data. Four
EXIF parameters and a combination of some of them are considered in this study.

Aperture refers to the size of lens opening for light when a picture is captured. This
parameter is stored as a f -stops value such as f /1.4, f /2, f /2.8,. . . in which f -stops = f

D
where f is the focal length and D is the diameter of the entrance in a camera. A smaller
f -stops value represents a wider aperture. The Depth Of Field (DOF) and brightness of
pictures are affected by the setting of aperture. A decrease of the aperture value makes an
increase of DOF and a decrease of brightness.

Focal length exhibits the distance from the middle of the lens to the digital sensor and
it also decides the angle of view in the photo. This parameter is measured in millimeters.
A long focal length makes a narrow view and a wide scene is captured with a short
focal length.

Exposure time represents the total time for light falling on the sensor of a camera
during shooting. It is measured in seconds. In weak light conditions, photographers use
long exposure time. A short exposure time is regularly used when capturing moving
objects like taking sport photos.
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ISO describes the sensitivity level of the sensor in a camera. ISO parameter is measured
with numbers such as 100, 200, 400, . . . The lower ISO value represents the less sensitive
mode of the sensor. The brightness of a photo decreases with the decrease of ISO. However
using a too sensitive mode could generate some noise in the taken photo.

Illumination measure refers to the light falling on a surface [35]. This feature is
calculated as:

Im = log10(
aperture2

exposure time
) + log10(

250
ISO

) (1)

Considering EXIF values of 400 large field and 400 close-up photos (the training set
in the next LCIC experiments) coming from the Flickr.com website, it appears that the
differences of EXIF parameters between close-up and large field images are significant in
aperture, focal length, illumination measure and to a smaller extent in exposure time. On
the contrary, ISO feature is not relevant enough [36].

3.1.2. Handcrafted Features for LCIC

The main goal of this part is to build a handcrafted feature set for LCIC based on usual
features computed from image data. Firstly, a large handcrafted feature set is built from
common handcrafted features appearing in different researches [5,24,37–39]. The initial
handcrafted feature set includes 2030 features related to hue, saturation, brightness, red,
green and blue channels, sharpness, color saliency and contrast. Those features are global
features (features computed from the whole image) and local features (features computed
for different local regions). The local features are computed from ROIs, background and
regions split by symmetry rules, landscape rule, rule of thirds (see Figure 5). At the next
step, the feature reduction algorithm introduced in [36,40] is applied on 1200 large field
images and 1200 close-up images coming from the CUHKPQ dataset [25] in which a half
of them is used in the training phase (S1) and the remaining is used in the testing phase
(S2). After the most relevant features are selected, those features are analyzed to remove
overlapping features and to optimize the feature set. Twenty one features are finally
considered as the most relevant for the LCIC task. (see overview of the features in Table 1).

Table 1. Overview of the proposed handcrafted features for LCIC. R1, R2, . . . R9 are the regions split
by the rule of thirds (see the top right photo in Figure 5).

Features Formula

Sharpness features f1 : mean of gradient values in R2
f2 : mean of gradient values in R7
f3 : mean of gradient values in R9

f4 : standard deviation of gradient values in R5
f5 : gradient contrast between R1 and R7
f6 : gradient contrast between R2 and R8
f7 : gradient contrast between R3 and R9

f8 : standard deviation of gradient values in the whole image

Color features f9 : brightness contrast between R1 and R7
f10 : brightness contrast between R2 and R8
f11 : brightness contrast between R3 and R9

f12 : color contrast between R1 and R7
f13 : color contrast between R2 and R8
f14 : color contrast between R3 and R9

ROI/background features f15 : proportion of ROI pixels in R2
f16 : proportion of ROI pixels in R7
f17 : proportion of ROI pixels in R9

f18 : mean of gradient values in ROIs
f19, f20, f21 : relations between ROIs and background
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R1 R2 R3

R4 R5 R6

R7 R8 R9

Figure 5. Illustrations of region splits. First row: whole scene, regions split by landscape rule and
rule of thirds respectively. Second row: regions split by symmetry rules.

3.1.3. Learned Features for LCIC

Beside being handcrafted from images, features can also be learned by employing
deep learning [41]. VGG16 [42] is a well-known deep CNN. It includes three main parts:
convolutional layers, fully connected layers and a prediction layer. If the prediction
layer is removed, that model can be considered as a feature extractor. From images of
size 244 × 244, 4096 features are extracted by VGG16 without the last layer. Although
those features have been learned for the task of classifying objects in images, they can
be applied for different tasks [43] such as image quality assessment [44,45]. In this study,
VGG16 without the prediction layer pre-trained on the ImageNet dataset for the task of
classifying objects in images is considered to compute the learned features for LCIC on
the corresponding dataset. Instead of transferring all learned features, the most relevant
features are selected because some of them are pre-learned for a different task so they could
not be relevant for the LCIC task.

The feature reduction algorithm described in [36,40] is run on 1200 large field images
and 1200 close-up images coming from the CUHKPQ dataset to select the 925 most relevant
features (the highest classification performance is obtained with those features) among the
4096 features learned by the VGG16.

3.1.4. Experiment and Results
Dataset and Setup

LCICs are performed separately with EXIF, handcrafted and learned features. In order
to evaluate the influence of the different feature types fairly, the well known SVM classifier
is trained and tested to evaluate the classification performances obtained with each feature
set. If complex classifiers had been used, the accuracy of the classifications could be affected
not only by the input features but also by the suitability between the model structure and
input features. The experiments are performed on 1600 images (with EXIF data) including
800 large field and 800 close-up images collected and categorized from the Flickr.com
website by the authors. Half of the large field and close-up images are selected randomly
to train the classifiers while the others are used to test. Each SVM classifier is applied with
C = 0.5 and different kernels: Poly, Linear, RBF and Sigmoid to find the most appropriate
kernel. After performing all the experiments only the best results (with a Linear kernel) are
presented. The LCIC is evaluated based on Accuracy (A) depending on TP, TN, FP, FN
(true positive, true negative, false positive and false negative expressed as a number of
images), on confidence interval of accuracy and on computational costs as described in
Table 2.

The experiments have been conducted on a PC equipped with an Intel Core i7-2670QM
CPU 2.40 GHz and 11.9 GB memory to evaluate the feature computational time TF (the time
for computing features from images directly) and the classification time TC (the time
for classifying images based on computed features) and the total computational time
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(TT = TF + TC) per image. Additionally, the computational time for learned features is
often smaller if they are computed with an GPU so an GPU NVIDIA Quadro P400 is used
to compute the learned features (the computational time for handcrafted, EXIF features in
this experiment are not affected by the GPU).

Table 2. Overview of evaluation criteria for LCIC. z = 1.96 for 95% confidence interval and the
number of samples N is 800

Evaluation Criteria Formula

Accuracy A = TP+TN
TP+FP+TN+FN

Confidence interval of accuracy Ia = z×
√

(1−A)×A
N

Feature computational time TF
Classification time TC

Total computational time TT = TF + TC

Results and Discussion

Results of LCIC using EXIF features, handcrafted features and learned features are
presented in Table 3. Using a very small number of simple features (only four EXIF
features), the classification accuracy at 0.878± 0.023 is impressive. Additionally, the feature
computational time for EXIF features is very small (under 1 ms because there is only one
simple EXIF feature that needs to be computed).

Table 3. LCICs using EXIF features, handcrafted features and learned features.

LCIC Using the Four EXIF Features

A± Ia = 0.878± 0.023 Without the GPU TF = 1 ms TC = 1 ms TT = 2 ms

LCIC Using the 21 Handcrafted Features

A± Ia = 0.873± 0.023 Without the GPU TF = 30 ms TC = 1 ms TT = 31 ms

LCIC using Wang’s feature set (105 features) Zhuang’s feature set (257 features)

A± Ia = 0.774± 0.029 A± Ia = 0.854± 0.024

LCIC Using the 925 Most Relevant VGG16 Features

A± Ia = 0.989± 0.007 Without the GPU TF = 434 ms TC = 2 ms TT = 436 ms
With the GPU TF = 16 ms TC = 2 ms TT = 18 ms

LCIC Using the 21 Most Relevant VGG16 Features

A± Ia = 0.981± 0.009 Without the GPU TF = 434 ms TC = 1 ms TT = 435 ms
With the GPU TF = 16 ms TC = 1 ms TT = 17 ms

LCIC Using the Four Most Relevant VGG16 Features

A± Ia = 0.975± 0.011 Without the GPU TF = 434 ms TC = 1 ms TT = 435 ms
With the GPU TF = 16 ms TC = 1 ms TT = 17 ms

The handcrafted feature set is simple since it includes only 21 features but its clas-
sification rate is also impressive (0.873± 0.023). In order to prove the efficiency of our
handcrafted features, the classification based on those features is compared with the clas-
sifications based on other handcrafted features including Wang’s [15] and Zhuang’s [16]
features. Despite of using more features, the classifications with Wang’s (105 features) and
Zhuang’s (257 features) feature sets have lower accuracy at 0.774± 0.023 and 0.854± 0.024
respectively. Those results prove the efficiency of our handcrafted features.

Beside that, the classification with learned features has unsurprisingly the highest
overall accuracy (0.989± 0.007) but the number of features is also the biggest (925 features)
and the feature computational time is also the longest (434 ms - without the GPU) among
the studied feature sets. With the GPU, the computational time is much smaller (16 ms).
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In order to compare a litle bit more the efficiency of deep learned features with EXIF
or handcrafted features, the classifications using the top 4 and top 21 most relevant learned
features are performed. The comparisons between the LCICs using the reduced VGG16
feature sets and the LCICs using the handcrafted features and EXIF features are presented
in Table 3. It appears that the learned features are very powerful for LCIC since with
the same number of features as handcrafted features (21 features) the accuracy of the
classification based on the 21 most relevant learned features is higher than that of the
handcrafted features (0.981± 0.009 versus 0.873± 0.023). Similarly, with only four learned
features as EXIF features, the accuracy of the classification based on the four most relevant
learned features is 0.975± 0.011, a very high accuracy while the classification accuracy
with EXIF features is smaller (0.878± 0.023).

Last but not least, the feature computational time and classification time per image are
shown in Table 3. It is clear that EXIF features are the simplest ones when only one EXIF
feature (illumination measure) needs to be computed and its feature computational time is
only 1 ms. In contrast, without the GPU, the feature computational time of learned features
is over 14 times of the computational time of the handcrafted features (434 ms versus 30 ms).
Additionally, the feature computational costs for the 21, 925 most relevant learned features
or all 4096 learned features are the same because the feature extractor always computed
all 4096 features. With the GPU, the computational time of the learned features decreases
significantly to 16 ms (approximately 50% of the computational time of the handcrafted
features). Although the time of SVM classification based on the computed features is
almost the same (1 to 2 ms), the differences in the total classification time between the
different feature sets are significant. It points out that the classification based on EXIF
features is very fast (only 2 ms). The classification based on handcrafted features is slower
(30 ms) while without the GPU, the classification with learned features is very slow (434
ms) but the accuracy is not increasing in the same proportions. However, with the GPU,
the weakness of the computational time for learned features is solved.

According to the experimental results, we conclude that learned features are very
powerful for that task although they are too complex to be understood and require a strong
GPU to reduce the computational time. EXIF features are quite efficient for LCIC since it is
possible to obtain the same and quite good classification score by using four very simple
EXIF features than by using 21 complex handcrafted features. EXIF features are simple,
efficient but unfortunately they are not always available.

3.2. Region of Interest Extraction

Before studying the interest of prior ROIE for IAA, the aim of this section is to propose
a new algorithm in order to extract the most suitable ROIs for IAA. As defined in the
introduction part, in this paper ROIs are region with both high sharpness AND high
color saliency.

3.2.1. Handcrafted ROIE Method

As mentioned in the previous part, observers pay more attention on sharp and/or
contrasted color regions. That is why we propose to define an ROIE algorithm that in
the first step estimates the sharpness of all regions and in the second step computes the
color saliency levels of all regions. The estimated sharpness and color saliency levels are
combined to form the ROI map in the last step.

Sharpness Map Estimation

Normally, the in-focus regions (regions focused by photographers) are sharper than
the out of focus regions so sharpness information is the primary key to detect those regions.
In [5,46], they point out that when blurring a photo, the neighboring pixels’ values converge
to the same gray level. The gray levels of pixels in a sharp image change significantly when
the image is blurred while this change is much weaker when re-blurring a blurred image.
To extract in-focus regions, a sharpness estimation method based on the combination of
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Aydin’s clearness map [5] and multi-scale super-pixels is introduced. Aydin’s clearness
map is first calculated. Then a k-level edge-stopping pyramid [5] is built by using the
bilateral filter [47]. The first pyramid level L0 is the image in gray scale while the higher
levels are defined as:

Li = fb(Li−1, si) (2)

where fb is the bilateral filter. In this work, k is set to 10. The kernel size at the ith level is
si × si where si = round(3× 1.1i)× 2 + 1. The clearness map is then calculated as the sum
of absolute differences between subsequent pyramid levels as:

Mcl =
k

∑
i=1
|Li − Li−1| (3)

Aydin’s clearness map only gives a rough estimation of the sharpness in which
detected sharp pixels are located mainly on edges (see Figure 6a,b) while viewers often pay
attention to the whole regions containing sharp details instead of all small sharp details.
We improve the map by exploiting super-pixels. In the next step, n multi-scale super-pixel
levels are determined. At the ith level, the color image is segmented into i2 × α super-pixels
(α = 25, n = 10 in this work). The sum of clearness values scl

i,j of super-pixel Pj at the ith
level is calculated as:

scl
i,j = ∑

(x,y)∈Pj

Mcl(x, y) (4)

After normalizing the scl
i,j values to the range [0, 255], sharpness values of all pixels in

each super-pixel Pj are set to scl
i,j and the sharpness distribution map Msh

i at the ith level is
obtained (see Figure 6c,d for illustrations). The global sharpness map is then computed as:

Msh =
1
n

n

∑
i=1

Msh
i (5)

The sharpness map is then binarized by applying Otsu’s threshold [48] to extract the
in-focus regions. The in-focus map is the binarized version of the sharpness map (see
Figure 6e,f).

           (a)                      (b)                      (c)                     (d)                     (e)                      (f)

Figure 6. Sharpness estimation process. (a) original image, (b) Aydin’s clearness map, (c) sharpness
distribution at level 2, (d) sharpness distribution at level 5, (e) sharpness map, (f) in-focus map.

Color Saliency Map Estimation

Beside the sharpness factor, color contrast is another important factor attracting
viewers’ attention. Our color saliency map is based on Liu’s idea [49] and Zheng’s idea [28]
about using background and foreground priors and Perazzi’s idea [27] about using color
uniqueness. Salient regions in this work are defined as regions having colors similar to the
colors of the in-focus or central regions and different from the colors of out of focus regions
and out of center regions (regions near photo edges) because center and in-focus regions
attract more viewers’ attention than the others. Firstly, a mask is initialized based on the
in-focus regions and center region:

Mmsk = Min f ∪Mcen (6)
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where Min f is the in-focus map. Mcen is a binary image in which there is a white center
rectangular region of size 0.6w× 0.6h while the other regions are black (w and h are the
width and the height of the image). The color saliency Mcs

i of super-pixel Pi is estimated
based on all out-of-mask super-pixels and all in-mask super-pixels as:

Mcs
i =

∑Pj∈Room drgb
i,j × wp

i,j

‖ Room ‖
−

∑Pj∈Rinm
drgb

i,j × wp
i,j

‖ Rinm ‖
(7)

drgb
i,j =

√
(ri − rj)2 + (gi − gj)2 + (bi − bj)2 (8)

wp
i,j =

1
zp

i
e
−
√

(xi−xj)
2+(yi−yj)

2

2σp (9)

where Room, Rinm, ‖ Room ‖, ‖ Rinm ‖ are the out-of-mask, in-mask regions and the number
of super-pixels in those regions respectively. drgb

i,j is the color distance between the center

pixels of super-pixels Pi and Pj in the RGB color space. Gaussian weight wp
i,j is calculated

via super-pixel center positions. xi, yi, ri, gi, bi are the coordinates and red, green, blue
intensities of the center pixel in Pi. σp is the number of super-pixels in the image. The
normalization factor zp

i ensures ∑Pj∈Roo f
wp

i,j = 1.
Pixel values in Mcs are normalized to the range [0, 255] and the Otsu’s threshold

is applied on Mcs to create an update of the mask Mmsk and a new cycle starts. After
performing this process three times, the final color saliency map Mcs is obtained.

Region of Interest Map Estimation

Looking at Figure 7, it appears that sharpness is the main factor attracting viewers’
attention in the two first rows. In contrast, the dominant criterion emphasizing the ROIs
is the color saliency in the last row. For the three middle rows, both sharpness and
color saliency have significant roles in highlighting the ROIs. Obviously, the influence of
sharpness and color saliency factors in defining ROIs is not the same for all images. Thus, if
only one of them is considered, it will not be sufficient to extract right ROIs. An algorithm
combining sharpness and color saliency factors based on the spatial distribution of pixel
values to extract ROIs is presented in this part. Given a gray image (a sharpness or color
saliency map) I, the coordinates of the center point of the rectangle are first determined as:

xc =
∑w

x=1 ∑h
y=1 I(x, y)× x

∑w
x=1 ∑h

y=1 I(x, y)
(10)

yc =
∑w

x=1 ∑h
y=1 I(x, y)× y

∑w
x=1 ∑h

y=1 I(x, y)
(11)

These coordinates are then used to calculate the deviations as:

dl =
∑xc

x=1 ∑h
y=1 I(x, y)× |x− xc|

∑xc
x=1 ∑h

y=1 I(x, y)
(12)

dr =
∑w

x=xc ∑h
y=1 I(x, y)× |x− xc|

∑w
x=xc ∑h

y=1 I(x, y)
(13)

dt =
∑w

x=1 ∑
yc
y=1 I(x, y)× |y− yc|

∑w
x=1 ∑

yc
y=1 I(x, y)

(14)
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db =
∑w

x=1 ∑h
y=yc I(x, y)× |y− yc|

∑w
x=1 ∑h

y=yc I(x, y)
(15)

where dt, dr, db and dl are the top, right, bottom and left deviations respectively. The
rectangle RI representing the distribution of pixel values in the image I is illustrated by the
red rectangles in Figure 8. The coordinates of the top left and bottom right points of RI are
computed as:

xtl = xc − dl (16)

ytl = yc − dt (17)

xbr = xc + dr (18)

ybr = yc + db (19)

           (a)                    (b)                    (c)                    (d)                    (e)

Figure 7. ROI map computation process. (a) original images, (b) sharpness maps, (c) color saliency
maps, (d) ROI maps. (e) binarized ROI maps.

The distribution rectangle concept is then used to estimate the influence of sharpness
and color saliency factors in attracting viewers’ eyes. The sharpness and color saliency
weights are computed as (20) and (21) where RI is the rectangle representing the distribu-
tion of pixel values in the image I, ¬I is the video inverted image of I and ‖ R ‖ represents
the number of pixels in rectangle R.

wsh = (
‖ R¬Msh ‖

‖ RMsh ‖ + ‖ RMsh ∩ R¬Msh ‖
)2 (20)

wcs = (
‖ R¬Mcs ‖

‖ RMcs ‖ + ‖ RMcs ∩ R¬Mcs ‖ )
2 (21)
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                  (a)                                     (b)                                    (c)                              (d)                         (e)                          (f)

Figure 8. Examples of rectangles representing the distribution of pixel values. (a,d) original images,
(b,e) sharpness maps, (c,f) color saliency maps. Red rectangles represent the distributions of pixel
values in those images while blue rectangles reflect the distributions for the corresponding video
inverted images.

The values of wsh and wcs reflect the influence of sharpness and color saliency in
highlighting ROIs. The proposed ROI map is calculated as:

Mroi =
wsh ×Msh + wcs ×Mcs

wsh + wcs
(22)

The binarized version Mroi
b of the ROI map Mroi is then obtained by applying the

Otsu’s threshold to extract the ROIs. In Figure 7c,d, examples of the proposed ROI map
and the binarized ROI map are shown.

3.2.2. Deep Learning Based ROIE Method

Beside handcrafted approaches, deep learning based approaches might be a promising
solution. In this part, three typical architectures are studied to find the best one for ROIE.
The two first models are designed based on a well-known architecture with three main
components: encoding, transformation and decoding components while the third one is
designed based on a traditional architecture with convolutional blocks only. The structures
of the three models are presented in Figure 9.

In the two first models, the first component contains three blocks of convolutional
layers (see Figure 9a). In each block, a convolutional layer is connected to an instance
normalization layer and it is activated by an ReLU function. The encoding component
receives input color images of size 600× 600 and passes the output to the transformation
component. In the first model there are five residual blocks in the transformation com-
ponent. The structure of a residual block is illustrated in Figure 9b with two blocks of
convolutional layers. The transformed data is then concatenated with the input data to
create the output of the block. In the second model, the transformation component contains
10 convolutional blocks (see the structure of a convolutional block in Figure 9c). The data
transformed by the transformation component is passed through convolutional transpose
layers of the decoding component and actived by a Tanh activation function to generate
the binary ROI maps. The difference between the two first models is in the transformation
components: the first model uses residual blocks while the second one uses convolutional
blocks. On the contrary, the third model includes convolutional blocks only. There are eight
convolutional blocks in the model and each block has a convolutional layer, an instance
normalization layer and an ReLU activation layer (see Figure 9d). The numbers of kernels
in the blocks are 24, 48, 96, 192, 96, 48, 24 and 1 respectively. The input layer and the output
layer of the third model are similar to those of the two first models.
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Tanh ACTIVATION (600 x 600 x 1)
INSTANCE NORM
7 x 7 CONVTR, 1
RELU ACTIVATION
INSTANCE NORM
3 x 3 CONVTR, 24
RELU ACTIVATION
INSTANCE NORM
3 x 3 CONVTR, 48

5 RESIDUAL BLOCKS
(FOR THE 1ST MODEL)
10 CONV BLOCKS
(FOR THE 2ND MODEL)

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 96

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 48

RELU ACTIVATION
INSTANCE NORM
7 x 7 CONV, 24

RGB image (600 x 600 x 3)

Tanh ACTIVATION (600 x 600 x 1)
INSTANCE NORM
7 x 7 CONV, 1

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 24

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 48

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 96

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 192
RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 96

RELU ACTIVATION
INSTANCE NORM
3 x 3 CONV, 48

RELU ACTIVATION
INSTANCE NORM
7 x 7 CONV, 24

RGB image (600 x 600 x 3)

Output layer

Input layer

Decoding layers

Encoding layers

Transformation
blocks

3 x 3 CONV, 96

Instance NORM

ReLU ACTIVATION

Input

(a)

(b)

3 x 3 CONV, 96

Instance NORM

ReLU ACTIVATION

3 x 3 CONV, 96

Instance NORM

ReLU ACTIVATION

Input

+

(c)

Output layer

Input layer

Transforming
layers

(d)

Figure 9. Structure of the three deep models: (a) structure of the two first models containing three
main components: encoding component, transformation component and decoding component.
(b) structure of a residual block. (c) structure of a convolutional block. (d) structure of the third
model with convolutional blocks only.
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3.2.3. Experiment and Results
Dataset and Setup

1156 images (406 images from the CUHKPQ dataset [25] and 750 images from the
Flickr.com website) are selected for the experiment. Following the ROI definition proposed
in Section 2.3, each image is associated to a binary ground truth produced by the authors.
The blur regions and unsalient color regions are considered as background (black regions
in Figure 10) while sharp, high contrasted color regions are determined as ROIs (white
regions in Figure 10). The proposed ROIE methods are evaluated on the dataset and they
are compared with two methods based on sharpness information only (Aydin’s [5] and
Tang’s [25] methods) and with two methods based on color contrast information only
(Perazzi’s [27] and Zheng’s [28] methods).

In order to train and test the deep models, the dataset is divided into four parts (each
part contains 289 images). The models are trained four times. Each time, only one part
is used for the test while the others are considered for training. To increase the number
images in training sets (because training deep models requires a big number of samples),
a data augmentation process is applied. From an image, 200 augmented versions of size
600 × 600 are generated by flipping, re-scaling, padding, modifying brightness and shifting
(see Figure 10). In the training phase, the chosen optimizer is the Adam optimizer and the
loss function is the mean squared error function while the learning rate is set to 10−4.

Table 4. Evaluation criteria of ROI detection methods: Precision, Recall, F-measure and Intersection
over Union where TP, FN, FP, TN are a number of pixels. ROIP, ROIG are predicted ROIs and ROIs
according to the ground truth. BGP, BGG are predicted background and background according to
the ground truth. β = 0.3, N = 1156.

Evaluation Criteria of ROI Detection Methods

Precision Pr = TP
TP+FP IPr = z×

√
Pr×(1−Pr)

N

Recall Re = TP
TP+FN IRe = z×

√
Re×(1−Re)

N

F-measure Fβ =
(1+β2)×Pr×Re

β2×Pr+Re
IFβ

= z×
√

Fβ×(1−Fβ)
N

Intersection over Union IoU = TP
TP+FP+FN IIoU = z×

√
IoU×(1−IoU)

N

TP = ROIP ∩ ROIG FP = ROIP ∩ BGG FN = BGP ∩ ROIG TN = BGP ∩ BGG

For a given map in gray scale, pixel values range from 0 to 255, except for Tang’s ROI
maps and ROI maps generated by the deep models (they are binary maps). The simplest
way to compare those maps with the binary ground truth is to convert them into binary
levels by applying a threshold. In this work, two thresholds have been considered. The
first way is to use every threshold ranging from 0 to 255. The results are then used to form
a precision recall curve. The Area Under Curve (AUC) is considered as the evaluation
criterion. The second way is to choose a fixed threshold in which there are two options:
Otsu’s threshold selected based on the gray histogram and the adaptive threshold defined
as twice the mean of pixel values [50]. After performing the experiments, we conclude
that applying Otsu’s threshold makes better results than applying the adaptive threshold
so only results gained with Otsu’s threshold are presented in this section. The evaluation
criteria with a fixed threshold are precision, recall, F-measure and IoU that are defined in
Table 4. The range of a metric X within the 95% confidence interval [51,52] is described as
X± IX .
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Figure 10. Examples of data augmentation. The three left columns contain the augmented versions
while the last column shows the corresponding ROI ground truth.

Five comparisons have been made to evaluate the methods. Firstly, the proposed
sharpness estimation method is evaluated and compared with two methods based on
sharpness information (Aydin’s and Tang’s methods). Secondly, the comparison between
the proposed color saliency estimation method and two ROIE methods based on color
contrast information (Perazzi’s and Zheng’s color saliency maps) is performed. The third
one is to compare the proposed handcrafted ROIE method with the proposed sharpness
estimation method and with the proposed color saliency method. The next comparison is
for the three deep learning based methods to find the best model. The last comparison is
between the handcrafted approach and the deep learning based approach.

Results and Discussion

Examples of different ROI maps are shown in Figure 11. Comparing the results in
binary scale (see Figure 11b,d,f,h,j,k), the results at rows (j) and (k) representing our ROIE
methods are better since they are smoother, have more precise details and less background
noise than other results. The results of Tang’s method do not seem precise in the case of the
two first columns since their results mainly focus on few sharp details of the two close-up
images. The results for large field images seem better than those of close-up images. The
results of Aydin’s method look better than those of Tang’s method but they are still not
good enough. The results of Perazzi’s and Zheng’s methods at the two first columns of
row (e) and row (g) are better than those of Aydin’s and Tang’s methods but the results
are not really good for large field images where sharpness factor is dominant. The main
superiority of our methods is the high accuracy in both cases when photographers consider
either sharpness or color saliency to define ROIs. The evaluations for the methods are
presented in Figures 12 and 13.
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(L)

Figure 11. Examples of ROI maps. (a) Original images. (b) Tang’s [25] sharpness maps. (c,d)
Aydin’s [5] clearness maps and the binarized versions of them. (e,f) Perazzi’s [27] color saliency
maps and the binarized versions of them. (g,h) Zheng’s [28] color saliency maps and the binarized
versions of them. (i,j) Handcrafted ROI maps based on both sharpness and color information and the
binarized versions of them. (k) ROI maps generated by the first deep model. (l) ground truth.

Firstly, the comparison between our sharpness estimation method and the two ROIE
methods based on sharpness information is shown in the first row of Figure 12. Looking
at the precision recall curves, the AUC value of the proposed method is better than that
of Aydin’s method (0.976 against 0.927). The column chart shows that the highest val-
ues of precision, recall, F-measure and IoU belong to our method around 0.969± 0.010,
0.856± 0.005, 0.933± 0.014, 0.913± 0.016 respectively.
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Figure 12. Evaluations for ROI maps. First row: Evaluations for the proposed sharpness estimation
method, Aydin’s method and Tang’s method (Tang’s ROI maps are binary maps so it is not necessary
to consider their precision and recall curve). Second row: Evaluations for the proposed color
saliency estimation method, Perazzi’s method and Zheng’s method. Third row: Evaluations for our
handcrafted ROIE method, sharpness estimation method and color saliency estimation method.
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Secondly, the second row of Figure 12 shows the comparison between our color
saliency estimation method and the two ROIE methods based on color contrast information.
The charts indicate that the highest values of AUC (0.915), precision (0.935± 0.014), recall
(0.862± 0.020), F-measure (0.910± 0.016) and IoU (0.903± 0.017) are associated to our
method. The cause of the bad results of Perazzi’s method might be the differences between
their color saliency definition and our color saliency definition since Perazzi et al. mostly
focus on color contrast between all regions so regions having the most different colors are
considered as the regions with the highest color saliency levels. In Zheng’s method, they
consider initially the colors of the center regions as salient so the results of Zheng’s method
are better than those of Perazzi’s method.

The third comparison is for our sharpness maps, our color saliency maps and our
handcrafted ROI maps. Looking at the graphs in the third row of Figure 12, the results of
the proposed ROIE method are better than those of the sharpness estimation method and
the color saliency estimation method with the highest AUC (0.986), precision (0.979± 0.008),
recall (0.933± 0.014) and F-measure (0.966± 0.010) and IoU (0.958± 0.012) values. It proves
the efficiency of combining sharpness and color information to extract ROIs.

The comparison between the three proposed deep models is presented on the right
side of Figure 13. Generally, all the three models have good performances. The first model
(with encoding, transformation and decoding components using residual blocks) has the
highest performance around 0.966± 0.010, 0.974± 0.009, 0.966± 0.011 and 0.973± 0.009
for precision, recall, F-measure and IoU values respectively. It reflects that the architecture
with the three main components is the best one and residual blocks seem better than
convolutional blocks in this case.
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Figure 13. Evaluations for our handcrafted ROIE method (on the left side) and our deep models (on
the right side).

Comparing the handcrafted ROIE method and the deep learning based method, the
precision and F-measure values of the two methods are almost the same but the deep
model has higher recall values (0.974± 0.010) and a better balance between precision, recall
and F-measure than those of the handcrafted ROIE method. Generally, the two proposed
methods have impressive results and the results of the deep learning based method are
slightly better than those of the handcrafted method (IoU values: 0.973± 0.009 versus
0.958± 0.012).

In this part, we point out that sharpness only or color saliency only are not enough to
precisely define ROIs (regions attracting viewers’ eyes) while the combination of the two
factors improves the performances. This ROIE task has been studied with both handcrafted
and deep learning based approaches. They have been tested and compared with four
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other ROIE methods on a dataset containing 1156 images with the ROI ground truth. The
gained results are quite good for both proposed methods but the results of deep learning
based method are slightly better so the deep learning based ROIE method is going to be
considered in the next sections. ROIE is a preparation step before computing ROI features
and background features from the corresponding regions. The influence of ROI features
and background features in IAA is going to be estimated in the next sections.

3.3. Conclusions

ROIE and LCIC are preliminary steps before performing IAA. Firstly, starting with
the results of LCIC, IAA based on the classification is studied and it is then compared with
IAA without image classification to evaluate the influence of prior image classification in
IAA. Secondly, the roles of global features (extracted from the whole image without ROIE)
and local features (ROI and background features computed from ROIE) in IAA for large
field images only and IAA for close-up images only are studied to clarify the role of prior
ROIE in IAA.

4. Feature Definition

Features in this section are defined for the purpose of evaluating the influence of prior
ROIE and LCIC in IAA so three feature sets computed on the whole image, ROIs and
background are built for General IAA (GIAA: IAA for all kind of images), Large field IAA
(LIAA: IAA for large field images only) and Close-up IAA (CIAA: IAA for close-up images
only). Additionally, rules of photographic art are the main inspirations for designing
aesthetic features either on the whole images or on local regions. However, aesthetic is an
abstract concept depending on individual feelings and subjective opinions so it is not easy
to describe, explain or modelize all aesthetic aspects and aesthetic characteristics. Learned
features could be a good solution for this problem. Therefore, both handcrafted and deep
learning based feature approaches are considered in this study.

4.1. Handcrafted Feature Definition

Starting with a large handcrafted feature set built from common handcrafted features
(computed from the whole image, ROIs and background based on hue, saturation, bright-
ness, red, green and blue channels, sharpness, color saliency and contrast information)
appearing in different researches [5,24,37–39], the feature selection process presented in
Section 3.1.2 is applied with 18,048 images coming from various image categories, 800 large
field images and 800 close-up images to build three aesthetic feature sets for GIAA, LIAA
and CIAA respectively. Feature vector Fa

h contains the 24 most relevant features for GIAA
while two feature vectors: Fl

h containing the 21 most relevant features and Fc
h containing

the 23 most relevant features are considered for LIAA and CIAA respectively. The details
of the three feature sets are presented in Tables 5–7.
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Table 5. Overview of the proposed handcrafted features Fa
h for GIAA.

Features Formula

Global features f1: mean of gradient values
f2: mean of brightness values

f3: standard deviation of brightness values
f4: number of main brightness bins (brightness

range is split into 64 bins)
f5: mean of saturation values

f6: standard deviation of saturation values
f7: kurtosis of saturation values

f8: standard deviation of hue values
f9: number of main hue bins (hue range is

split into 64 bins)
f10: number of main colors

f11 =
√

σ2
Re + σ2

Gr + σ2
Bl

σRe, σGr and σBl are standard deviation of red, green
and blue values

f12, f13: coordinate of the center point determined
by gradient values

f14, f15: coordinate of the center point determined
by saturation values

f16, f17: coordinate of the center point determined
by brightness values

ROI and background features f18: number of main hue bins of ROIs
f19: mean of gradient values of ROIs

f20: brightness contrast between ROIs and background
f21: mean of gradient values of background

f22: mean of brightness values of background
f23: number of main saturation bins of background

f24: number of main hue bins of background

Table 6. Overview of the proposed handcrafted features Fl
h for LIAA.

Features Formula

Global features f1: mean of gradient values
f2: standard deviation of gradient values

f3: mean of brightness values
f4: standard deviation of brightness values

f5: mean of saturation values
f6: standard deviation of saturation values

f7: colorfulness
f8: min distance to intersection points (based on the

rule of thirds) determined by sharpness values
f9: min distance to intersection points (based on the
rule of thirds) determined by color saliency values

f10: min distance to intersection points (based on the
rule of thirds) determined by brightness values

f11 = min( f8, f9, f10)

ROI and background features f12: mean of gradient values of ROIs
f13: mean of color saliency values of ROIs

f14: mean of saturation values of ROIs
f15: mean of brightness values of ROIs

f16: colorfulness of ROIs
f17: sharpness contrast between ROIs and background

f18: color contrast between ROIs and background
f19: brightness contrast between ROIs and background
f20: saturation contrast between ROIs and background

f21 = max( f18, f19, f20)



J. Imaging 2021, 7, 3 23 of 33

Table 7. Overview of the proposed handcrafted features Fc
h for CIAA.

Features Formula

Global features f1: colorfulness
f2: min distance to intersection points (based on the

rule of thirds) determined by sharpness values
f3: min distance to intersection points (based on the
rule of thirds) determined by color saliency values
f4: min distance to intersection points (based on the

rule of thirds) determined by brightness values
f5 = min( f2, f3, f4)

f6: distribution of sharpness values
f7: distribution of color saliency values

ROI and background features f8: mean of gradient values of ROIs
f9: standard deviation of gradient values of ROIs

f10: mean of color saliency values of ROIs
f11: standard deviation of color saliency values of ROIs

f12: mean of saturation values of ROIs
f13: standard deviation of saturation values of ROIs

f14: mean of brightness values of ROIs
f15: standard deviation of brightness values of ROIs

f16: colorfulness of ROIs
f17: mean of gradient values of background

f18: colorfulness of background
f19: sharpness contrast between ROIs and background

f20: color contrast between ROIs and background
f21: brightness contrast between ROIs and background
f22: saturation contrast between ROIs and background

f23 = max( f21, f22, f23)

4.2. Learned Feature Definition

Even though the most relevant features are selected from many handcrafted features,
it is possible that some aesthetic aspects have not been considered so the idea here is to use
deep learning based approach to tackle the problem.

4.2.1. Learned Features for GIAA

Three deep CNNs are used to learn aesthetic features from the whole image, ROIs
and background. A typical CNN architecture with an input layer, an output layer and five
convolutional blocks (see the general architecture of the three CNNs in Figure 14) is chosen.
Each convolutional block has two convolutional layers and a pooling layer. The numbers of
kernels in those blocks are 64× 2, 128× 2, 256× 2, 512× 2, 1024× 2 respectively (there are
two convolutional layers in each block). In the four first blocks, max pooling layers are used
while a global average pooling layer is used in the last block and it is connected to a batch
normalization layer before passing data to the output layer. The output layer contains two
output neurons corresponding to the two classes: high aesthetic image and low aesthetic
image while the input layer receives color images of size 448 × 448 (448× 448× 3). From
an input image, two transformed versions are generated (see Figure 15). In the first one,
values of all pixels belonging to the background are set to 0 while all values of pixels in the
ROIs are kept the same as the corresponding pixels in the input image (see Figure 15c, this
is for ROI feature learning). In contrast, all pixel values of the ROIs in the second version
are set to 0 while all background pixel values are kept the same as the corresponding pixels
of the input image (see Figure 15d, this is for the background feature learning). The first
CNN considers the original image as the input of the model to learn aesthetic features from
the whole image while the second and the third models consider the first and the second
transformed versions as the input to learn aesthetic features from ROIs and background
respectively.
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Figure 14. General structure of the models learning aesthetic features from the whole image, ROIs
and background.

               (a)                              (b)                              (c)                               (d)

Figure 15. Examples of the two generated versions based on ROIE. (a) The original image. (b) The
ROI map. (c) The first version. (d) The second version.

Those deep CNNs are trained on 9024 high aesthetic images and 17,666 low aesthetic
images coming from the CUHKPQ dataset [25]. Those models require a very big number
of samples so a data augmentation method is applied. Similarly to the data augmentation
in Section 3.2.3, from the original version of any low aesthetic image, 100 transformed
versions of size 448× 448 (this size is not too small to affect image aesthetic so the aesthetic
labels of the transformed versions are kept the same as those of the original versions) are
generated by re-scaling, padding, cropping and shifting while 200 transformed versions of
size 448× 448 are generated from the original version of any high aesthetic image by re-
scaling, padding, cropping, shifting and flipping (flipped versions are added to balance the
number of images in the two classes). Thus, the numbers of high and low aesthetic image
in the training set are 1,804,800 (9024× 2× 100) and 1,766,600 (17, 666× 100) respectively
(the labels of transformed versions are set the same as the label of the original version). If
the last layer of each model is removed, the three models become three feature extractors
computing 1024 aesthetic features learned from the whole image Fg

l , 1024 aesthetic features
learned from ROIs Fr

l and 1024 aesthetic features learned from background Fb
l respectively.

In order to compare with the handcrafted feature set Fa
h , the 24 (the same number as

the number of handcrafted features for GIAA) most relevant features (Fa
l ) are selected for

GIAA based on feature relevance computed by the Relief method.
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4.2.2. Learned Features for LIAA and CIAA

In general, learning features directly from images often requires many samples. Al-
though there are some datasets with aesthetic labels for all kinds of images, an aesthetic
dataset for only large field images and close-up images is not available so we do not have
enough data to learn aesthetic features directly. Transfer learning could be a good choice in
this case. Starting with the aesthetic features Fa∗

l = Fg
l ∪ Fr

l ∪ Fb
l learned in the previous

part, there are 3072 aesthetic features including 1024 global features (Fg
l : features learned

from the whole image), 1024 ROI features (Fr
l : features learned from the ROIs) and 1024

background features (Fb
l : features learned from the background). Those features are learned

to perform GIAA for all kinds of images and we want to transfer them to focus on large
field images only and close-up images only. The main idea in this case is presented in
Figure 16, the deep models without the last layer are considered as feature extractors to
compute global features, ROI features and background features. Those computed features
of large field images and close-up images only are considered as input to train new IAA
models for large field images and close-up images respectively. There is a feature selection
step in the process because there are 3072 learned features while the number of large field
and close-up images used in this work is 2400 (1200 large field images and 1200 close-up
images). It seems that the higher number of features could lead to an overfitting so it is
necessary to reduce the number of learned features. The 21 most relevant features (Fl

l )
are selected from the 3072 learned aesthetic features to perform the LIAA task (the same
number as the number of handcrafted features for LIAA) and the 23 most relevant features
(Fc

l ) are selected for the CIAA task (the same number as the number of handcrafted features
for CIAA) based on feature relevance computed by using the Relief method.

Background
feature
extractor

SVM classifier

Feature selection

Only the SVM classifier is trained while other
components are freezed

Global
feature
extractor

ROI feature
extractor

Figure 16. Models using transferred features for LIAA, CIAA and GIAA.

5. Image Aesthetic Assessment: Prior Image Classification or not Prior Image
Classification?

The main question of this section are “Is it worthy to proceed to LCIC before IAA?”.
In order to answer the question, IAA based on the results of the prior LCIC is compared
with IAA without prior LCIC. In this section, we use two approaches: handcrafted features
and learned features to answer also the question “How efficient handcrafted features and
learned features are in IAA?”.

5.1. Dataset and Setup

A part of the CUHKPQ dataset is extracted to form an aesthetic dataset with large field
and close-up images only. The CUHKPQ dataset is collected mainly from DPChallenge.com
website and from some other sources. All the images are labelled as high or low aesthetic.
A photo is indicated as high/low aesthetic if there are at least eight of the ten viewers
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having the same opinion about the image aesthetic [25]. Viewers’ aesthetic perception does
not depend on distortions, artifacts or degradation, . . . but it is affected by perspective
of visual aesthetic, photography technique: simplicity, realism, composition, lighting,
color arrangement, camera settings, topic emphasis, . . . There are seven categories of the
CUHKPQ dataset including animal, plant, static, architecture, landscape, human and
night. Large field images are selected from the architecture and landscape categories while
close-up images are extracted from the animal, plant, static and human categories (see
examples in Figure 17). The extracted part contains 1200 large field images and 1200
close-up images in which 50% of the images in each category are labelled as high aesthetic
and the others are labelled as low aesthetic by humans. In order to train an IAA model
assessing image aesthetic automatically, 800 large field images and 800 close-up images are
selected for training and the remains (400 large field images and 400 close-up images) are
used for testing.

(a)

(b)

(c)

(d)

Figure 17. Examples of high and low aesthetic images: (a) high aesthetic large field images, (b) low
aesthetic large field images, (c) high aesthetic close-up images, (d) low aesthetic close-up images.

There are two main experiments in this section. The first one is to perform IAA
without prior image classification using the feature vectors Fa

h and Fa
l (for all kinds of

images). The second experiment is to perform the IAA with prior LCIC using the feature
vectors Fl

h, Fl
l (features for large field images only) for LIAA and using feature vectors

Fc
h , Fc

l (features for close-up images only) for CIAA. Those experiments are performed to
answer two questions: “Is it worthy to perform prior image classification for IAA?” and
“How efficient handcrafted features and learned features are in IAA?”. Additionally, IAA
with and without LCIC are performed using two handcrafted image aesthetic feature sets:
Suran’s [10] and Aydin’s [5] sets (Fa1

h and Fa2
h respectively).

An SVM classifier is trained based on those feature vectors to indicate an image as
high or low aesthetic. The parameters for the SVM are set as C = 0.5, γ = auto. Different
kernels including Poly, Linear, RBF and Sigmoid are tested and only the best results (with
an RBF kernel) are presented.

The evaluation criteria of the experiments are presented in Table 8. Accuracy (A), a
popular evaluation criterion for classification tasks is the main criterion for the evaluation
while confidence interval (Ia), the lower bound of the accuracy (Al) and the upper bound of
the accuracy (Au) reflect the range of the accuracy. The experiments have been conducted
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on a PC equipped with an Intel(R) Xeon(R) W-2104 CPU 3.20 GHz, 31.7 GB memory and
GPU NVIDIA Quadro P400.

Table 8. Overview of evaluation criteria for IAA. z = 1.96 for 95% confidence interval and the
number of samples N is 800, 400 and 400 for GIAA, LIAA and CIAA respectively. TP, FP, TN, FN are
a number of images.

Evaluation Criteria Formula

Accuracy A =
TP + TN

TP + FP + TN + FN
Confidence interval Ia = z×

√
(1− A)× A

N
Lower accuracy Al = A− Ia
Upper accuracy Au = A + Ia

5.2. Results and Discussion

The results of IAA with and without image classification are presented in Table 9.
Either with handcrafted features or learned features, the performances of IAA with prior
image classification are better than the results of IAA without prior image classification
(0.940± 0.023, 0.925± 0.026 for LIAA, CIAA versus 0.921± 0.018 for GIAA with learned
features; 0.913± 0.028, 0.843± 0.036 for LIAA, CIAA versus 0.785± 0.028 for GIAA with
our handcrafted features; 0.880 ± 0.031, 0.860 ± 0.034 for LIAA, CIAA versus 0.845 ±
0.025 for GIAA with Suran’s features; 0.878± 0.032, 0.833± 0.037 for LIAA, CIAA versus
0.800± 0.028 for GIAA with Aydin’s features). It appears that performing LIAA and CIAA
separately using different aesthetic features could enhance the IAA performance (not only
our IAA methods but also other IAA methods). As guessed, since large field images and
close-up images are two image categories having opposite photographic rules such as
the composition, depth of field, focus, . . . so the criteria for LIAA and CIAA are not the
same. Considering the relations between the two feature sets Fl

l (features for LIAA) and Fc
l

(features for CIAA), they are really different since there are only three overlapping features
between the two feature sets. Thus, the aesthetic quality of the two image categories should
be assessed separately using different criteria. As a result, it is worthy to proceed to LCIC
before IAA whatever the used method for IAA.

Moving to the second question “How efficient handcrafted features and learned fea-
tures are in IAA?”, in both cases (GIAA and LIAA/CIAA), learned features are better than
handcrafted features. More specifically, in the case of GIAA, the performance with learned
features is 0.921 ± 0.018 while the results with handcrafted features are 0.785 ± 0.028,
0.845± 0.025 and 0.800± 0.028 for our features, Suran’s features and Aydin’s features
respectively. Similarly, in the case of IAA for a particular image category (large field
images only or close-up images only), the results of LIAA and CIAA with learned fea-
tures and our handcrafted features, Suran’s features, Aydin’s features are 0.940± 0.023
versus 0.913± 0.028, 0.880± 0.031, 0.878± 0.032 and 0.925± 0.026 versus 0.843± 0.036,
0.860± 0.034, 0.833± 0.037 respectively. As mentioned in the previous part, image aes-
thetic is an abstract concept depending on human perception and individual feeling so
understanding and defining all aesthetic aspects are not easy. However, handcrafted aes-
thetic features are designed based on aware aesthetic aspects so it is impossible to design
handcrafted features representing unconscious aesthetic aspects. On the contrary, deep
models can learn complex and non visible aesthetic features so we can find some similari-
ties between image aesthetic notion and learned features. It could be the reason why the
results with learned features are better than the ones with handcrafted features. According
to those results, the final conclusion is achieved: learned features are very efficient and
they are better than handcrafted features for IAA. The following section focuses on learned
features only because of their higher performances.
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Table 9. Evaluations of IAA with and without image classification using handcrafted and learned fea-
tures.

Feature Vector A Ia Al Au

GIAA—IAA without image classification

Fa
h 0.785 0.028 0.757 0.813

Fa1
h 0.845 0.025 0.820 0.870

Fa2
h 0.800 0.028 0.772 0.828

Fa
l 0.921 0.018 0.903 0.939

LIAA—IAA for large field images only

Fl
h 0.913 0.028 0.885 0.941

Fa1
h 0.880 0.031 0.849 0.911

Fa2
h 0.878 0.032 0.846 0.910

Fl
l 0.940 0.023 0.917 0.963

CIAA—IAA for close-up images only

Fc
h 0.843 0.036 0.807 0.879

Fa1
h 0.860 0.034 0.816 0.894

Fa2
h 0.833 0.037 0.796 0.870

Fc
l 0.925 0.026 0.899 0.951

6. Image Aesthetic Assessment: Prior Region Segmentation or not Prior Region
Segmentation?

The main goal of this section is to evaluate the role of ROIE in IAA. The role of ROIs is
not always the same for each image so the influence of ROIE in IAA for a particular image
category (large field images only or close-up images only) is going to be considered. The
two learned feature sets Fl

l (for LIAA) and Fc
l (for CIAA) presented in the previous section

are analyzed to estimate the influence of ROIE in IAA.

6.1. Dataset and Setup

There are two main tasks in this part. Firstly, the distribution of ROI and background
features (RB features) in each feature set (Fl

l and Fc
l ) is analyzed to have an overall view

about the role of ROIE in LIAA and CIAA. Secondly, IAA using RB features is compared
with IAA using global features and with IAA using both global and RB features to estimate
how ROIE affects IAA.

The experiments of LIAA and CIAA using the feature sets Fl
l and Fc

l respectively are
performed on 1200 large field images and 1200 close-up images (the same as the dataset of
the experiments of LIAA and CIAA in the previous section) in which 800 large field images
and 800 close-up images (50% of the images in each category are labelled as high aesthetic
and the others are labelled as low aesthetic) are used for training while the remains are
used for testing.

As done before, the parameters of the classifiers are set as C = 0.5, γ = auto and
different kernels are tested and only the best results are presented. The main evaluation
criterion is the accuracy. The range of the accuracy is presented by the confidence interval,
the lower bound of the accuracy and the upper bound of the accuracy.

6.2. Results and Discussion

Firstly, Table 10 shows the number of global features and RB features (ROI features
and background features) in each feature set (Fl

l and Fc
l ). It appears that the role of ROIE

in IAA is not the same for all image categories. In the case of close-up images, ROIE has
the most significant role in IAA since the number of RB features in Fc

l is the highest (five
features). In contrast, there is no RB feature in the feature set Fl

l for LIAA. The reason
probably is that the content of a large field photo is a large scene (as the name of the
category) so viewers often pay attention to the whole large scene including both ROIs and
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background. Therefore, the influence of ROIE in LIAA is not significant so LIAA is skipped
in the next analysis.

Table 10. The number of global features, RB features in the two feature sets Fl
l and Fc

l for LIAA and
CIAA respectively.

Feature Set The Number of

Global Features RB Features

Fl
l 21 0

Fc
l 18 5

Secondly, the evaluations of global features (Fc
g : global features in Fc

l ) and RB features
(Fc

rb: ROI and background features in Fc
l ) for CIAA are presented in Table 11. The results

are quite interesting since with only five RB features, the obtained classification accuracy is
very impressive (0.868± 0.033). The combination of five RB features and 18 global features
helps increasing the IAA performance from 0.908± 0.028 to 0.925± 0.026.

Table 11. Evaluations of CIAA using global features, RB features and both global features and RB
features.

Feature Vector A Ia Al Au

CIAA—IAA for close-up images only

Fc
l 0.925 0.026 0.899 0.951

Fc
g 0.908 0.028 0.880 0.936

Fc
rb 0.868 0.033 0.835 0.901

Two additional image aesthetic feature sets are considered to validate the role of ROIE
in IAA. The first one is Suran’s feature set (Fa1

h ) [10] containing 10 global features (Fa1
g )

and 28 RB features (Fa1
rb ) in which Suran’s ROIs are defined as the three largest segments

of a given image. The second one is Aydin’s feature set (Fa2
h ) [5] including four global

features (Fa2
g ) and one RB feature (Fa2

rb ) in which Aydin’s ROIs are defined as the sharp
and clear regions of a given photo. The results of the LIAA and CIAA based on those
feature sets are presented in Table 12. Considering results with Aydin’s features where
ROIs are defined as sharp and clear regions, it is obvious that the LIAA performance
with the RB feature is very bad at 0.540± 0.049 while the LIAA performance with global
features is even better than that with both global and RB features (0.888± 0.031 versus
0.878± 0.032). It means that RB features has an insignificant role in LIAA. In contrast,
the performance of CIAA with only one RB feature is much better than that with four
global features (0.818± 0.038 versus 0.740± 0.043) and the combination of Fa2

g and Fa2
rb

helps improving the CIAA performance to 0.833± 0.037. Those results demonstrate a
significant role of RB features and ROIE in CIAA. Considering results with Suran’s features,
it appears that RB features do not help improving LIAA and CIAA performances since the
results with the global features only are approximately the results with both global and RB
features (0.875± 0.032 versus 0.888± 0.031 for LIAA and 0.853± 0.035 versus 0.860± 0.034
for CIAA). It could be explained that Suran’s ROI definition is too simple (top three largest
segments) so extracted ROIs are not precise enough to improve the performance of IAA.
Thus, it is obvious that extracting precise ROIs has an important role in improving IAA
performance.
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Table 12. Evaluations of LIAA, CIAA using Suran’s and Aydin’s global features, RB features and
both global features and RB features.

Feature Vector A Ia Al Au

LIAA using Suran’s features

Fa1
h 0.880 0.031 0.849 0.911

Fa1
g 0.875 0.032 0.843 0.907

Fa1
rb 0.848 0.035 0.813 0.883

CIAA using Suran’s features

Fa1
h 0.860 0.034 0.826 0.894

Fa1
g 0.853 0.035 0.818 0.888

Fa1
rb 0.728 0.044 0.684 0.772

LIAA using Aydin’s features

Fa2
h 0.878 0.032 0.846 0.910

Fa2
g 0.888 0.031 0.857 0.919

Fa2
rb 0.540 0.049 0.491 0.589

CIAA using Aydin’s features

Fa2
h 0.833 0.037 0.796 0.870

Fa2
g 0.740 0.043 0.697 0.783

Fa2
rb 0.818 0.038 0.780 0.856

The background of close-up images is often blur to highlight the main close-up object
regions (sharp regions with high contrasted colors - ROIs) so viewers often pay more
attention on ROIs. It explains why ROIs have significant influence on aesthetic quality of
close-up images. According to those results, it appears that it is worthy to extract ROIs
before assessing aesthetic quality of close-up images.

In general, the role of ROIE in IAA is various since the influence of ROIE in IAA for
large field images is insignificant while ROIE helps improving the IAA for close-up images.
The answer to the question “IAA: prior region segmentation or not?” might depend on the
considered situation.

7. Conclusions

In this paper, the main works were to study IAA with image classification or region
segmentation. Firstly, the experimental results prove that classifying images before per-
forming the IAA can enhance the IAA performance. Secondly, performing prior ROIE
before IAA or not depends on image type. Based on the obtained results, we propose
an IAA model based on LCIC and ROIE. Figure 18 presents the idea of the proposed
model. Images are first classified as large field images and close-up images. Then, large
field images are assessed as high or low aesthetic quality by a classifier based on global
features only. On the contrary, ROIs and background are extracted from close-up images to
compute ROI features and background features. Those features are then combined with
global features to make the distinction between high and low aesthetic close-up images.
Figure 18 also shows the performances of the model compared with IAA without image
classification and region segmentation. Firstly, it appears that image classification helps
improving the IAA performances by assessing aesthetic quality of large field images and
close-up images separately. Secondly region segmentation helps for CIAA especially in the
case of handcrafted features. Both handcrafted features and learned features have been
considered in this study and unsurprisingly learned features are more efficient. Besides,
two pre-processing phases for IAA: ROIE and LCIC have been studied. For ROIE, the
combination of sharpness and color factors makes a more precise definition of ROIs. Both
the handcrafted and deep learning based methods are good but the results with the deep
learning based method is slightly better. For LCIC, EXIF features are interesting because of
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their simplicity and their efficiency but learned features are the best choice for LCIC with
the highest performance and the acceptable computational time.

Results with learned features

CIAA
Accuracy

0.770 ± 0.041
0.908 ± 0.028

Global
features

Accuracy
0.764 ± 0.029
0.914 ± 0.019

ROIs
Images Image

classification

Large field
images

Close-up
images

Region
segmentation

Background

Global
features

Global
features

ROI
features

Background
features

Accuracy
0.905 ± 0.029
0.940 ± 0.023

Accuracy
0.843 ± 0.036
0.925 ± 0.026

LIAA

CIAA

GIAA

Results with handcrafted features

Figure 18. Proposed algorithm for IAA.
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