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Abstract: Face recognition with wearable items has been a challenging task in computer vision and
involves the problem of identifying humans wearing a face mask. Masked face analysis via multi-task
learning could effectively improve performance in many fields of face analysis. In this paper, we
propose a unified framework for predicting the age, gender, and emotions of people wearing face
masks. We first construct FGNET-MASK, a masked face dataset for the problem. Then, we propose
a multi-task deep learning model to tackle the problem. In particular, the multi-task deep learning
model takes the data as inputs and shares their weight to yield predictions of age, expression, and
gender for the masked face. Through extensive experiments, the proposed framework has been
found to provide a better performance than other existing methods.

Keywords: multi-task learning; masked face; age; gender; expression; face detection

1. Introduction

Face recognition has been one of the active research problems studied in computer
vision for decades due to its many practical applications, for instance, in the automotive
industry, security, retail, beautification, and social networks [1–5]. So-called facial expres-
sion recognition systems are computer programs which aim to automatically translate and
understand facial actions from visual information. The processing of facial expressions is
often confused with emotional interpretation in the field of machine vision. Due to the high
demand for facial expression recognition systems, there have been many developments in
this field. Due to the COVID-19 pandemic, which has caused many people to wear face
masks to prevent infection, it has become urgent to meet the challenge of analyzing faces
wearing masks. There are few methods that have been introduced to create a face mask
dataset [6], detect the face [7], recognize facial identities [8,9], enable multitask learning
[10–12], and recognize facial features [13]. The face detection systems have been developing
over the years but due to COVID-19 everything has come to a hold [14], as the wearing of
masks has meant that earlier methods have struggled to analyze human faces. The idea
proposed here will overcome this problem, the study assisting not only in predicting the
age of a person wearing a face mask [1,15,16] but also in predicting gender [2,17,18] and
mood (expression) [19,20]. Moreover, we will also release our masked face dataset upon
publication. Multitask learning with different backbones gave better results for our created
dataset than other methods. The input and the output of the method are shown in Figure 1.

The main contributions of this paper are three-fold. First, we introduce the simple yet
effective mask synthesis method. Second, we build the dataset of masked faces with three
separate modalities (i.e., age, gender, and expression). Third, we propose the multi-task
deep learning framework to tackle the problem of face recognition. Finally, we conduct
experiments on the multitask learning model and compare it with the single models [12,21].
To make this possible, we need to have a good dataset with appropriate labels as an input,
which is not available in the current market, so we have introduced the face mask dataset.
The dataset of face with labelled ages is derived from FG-NET [16]. After rendering
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the faux mask on the faces, we manually added labels of gender and expression [6]. To
this end, landmark points on the face were generated using the generated landmark
points extracted from a landmark point detector [22]. Following the dataset collection,
we evaluated different separate models for each label (age, gender, and expression), such
as the Local Binary Pattern (LBP) [23], Eigenfaces with Support Vector Machine (SVM)
classifiers [17,18,20], deep learning models with two backbones—traditional Convolutional
Neural Networks (CNN) [21] and Residual Neural Network (ResNet)—and compared the
performance. Finally, multitask deep learning [10–12] was evaluated, and was found to
outperform single task learning by reducing the effort of constructing different models for
each task and yielding more accurate results.
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The rest of the paper is organized as follows. The related works are summarized
in Section 2. The dataset and the computational framework are introduced in Section 3.
Section 4 presents the experimental results. Finally, Section 5 concludes the paper and
paves the way for future work.

2. Related Work

This section explores current facial datasets. Then, we go through the early studies on
facial recognition [24,25], used for feature classification, as well as the various techniques
for identifying the face. Finally, we discuss mask face analysis briefly in order to analyze
existing work on facial identification with various backbones.

2.1. Face Datasets

Many previous research studies, such as FG-NET [26], LFW (Labelled Faces in the
Wild) [27], and Yamaha [28], among others, have developed databases for facial recogni-
tion [8,9] that are being used in a variety of research projects. The Yamaha dataset [28] only
includes Asian faces with no annotation, the large-scale LFW dataset [27] lacks annotation,
and the FG-NET dataset [26] contains 926 images including human age annotation. As a
result, we are using the FG-NET dataset for our system.

There have been several previous studies that have generated datasets and conducted
various tasks using them. Wang et al. [6] proposed three separate forms of datasets to recognize
individuals wearing masks, including the Masked Face Detection Dataset (MFDD), the Real-
world Masked Face Recognition Dataset (RMFR), and the Simulated Masked Face Recognition
Dataset (SMFR). Similarly, many approaches have used datasets and incorporated them into
their frameworks, but none of them met our requirements. Consequently, in our scheme, we
use FG-NET [26] as the base and further annotate gender and expression and apply masks to
the photos of faces to construct our dataset.

2.2. Face Recognition

For face recognition, the crucial step is to extract facial features known as “signatures”.
There are several methods for extracting the shape of the lips, eyes, or nose to classify the
face based on its scale and distance. Some techniques that are widely used to extract these
facial features, such as the Histograms Oriented Gradient (HOG) [29,30] and Eigenfaces,
have shown good performance in terms of system speed and accuracy. Since the Eigenfaces
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method is primarily a dimension reduction method, a system can represent a large number
of subjects with a small amount of data. There are other techniques available, such as
Independent Component Analysis (ICA), Scale-Invariant Feature Transform (SIFT) [31],
the Gabor filter, Local Phase Quantization (LPQ), Haar, and the Local Binary Pattern
(LBP) [32,33]. Here, the LBP is a basic but effective textural feature that marks pixels in an
image by thresholding each pixel’s neighborhood and treating the result as a binary number.
Principal Component Analysis (PCA) [34,35], which is used in multiple applications and
has a variety of outcomes, was implemented into our dataset to generate the predicted
labels. We can derive a wide variety of features from images using CNNs. This feature-
extraction concept can also be applied to face recognition. For example, in a binary
classification, where two images of the same person are passed in, the network should
return identical outputs (i.e., closer numbers) for both images; while images of two different
people are passed in, the network should return somewhat different outputs for both
images. The CNN is used to extract the most important data characteristics of the faces,
and then the k-nearest neighbor (K-NN) is utilized as a classifier. As the predictive utility
of a strong instance value, the K-NN algorithm employs neighborhood classification. An
instance-based learning with K-NN [36] is widely used in many applications. In [5], Adjabi
et al. reviewed facial recognition in both 2D and 3D images. Ulrich et al. [37] analyzed
the use of RGB-D images for supporting different facial usage scenarios. Bock et al. [38]
explored the use of low-cost 3D cameras in security. Likewise, Ruiqin et al. [39] introduced
a face recognition access entrance guard system. Dagnes et al. [40] investigated face
recognition with eye and mouth occlusions in 3D geometry.

There are few methods that have been introduced for emotion recognition [19,20],
gender recognition [2,17,18], and age prediction [1,15,16], performing separate tasks for
each. There are many methods implementing multiple tasks with separate models, which
is not always feasible. As an effort of incorporating multi-task learning, Vandenhende
et al. [12] review papers on multitasking and variants such as hard parameter sharing,
soft parameter sharing, Encoder-focused models and Decoder-focused models. In our
framework we are focusing on hard parameter sharing and sharing data on age, gender,
and expression in such a way.

2.3. Masked Face Analysis

Many prior works have focused on facial recognition in cases of occlusion [41,42]. The
work has been conducted in a number of ways, including identification of the face in the
wild, twin recognition [43], occluded face detection [41,42], detecting the face between the
mask and the actual face, and the use of Generative Adversarial Networks (GANs) for face
modulation and detection. There are also a few studies of detecting faces with masks.

To detect masked faces in the wild, Ge et al. [9] created a dataset dubbed MAFA. Then,
they proposed Locally Linear Embedding CNN (LLE-CNN) method with three modules.
The proposal module first combines two pre-trained CNNs to extract candidate facial
regions from the input image. Then, the embedding module turns feature descriptors
into vectors of weights with respect to the components in pre-trained dictionaries of repre-
sentative normal faces and non-faces by using locally linear embedding. The verification
module takes the weight vectors as input and identifies real facial regions, as well as their
accurate positions, by jointly performing the classification and regression tasks within
unified CNNs. There also exist research efforts [44] to detect the identity of a person with a
face mask or without a face mask using OpenCV and the Haar Cascade.

We note that the single-model based research on human face recognition has recently
achieved state-of-the-art results. However, there are few examples of research into facial
identification with masks achieving high accuracy results when it comes to recognizing
faces [36]. In this work, rather than using a single model for each task, we aim to simulta-
neously train multi-task for predicting age, gender, and expression.
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3. Data Collection and the Proposed Framework

In this section, we introduce the FGNET-MASK dataset and the multi-task deep
learning model. The two different methods, namely, single and multi-task learning, are
shown in Figure 2.
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3.1. FGNET-MASK Dataset Collection

The most important step in the framework is the creation of the dataset. It is extremely
difficult to assemble a dataset of individuals of various ages, genders, and expressions
wearing masks, so we rendered the mask and labelled the images. The construction of the
FGNET-MASK dataset is detailed as follows (cf. Figure 3).
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First, the human face images (without a mask) from FGNET [26] were adopted with
their previously labelled ages. Then, the dataset was further manually labelled with the
individuals’ gender and expression. In total, we obtained 925 images with three types of
labels on each image. Next, the images were run through OpenPose [22] to detect and
generate 2D landmark points on detected faces in the dataset. Eventually, we synthesized
the face mask using the Pillow package [45], after receiving the landmark points, with a
variety of colors and logos. Since the initial dataset only contains 925 images, which is
insufficient for training a machine, we constructed four replicas of each masked image with
various permutations of mask color, as shown in Figure 4. We also changed the undetected
landmark points, resulting in the final FGNET-MASK dataset of 3404 images with rendered
face masks, which is sufficient for a machine to be trained. Age, gender, and expression
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were all branded in the dataset. The dataset contains four age categories: under 10, 10–20,
20–40, and over 40 to balance the samples for each age group. There are only two genders
labelled: Male and Female. Finally, expression labels were classified as Happy, Neutral,
or Unhappy.
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Finally, the FGNET-MASK dataset is fully annotated. The total number of pictures
grouped and categorized into their age groups is 1400 images of individuals under the
age of 10, 1010 between the ages of 10 and 20, 720 between the ages of 20 and 40, and 274
over the age of 40. For the two gender categories, Male and Female, there are 2000 and
1404 images, respectively. And for the three types of expressions, there are 1800 images
with happy expressions, 950 with neutral expressions, and 654 with unhappy expressions.
The outcome of the FGNET-MASK dataset is shown in Figure 4.

3.2. Single Models

Following the creation of the FGNET-MASK dataset, which included rendering the
mask and labeling the images, the images were fed into three distinct CNNs for Age,
Expression, and Gender. The model ‘Age’ is a multi-class classification with four distinct
classes based on criteria of less than 20, 20–30, 30–40, and greater than 40. The ‘Expression’
model is also a multi-class classification model with three classes: happy, neutral, and
unhappy. The final model, ‘Gender,’ is a binary classification with Male and Female options.

According to the categories of the respective classes, the single model has three
convolutional layers, in which each is followed by a maximum pooling layer, and dense
layers. Convolutional layers use a filter to make a feature map that summarizes the
presence of detected features in the input. Maximum pooling layers are expected to
downsample feature detection in feature maps. We used Adam optimization for training
deep networks. Our newly constructed dataset was tested again with a different network
with higher complexity of convolutional layers and maximum pooling, namely, ResNet152,
with 60,430,849 total parameters [45], to compare its accuracy with the traditional CNN
model with only 7654 parameters. ResNet-152 [46] used pre-trained weights on ImageNet
as their weights to train the model. The top fully connected layers were excluded, and the
model was fine-tuned with 137 layers out of 152.

For the single model, we considered using LBP and Eigenfaces with an SVM classifier.
The Local Binary Pattern [16,32,33] is a simple texture operator that marks the pixels of an
image by thresholding the neighborhood of each pixel and treating the result as a binary
number. After pre-processing, the dataset was transformed into decimal numbers and fed
into the SVM model using a linear kernel. All the data linearly separated using this kernel
were used to separate models for age, gender, and expression, and the results were reported,
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deep learning outperforming the LBP-SVM process. Following the LBP implementation,
the dataset was further implemented with Eigenfaces using PCA on SVM models, but the
results were worse than those obtained with the LBP.

3.3. Multi-Task Deep Learning

Multi-task deep learning (MTDL) is an inductive transfer learning approach that
involves the cooperative training of two or more learning machines. MTDL refers to the
mechanism by which a machine learns as it moves from one task to the next. The idea is
that each task should benefit from the knowledge gained while preparing for other related
assignments. Deep multi-task architectures were divided into two types: hard parameter
sharing techniques and soft parameter sharing techniques. The parameter set is split into
shared and task-specific parameters in hard parameter sharing. In this proposed method
we are using the hard sharing parameter. MTDL models using hard parameter sharing
typically consist of a shared encoder that branches out into task-specific heads.

The most common hard parameter sharing design includes a shared encoder that
branches out into task-specific decoding heads. Backpropagation in MTDL is the most
efficient method for solving learning distributed representations. For example, in every
model, the equation will be the same, if M > 2 (i.e., multiclass classification). We calculated
a separate loss for each class label per observation and summed the result. For example,
Lage, the loss function of the age model was computed as:

Lage = −
M

∑
c=1

yo,clog(po,c) (1)

where M is the number of classes (below 10, 10–20, 20–40, and 40 and above, y is the
groundtruth label, p is the predicted probability that observation o is of class c. Meanwhile,
the total loss function L for the multitask model was computed as follows:

L = Lage + Lgender + L expression (2)

The total loss function here solves optimization problems at the same time: mini-
mization of loss function and making a normalization of our parameters. Our proposed
multi-task learning followed this approach. Following the sharing of the layers with the
data, the output was determined in accordance with the specified task (i.e., age with respect
to gender and expression, gender with respect to age and expression, or expression with
respect to age and gender).

4. Experimental Results

In this section, we compare the proposed method for masked face analysis with two
implementation variants: basic CNN and ResNet-152. We also compare the single model
with the multitask learning model. We included many baselines in the evaluation, such
as EigenFace [30], LBP [23], TinyImage [47], and VGG Face [48]. All experiments were
conducted on the testing set of the collected FGNET-MASK dataset. Regarding the results,
we adopted accuracy as the main performance metrics:

Accuracy =
∑k

i=1
tpi + tni

tpi + tni + f pi + f ni

k
(3)

where tpi, tni, f pi, f ni are the true positive, the true negative, the false positive, and the false
negative, respectively. Meanwhile, k is the number of classes for each classification task.

4.1. Single Model

Three distinct models were developed in the deep learning system by using two
separate backbones (simple CNN and ResNet-152) and three distinct approaches were also
used in the SVM method. The results of the model predicting age, gender, and expression
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were phenomenal with the deep learning methods compared to those with the models
using the SVM method (the LBP and SVM). The testing precision of the single trained
models is as follows.

4.1.1. Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a supervised machine learning algorithm that
can be used to solve classification and regression problems. In the SVM algorithm, each
data object is plotted as a point in n-dimensional space (where n is the number of features),
with the value of each element being the value of a certain coordinate. Then, classification is
performed by finding the hyper-plane that differentiates the two or more classes according
to the requirement. We use linear SVM as the classifier for LBP, Eigenfaces, TinyImage,
and Multi-Block Color-Binarized Statistical Image Features (MB-C-BSIF). As shown in
Table 1, the LBP gives an unsatisfactory performance. Using the same process, we have
implemented and compared our results for Eigenfaces obtained from PCA (Principal
Control Analysis) [2], which is the method of calculating the principal components and
using them to modify the basis of the data. The results with Eigenfaces are slightly better
than those obtained with the LBP. Regarding TinyImage, the face image is downsized into
32 × 32, and the features are extracted by concatenating all image pixels. The extracted
TinyImage features are used to train an SVM model, yielding results that are better than
Eigenfaces, the LBP, and single task CNN. For MB-C-BSIF [49], the extracted features do
not perform well, i.e., on par with LBP. One possible reason is that MB-C-BSIF possesses a
large dimensionality. That may cause overfitting in the model training. Meanwhile, the
features extracted from the VGG Face [48] using a pretrained model, on the other hand,
outperform all other feature types.

Table 1. Testing accuracy of the models with different backbones.

Method
Accuracy Age Gender Expression

Eigenface 0.59 0.68 0.58

LBP [18] 0.53 0.64 0.55

TinyImage [47] 0.73 0.82 0.70

VGG Face [48] 0.84 0.89 0.75

MB-C-BSIF [49] 0.48 0.64 0.53

Single task (simple CNN) 0.68 0.77 0.60

Single task (ResNet) 0.91 0.95 0.82

MTDL (simple CNN) 0.74 0.83 0.70

MTDL (ResNet) 0.95 0.98 0.90

4.1.2. Simple Convolutional Neural Network (CNN)

In this work, we first tried a simple CNN model (as shown in Figure 5, left) for each
class, namely, age, gender, and expression. Each model was trained using the same CNN
architecture but with different activation functions for binary and multiclass classification.
The age model’s accuracy on unknown testing data was 0.68, the gender model’s testing
accuracy was 0.77, and the expression model’s accuracy was 0.60.

4.1.3. ResNet-152

Furthermore, we tried a deeper network, namely, ResNet-152 (as shown in Figure 5,
right). By using the deeper model, the result of the age classification task reached 0.91,
whereas gender and expression classification results obtained 0.95 and 0.82, respectively.
Here, the accuracy rate obtained from the residual neural network-ResNet-152 was sig-
nificantly higher than that obtained from the other approaches we used, SVM and Deep
Learning (CNN).
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4.2. Multitask Deep Learning Model

The method of designing multiple models for multiple labels was exhausting and
unconvincing, so the concept of using multitask deep learning was a brilliant way to save
time and effort by creating just one model for the requisite multiple labels. The MTDL
technique is the best approach to getting better results when compared to single CNN
models. Results obtained after comparing the model are far conversing, with respect to
age, gender, and expression. Figure 6 showcases the example results. Regarding the simple
CNN, the testing accuracy obtained using the CNN backbone for each class was better
than the single models. The testing precision obtained after conducting the multitask with
respect to age, gender, and expression was 0.74, 0.83, and 0.70, respectively. This evidently
outperforms the single models in terms of output. Meanwhile, the ResNet-152 model
produces a better performance than the simple CNN model. In particular, the results for
age, gender, and expression were 0.95, 0.98, and 0.9, respectively. This clearly demonstrates
that the deeper backbone tends to obtain the better performance in multi-task deep learning.
It should be noted that our work can be adopted in many contexts, such as surveillance
systems, person re-identification, targeted advertisement, to name a few.
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5. Conclusions and Future Work

In this paper, we investigated the problem of human masked face recognition. We
constructed FGNET-MASK, a new masked face dataset with different modalities via face
synthesis. We then proposed a multi-task deep learning (MTDL) method to give a predic-
tion of the age, expression, and gender of a person wearing a face mask. The experiments
show the impressive performance of the proposed method on the testing data. In the future,
we would like to collect more data for diversity, and we will also work on different datasets,
like RMFRD [6]. In addition, we will investigate different tasks in masked face analysis,
such as facial landmark point detection and mask removal.
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