
Journal of

Imaging

Article

Design of Flexible Hardware Accelerators for Image
Convolutions and Transposed Convolutions

Cristian Sestito 1, Fanny Spagnolo 1 and Stefania Perri 2,*

����������
�������

Citation: Sestito, C.; Spagnolo, F.;

Perri, S. Design of Flexible Hardware

Accelerators for Image Convolutions and

Transposed Convolutions. J. Imaging

2021, 7, 210. https://doi.org/

10.3390/jimaging7100210

Academic Editor: Donald Bailey

Received: 19 August 2021

Accepted: 11 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,
87036 Rende, Italy; cristian.sestito@unical.it (C.S.); f.spagnolo@dimes.unical.it (F.S.)

2 Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy
* Correspondence: stefania.perri@unical.it; Tel.: +39-098-449-4765

Abstract: Nowadays, computer vision relies heavily on convolutional neural networks (CNNs) to
perform complex and accurate tasks. Among them, super-resolution CNNs represent a meaningful
example, due to the presence of both convolutional (CONV) and transposed convolutional (TCONV)
layers. While the former exploit multiply-and-accumulate (MAC) operations to extract features of
interest from incoming feature maps (fmaps), the latter perform MACs to tune the spatial resolution
of the received fmaps properly. The ever-growing real-time and low-power requirements of modern
computer vision applications represent a stimulus for the research community to investigate the
deployment of CNNs on well-suited hardware platforms, such as field programmable gate arrays
(FPGAs). FPGAs are widely recognized as valid candidates for trading off computational speed and
power consumption, thanks to their flexibility and their capability to also deal with computationally
intensive models. In order to reduce the number of operations to be performed, this paper presents
a novel hardware-oriented algorithm able to efficiently accelerate both CONVs and TCONVs. The
proposed strategy was validated by employing it within a reconfigurable hardware accelerator
purposely designed to adapt itself to different operating modes set at run-time. When characterized
using the Xilinx XC7K410T FPGA device, the proposed accelerator achieved a throughput of up to
2022.2 GOPS and, in comparison to state-of-the-art competitors, it reached an energy efficiency up to
2.3 times higher, without compromising the overall accuracy.

Keywords: hardware accelerators; convolutional neural networks; transposed convolution;
super resolution imaging; field programmable gate array (FPGA)

1. Introduction

In the last few years, deep learning algorithms, particularly convolutional neural
networks (CNNs), have attracted considerable interest in several computer vision tasks,
ranging from object detection [1] to image classification [2] and segmentation [3]. In such
applications, the ever-growing success of CNNs is accompanied by a continuous increase
in both accuracy and computational complexity. As an example, in the case of image
classification, moving from the eight-layered AlexNet [4] to the 152-layered ResNet [5] the
error rates have been reduced by more than 10%, but the amount of performed multiply-
and-accumulate (MAC) operations has increased by more than 80%. Such a trend makes
evident that ad-hoc designed hardware accelerators are essential for deploying CNN
algorithms in real-time and power-constrained systems [6].

Most recently, the capability of reconstructing high-resolution images from low-
resolution ones by means of pixel estimation, which is known as super resolution (SR)
imaging, has become crucial in several applications, such as video surveillance, medical di-
agnosis, and remote sensing. Also in this field, CNNs have gained enormous popularity [7]
and, thanks to the ability of learned filters to extrapolate new features from low-resolution
images, they have demonstrated appreciable quality improvements with respect to con-
ventional methods [8,9]. Unfortunately, because of the different nature of the final task

J. Imaging 2021, 7, 210. https://doi.org/10.3390/jimaging7100210 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-2197-4563
https://orcid.org/0000-0003-1363-9201
https://doi.org/10.3390/jimaging7100210
https://doi.org/10.3390/jimaging7100210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7100210
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7100210?type=check_update&version=2

J. Imaging 2021, 7, 210 2 of 16

to be accomplished, the existing hardware architectures designed to accelerate CNNs for
object detection and classification are not well suited for SR imaging applications. Indeed,
as a distinctive feature, in order to up-sample low-resolution images, CNN-based SR al-
gorithms typically adopt transposed convolutional (TCONV) layers [10] that, with their
computational complexity up to 6.75 times higher than traditional convolutional (CONV)
layers, represent the most critical component of CNNs [11]. Moreover, in comparison to
CONVs, TCONV layers require more complex strategies to access data memory, and make
skipping operations necessary to manage the incoming pixels properly [12]. In order to
overcome the aforementioned issues, several algorithms have been proposed [11,13–15]
to transform TCONV into CONV layers by pre-processing either the input data or the
filter coefficients. However, when implemented in hardware, these methods can show
several drawbacks. Furthermore, most of the existing hardware designs are not config-
urable at run-time to support the different kernel sizes commonly demanded in CNNs
for SR images [7,10]. Thereby, they use an ad-hoc tailored accelerator for each layer of
the network, thus dramatically affecting the design effort, the energy efficiency, and the
application flexibility.

To overcome the aforementioned issues, this paper presents a novel hardware-oriented
algorithm that converts TCONV into CONV layers efficiently, without the requirement of
any pre-processing. The main contributions of this work are summarized as follows:

• A comprehensive evaluation of the state-of-the-art TCONV algorithms suitable for
implementation in hardware is provided.

• An original TCONV approach, thought to avoid complex remapping of filter coeffi-
cients and suitable for exploitation also in CONV operations, is presented.

• A flexible reconfigurable hardware accelerator is proposed. It was purposely designed
to adapt itself at run-time to two operating modes and to different kernel sizes, as
required to support all operations employed in both CONV and TCONV layers.

• For evaluation purposes, the novel method was exploited in the context of SR imaging,
and the proposed reconfigurable hardware architecture was used to accelerate the
popular fast super resolution CNN (FSRCNN) [10]. The experiments, performed on
the Xilinx XC7K410T field programmable gate array (FPGA) chip, demonstrated the
benefits of the proposed approach in terms of area occupancy and energy saving over
several state-of-the-art counterparts. In fact, the new accelerator exhibited a logic
resource requirement and a power consumption up to ~63% and ~48% lower, respec-
tively, than previous designs [11,13–17]. The adopted parallelism and the achieved
227 MHz running frequency allow the above advantages to be obtained without com-
promising the competitiveness of the proposed design in terms of speed performance.

The reminder of this paper is structured as follows: Section 2 provides a background
and a survey of previous works; the novel algorithm and the hardware architecture on-
purpose designed are presented in Sections 3 and 4; the experimental results are discussed
in Section 5, which also includes a comparison to state-of-the-art accelerators implemented
on the FPGA in terms of hardware characteristics and quality metrics. Finally, Section 6
concludes this manuscript.

2. Background and Related Works

The CNNs employed in SR imaging tasks [7] often include a feature extractor, con-
sisting of several cascaded CONV layers, followed by an up-sampling stage consisting of
a certain number of cascaded TCONV layers. The generic layer receives a volume of M
input feature maps (ifmaps), each of a Hi × Wi size, and a set of N filters {F0, F1, . . . , FN−1},
each consisting of M kernels of a k × k size. The specific operations performed by the layer
produce a volume of N output feature maps (ofmaps), each of a Ho × Wo size, with Ho and
Wo being defined as Ho = (SD × Hi + 2P)− k + 1 and Wo = (SD × Wi + 2P)− k + 1, SD
and P being, respectively, the up-sampling factor and the size of padding on the borders.

J. Imaging 2021, 7, 210 3 of 16

In the case of CONVs, SD = 1 and, to generate the h-th ofmap, the volume of ifmaps
is convolved with the corresponding filter Fh. Then, the M results obtained in this way
are summed up by a pixel-wise addition. Conversely, a TCONV layer refers to SD > 1
and requires the generic ifmap to be preliminarily up-sampled by interleaving actual input
activations with SD − 1 additional rows and columns. After this, the operations involved
are the same as those of a conventional CONV layer. The example illustrated in Figure 1
shows the operations performed to process a 2 × 2 ifmap with a 3 × 3 filter when SD = 2.
It is worth noting that the additional elements introduced in the up-sampled ifmap can
be filled either by zeros [18] (in the following, this approach is named the zero-TCONV)
or by interpolating the nearest neighboring (NN) values to reduce possible chessboard
effects [19]. Regardless, knowing the size Hi × Wi of the original ifmap, the up-sampling
factor SD, and the size P of padding on the borders, the size Ho × Wo of the up-sampled
ifmap is given by Equation (1).

J. Imaging 2021, 7, 210 3 of 17

consisting of M kernels of a k × k size. The specific operations performed by the layer pro-

duce a volume of N output feature maps (ofmaps), each of a Ho × Wo size, with Ho and Wo

being defined as 𝐻𝑜 = (𝑆𝐷 × 𝐻𝑖 + 2𝑃) − 𝑘 + 1 and 𝑊𝑜 = (𝑆𝐷 × 𝑊𝑖 + 2𝑃) − 𝑘 + 1, SD and P

being, respectively, the up-sampling factor and the size of padding on the borders.

In the case of CONVs, SD = 1 and, to generate the h-th ofmap, the volume of ifmaps is

convolved with the corresponding filter Fh. Then, the M results obtained in this way are

summed up by a pixel-wise addition. Conversely, a TCONV layer refers to SD > 1 and

requires the generic ifmap to be preliminarily up-sampled by interleaving actual input ac-

tivations with SD−1 additional rows and columns. After this, the operations involved are

the same as those of a conventional CONV layer. The example illustrated in Figure 1

shows the operations performed to process a 2 × 2 ifmap with a 3 × 3 filter when SD = 2. It

is worth noting that the additional elements introduced in the up-sampled ifmap can be

filled either by zeros [18] (in the following, this approach is named the zero-TCONV) or

by interpolating the nearest neighboring (NN) values to reduce possible chessboard ef-

fects [19]. Regardless, knowing the size Hi × Wi of the original ifmap, the up-sampling factor

SD, and the size P of padding on the borders, the size Ho × Wo of the up-sampled ifmap is

given by Equation (1).

Figure 1. An example of the operations performed by a TCONV to process a 2 × 2 ifmap with a 3 × 3

filter when SD = 2.

Since they process up-sampled ifmaps, it is obvious that, with respect to CONVs,

TCONVs require more MAC operations and larger amounts of data memory. Unfortu-

nately, these characteristics may represent a bottleneck for those application scenarios in

which real time and low power are mandatory. For this reason, designing ad-hoc hard-

ware accelerators suitable for exploitation also within time- and power-constrained oper-

ating environments has recently received a great deal of attention [11–17,19–23]. Among

the possible hardware realization platforms, FPGAs are widely recognized as powerful

solutions [11,13,15,17,20] for merging the benefits from custom hardware designs, such as

computational parallelism and limited energy consumption, with the strengths of soft-

ware designs, including reconfigurability and short time to market.

While several of the existing hardware designs support both CONVs and TCONVs

[11,13–17,19,21], some of them are tailored to accomplish only TCONVs [12,22,23]. As an

example, the FPGA accelerator proposed in our previous work [12] deals with the input-

oriented method (IOM) to reduce, or completely avoid, useless operations, corresponding

to multiplications by zero, introduced by the conventional zero-TCONVs’ up-sampling

approach. This is made possible by computing the products between each input pixel and

the k × k elements of the filter, and then properly arranging the k × k results within the

ofmap. Obviously, as a drawback, designs [12,22,23] need either additional buffers or aux-

iliary computing resources, or both, to manage row/column overlaps. Moreover, they may

result quite inefficient when the CNN model being accelerated also uses CONV layers, as

happens in the case of SR imaging applications [10,11].

Figure 1. An example of the operations performed by a TCONV to process a 2 × 2 ifmap with a 3 × 3
filter when SD = 2.

Since they process up-sampled ifmaps, it is obvious that, with respect to CONVs,
TCONVs require more MAC operations and larger amounts of data memory. Unfortu-
nately, these characteristics may represent a bottleneck for those application scenarios in
which real time and low power are mandatory. For this reason, designing ad-hoc hardware
accelerators suitable for exploitation also within time- and power-constrained operating
environments has recently received a great deal of attention [11–17,19–23]. Among the
possible hardware realization platforms, FPGAs are widely recognized as powerful so-
lutions [11,13,15,17,20] for merging the benefits from custom hardware designs, such as
computational parallelism and limited energy consumption, with the strengths of software
designs, including reconfigurability and short time to market.

While several of the existing hardware designs support both CONVs and
TCONVs [11,13–17,19,21], some of them are tailored to accomplish only TCONVs [12,22,23].
As an example, the FPGA accelerator proposed in our previous work [12] deals with the
input-oriented method (IOM) to reduce, or completely avoid, useless operations, cor-
responding to multiplications by zero, introduced by the conventional zero-TCONVs’
up-sampling approach. This is made possible by computing the products between each
input pixel and the k × k elements of the filter, and then properly arranging the k × k
results within the ofmap. Obviously, as a drawback, designs [12,22,23] need either addi-
tional buffers or auxiliary computing resources, or both, to manage row/column overlaps.
Moreover, they may result quite inefficient when the CNN model being accelerated also
uses CONV layers, as happens in the case of SR imaging applications [10,11].

The designs recently presented in [11,13–15] overcome the aforementioned issues by
exploiting uniform accelerators for both CONVs and TCONVs. Starting from an analysis of
the input-oriented method (IOM), and with the objective of avoiding overlapping on input
activations, the computational scheme proposed in [11] performs an inverse mapping on
the filter coefficients. More specifically, the transform deconvolution into convolution (TDC)
approach [11] converts each filter of a TCONV into SD

2 smaller sub-filters according to the

J. Imaging 2021, 7, 210 4 of 16

relative position of the original input activations within the up-sampled ifmap. Due to this
splitting strategy, several locations within the sub-filters contain zero values, thus causing
unbalanced computations. Moreover, the configuration (i.e., size and number of sub-filters)
depends on SD. Therefore, the splitting process has to be performed offline and the pre-
processed filters must be stored on chip, thus limiting the possibility of reconfiguring at
run-time the architecture to accelerate different CNNs.

As observed in [13], when the zero-TCONV approach is used, the filter coefficients
that are being multiplied by zero activations can be removed by decomposing filters into
several sub-blocks. Also for this decomposition algorithm, the filters must be pre-processed
offline. Moreover, in order to remove unbalanced computations, an overall logic more
complex than [11] is required.

To manage both TCONV and CONV operations, the hardware designs proposed
in [14,15] decompose filters into smaller sub-blocks with different dimensions, accord-
ing with the values of k and SD; then, to avoid filter reversal and zero padding on the
borders, they apply a variant of the conventional Winograd algorithm. In such a case,
unconventional computational modules, suitable for implementing operations involved in
the Winograd transformation (such as inverse transformation of a matrix), are required.

The FlexiGAN architecture presented in [21] infers the conventional zero-TCONV
operations, but, in order to improve the computational efficiency, it recognizes rows filled
with zeros and skips them during the MAC operations. However, the auxiliary circuitry
needed to properly reorganize the ifmaps and the filters significantly affect the logic and
memory resource requirements, as well as the power consumption.

3. The Hardware-Oriented Algorithm Proposed to Convert TCONVs into CONVs

The novel algorithm here presented exploits a computational strategy quite different
than previous works [11–15]. In contrast to [11,13–15], which manipulate the k × k filter
coefficients to form smaller sub-blocks (thus introducing the necessity of offline elabora-
tions), and with respect to [12] that re-arranges the position of output values within the
ofmaps (leading to area and time overhead due to the management of the overlapping
regions), it applies an unconventional remapping strategy directly to the incoming ifmaps
values. From a hardware perspective, this means that: (1) The process occurs online and
the preprocessing is not required, and (2) the result of the proposed algorithm can be out-
putted as soon as it is produced, thus avoiding additional time and buffering/computing
resources. As a further advantage, the incoming ifmaps are not actually up-sampled, but
instead are processed as if they were up-sampled with the zero-TCONV approach.

In order to achieve high-speed performance and to prevent useless multiplications
by zero, the proposed method was on-purpose made able to furnish SD × SD results in
parallel for each computed ofmap. The steps illustrated in Figure 2a are performed to
process the KC × KC window of activations, with KC = k + SD − 1

SD
. The generic sliding

window received as input, with the first (i.e., the top-left) activation of the window being
Ii,j (with i = 0, . . . ,Hi − 1 and j = 0, . . . ,Wi − 1), is remapped within a k × k window;
then, element-wise multiplications are performed between the remapped window and
the k × k filter, followed by accumulations to produce SD × SD parallel results. The main
innovation introduced with respect to the conventional approach and methods based on
filter decomposition [11,13–15] is the remapping of the KC × KC input activations within
the sliding window RI. The latter is formed as illustrated in Figure 2b, which also shows
the local row and column indices m and n, both varying from 0 to k − 1. The remapped
window is obtained by applying the following basic rules:

J. Imaging 2021, 7, 210 5 of 16

• The first activation Ii,j is assigned to the local position (0,0) within the up-sampled
window RI and replicated no more;

• The activations with a row index equal to i are replicated SD times horizontally;
• The activations with a column index equal to j are replicated SD times vertically;
• The activations with row and column indices varying, respectively, from i + 1 to i +

KC − 2 and from j + 1 to j + KC − 2, are replicated SD times vertically and SD times
horizontally, thus forming SD × SD sub-windows, as illustrated in Figure 2b;

• If (k − 1) mod SD = 0, the activations with a row index equal to KC − 1 are replicated
SD times horizontally (this is the case illustrated in Figure 2b); otherwise, they are
replicated (k − 1) mod SD times;

• If (k − 1) mod SD = 0, the activations with a column index equal to KC − 1 are
replicated SD times vertically (this is the case illustrated in Figure 2b); otherwise, they
are replicated (k − 1) mod SD times.

J. Imaging 2021, 7, 210 5 of 17

and column indices m and n, both varying from 0 to 𝑘 − 1. The remapped window is

obtained by applying the following basic rules:

 The first activation Ii,j is assigned to the local position (0,0) within the up-sampled

window RI and replicated no more;

 The activations with a row index equal to i are replicated SD times horizontally;

 The activations with a column index equal to j are replicated SD times vertically;

 The activations with row and column indices varying, respectively, from i + 1 to i +

KC−2 and from j + 1 to j + KC−2, are replicated SD times vertically and SD times hori-

zontally, thus forming SD × SD sub-windows, as illustrated in Figure 2b;

 If (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 = 0, the activations with a row index equal to KC−1 are replicated

SD times horizontally (this is the case illustrated in Figure 2b); otherwise, they are

replicated (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 times;

 If (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 = 0, the activations with a column index equal to KC−1 are repli-

cated SD times vertically (this is the case illustrated in Figure 2b); otherwise, they are

replicated (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 times.

Figure 2. The novel algorithm: (a) The computational steps involved; (b) the remapping strategy.

The elements of the remapped window, obtained as explained above, are multiplied

by the homologous filter coefficients Wm,n that do not require any type of rearrangement.

Then, the computed k × k products PPm,n are properly accumulated to finally provide the

SD × SD parallel results 𝑂𝑖 × 𝑆𝐷+𝑝,𝑗 × 𝑆𝐷+𝑞, with p and q varying from 0 to SD–1. To take into

account the up-sampling factor SD, the generic result 𝑂𝑖 × 𝑆𝐷+𝑝,𝑗 × 𝑆𝐷+𝑞 must be computed

by accumulating KC × KC products PPmm,nn picked up starting from the location

𝑚𝑚 = 𝑖 × 𝑆𝐷, 𝑛𝑛 = 𝑗 × 𝑆𝐷 and going on as in a chessboard with horizontal and vertical

jumps of SD positions (i.e., with stride SD). However, it is worth noting that some jumps

lead to values of mm and/or nn exceeding k, thus indexing unavailable products. Actually,

referring to the ifmap currently processed as if it were up-sampled with the zero-TCONV

approach, it is easy to verify that these missing products correspond to multiplications by

zero. Therefore, they do not contribute to the accumulate operations and can simply be

ignored. As a consequence, the results computed with the proposed strategy have the

same values provided by the conventional zero-TCONV approach [18]. However, the

Figure 2. The novel algorithm: (a) The computational steps involved; (b) the remapping strategy.

The elements of the remapped window, obtained as explained above, are multiplied
by the homologous filter coefficients Wm,n that do not require any type of rearrangement.
Then, the computed k × k products PPm,n are properly accumulated to finally provide
the SD × SD parallel results Oi×SD+p,j×SD+q, with p and q varying from 0 to SD − 1. To
take into account the up-sampling factor SD, the generic result Oi×SD+p,j×SD+q must be
computed by accumulating KC × KC products PPmm,nn picked up starting from the location
mm = i × SD, nn = j × SD and going on as in a chessboard with horizontal and vertical
jumps of SD positions (i.e., with stride SD). However, it is worth noting that some jumps
lead to values of mm and/or nn exceeding k, thus indexing unavailable products. Actually,
referring to the ifmap currently processed as if it were up-sampled with the zero-TCONV
approach, it is easy to verify that these missing products correspond to multiplications
by zero. Therefore, they do not contribute to the accumulate operations and can simply
be ignored. As a consequence, the results computed with the proposed strategy have the
same values provided by the conventional zero-TCONV approach [18]. However, the
method proposed here completely avoids multiplications by zero and filter partitioning.
The software model of the proposed method is reported in Appendix A.

J. Imaging 2021, 7, 210 6 of 16

It is important to highlight that the remapping strategy proposed here is a different
point of view of the methods based on filters decomposition [11,13–15]. Indeed, while the
latter re-arrange filter coefficients to perform proper element-wise multiplications, the for-
mer re-arrange input activations. However, as discussed in Section 5, the proposed strategy
is more efficient from the hardware perspective, because it allows online computations and
does not require complex architectures to manage the remapping.

To better explain the novel computational scheme, let us consider the example in
Figure 3 that refers to k = 9, SD = 2, and KC = 5. In this case, the local row and column
indices m and n vary from 0 to 8. Therefore, for each input pixel Ii,j, the above-explained
basic rules lead to the remapped 9 × 9 window visible in Figure 3a, where the 5 × 5
elements of the original sliding window are highlighted in blue. It can be observed that the
remapped window collects all of the data needed to compute the results Oi×SD+p,j×SD+q
contemporaneously, with indices p and q, used to locate the produced results within the
ofmap, ranging between 0 and 1. Indeed, since SD = 2, the results Oi×2, j×2, Oi×2, j×2+1,
Oi×2+1, j×2, and Oi×2+1, j×2+1 are computed as given in Equation (1).

J. Imaging 2021, 7, 210 6 of 17

method proposed here completely avoids multiplications by zero and filter partitioning.

The software model of the proposed method is reported in Appendix A.

It is important to highlight that the remapping strategy proposed here is a different

point of view of the methods based on filters decomposition [11,13–15]. Indeed, while the

latter re-arrange filter coefficients to perform proper element-wise multiplications, the for-

mer re-arrange input activations. However, as discussed in Section 5, the proposed strat-

egy is more efficient from the hardware perspective, because it allows online computa-

tions and does not require complex architectures to manage the remapping.

To better explain the novel computational scheme, let us consider the example in

Figure 3 that refers to k = 9, SD = 2, and KC = 5. In this case, the local row and column indices

m and n vary from 0 to 8. Therefore, for each input pixel Ii,j, the above-explained basic

rules lead to the remapped 9 × 9 window visible in Figure 3a, where the 5 × 5 elements of

the original sliding window are highlighted in blue. It can be observed that the remapped

window collects all of the data needed to compute the results 𝑂𝑖 × 𝑆𝐷+𝑝,𝑗 × 𝑆𝐷+𝑞 contempo-

raneously, with indices p and q, used to locate the produced results within the ofmap, rang-

ing between 0 and 1. Indeed, since SD = 2, the results 𝑂𝑖 × 2,𝑗 × 2, 𝑂𝑖 × 2,𝑗 × 2+1, 𝑂𝑖 × 2+1,𝑗 × 2,

and 𝑂𝑖 × 2+1,𝑗 × 2+1 are computed as given in Equation (1).

Figure 3. Example of computation with k = 9, SD = 2, and KC = 5: (a) The remapped window RI; (b)

the filter W.

𝑂𝑖 × 2,𝑗 × 2 = 𝐼𝑖,𝑗 × 𝑊0,0 + 𝐼𝑖,𝑗+1 × 𝑊0,2 + 𝐼𝑖,𝑗+2 × 𝑊0,4 + 𝐼𝑖,𝑗+3 × 𝑊0,6 + 𝐼𝑖,𝑗+4 × 𝑊0,8 +

+𝐼𝑖+1,𝑗 × 𝑊2,0 + 𝐼𝑖+1,𝑗+1 × 𝑊2,2 + 𝐼𝑖+1,𝑗+2 × 𝑊2,4 + 𝐼𝑖+1,𝑗+3 × 𝑊2,6 + 𝐼𝑖+1,𝑗+4 × 𝑊2,8 +

+𝐼𝑖+2,𝑗 × 𝑊4,0 + 𝐼𝑖+2,𝑗+1 × 𝑊4,2 + 𝐼𝑖+2,𝑗+2 × 𝑊4,4 + 𝐼𝑖+2,𝑗+3 × 𝑊4,6 + 𝐼𝑖+2,𝑗+4 × 𝑊4,8 +

+𝐼𝑖+3,𝑗 × 𝑊6,0 + 𝐼𝑖+3,𝑗+1 × 𝑊6,2 + 𝐼𝑖+3,𝑗+2 × 𝑊6,4 + 𝐼𝑖+3,𝑗+3 × 𝑊6,6 + 𝐼𝑖+3,𝑗+4 × 𝑊6,8 +

+𝐼𝑖+4,𝑗 × 𝑊8,0 + 𝐼𝑖+4,𝑗+1 × 𝑊8,2 + 𝐼𝑖+4,𝑗+2 × 𝑊8,4 + 𝐼𝑖+4,𝑗+3 × 𝑊8,6 + 𝐼𝑖+4,𝑗+4 × 𝑊8,8

𝑂𝑖 × 2,𝑗 × 2+1 = 𝐼𝑖,𝑗+1 × 𝑊0,1 + 𝐼𝑖,𝑗+2 × 𝑊0,3 + 𝐼𝑖,𝑗+3 × 𝑊0,5 + 𝐼𝑖,𝑗+4 × 𝑊0,7 +

+𝐼𝑖+1,𝑗+1 × 𝑊2,1 + 𝐼𝑖+1,𝑗+2 × 𝑊2,3 + 𝐼𝑖+1,𝑗+3 × 𝑊2,5 + 𝐼𝑖+1,𝑗+4 × 𝑊2,7 +

+𝐼𝑖+2,𝑗+1 × 𝑊4,1 + 𝐼𝑖+2,𝑗+2 × 𝑊4,3 + 𝐼𝑖+2,𝑗+3 × 𝑊4,5 + 𝐼𝑖+2,𝑗+4 × 𝑊4,7 +

+𝐼𝑖+3,𝑗+1 × 𝑊6,1 + 𝐼𝑖+3,𝑗+2 × 𝑊6,3 + 𝐼𝑖+3,𝑗+3 × 𝑊6,5 + 𝐼𝑖+3,𝑗+4 × 𝑊6,7 +

+𝐼𝑖+4,𝑗+1 × 𝑊8,1 + 𝐼𝑖+4,𝑗+2 × 𝑊8,3 + 𝐼𝑖+4,𝑗+3 × 𝑊8,5 + 𝐼𝑖+4,𝑗+4 × 𝑊8,7

𝑂𝑖 × 2+1,𝑗 × 2 = 𝐼𝑖+1,𝑗 × 𝑊1,0 + 𝐼𝑖+1,𝑗+1 × 𝑊1,2 + 𝐼𝑖+1,𝑗+2 × 𝑊1,4 + 𝐼𝑖+1,𝑗+3 × 𝑊1,6

+ 𝐼𝑖+1,𝑗+4 × 𝑊1,8 +

+𝐼𝑖+2,𝑗 × 𝑊3,0 + 𝐼𝑖+2,𝑗+1 × 𝑊3,2 + 𝐼𝑖+2,𝑗+2 × 𝑊3,4 + 𝐼𝑖+2,𝑗+3 × 𝑊3,6 + 𝐼𝑖+2,𝑗+4 × 𝑊3,8 +

+𝐼𝑖+3,𝑗 × 𝑊5,0 + 𝐼𝑖+3,𝑗+1 × 𝑊5,2 + 𝐼𝑖+3,𝑗+2 × 𝑊5,4 + 𝐼𝑖+3,𝑗+3 × 𝑊5,6 + 𝐼𝑖+3,𝑗+4 × 𝑊5,8 +

+𝐼𝑖+4,𝑗 × 𝑊7,0 + 𝐼𝑖+4,𝑗+1 × 𝑊7,2 + 𝐼𝑖+4,𝑗+2 × 𝑊7,4 + 𝐼𝑖+4,𝑗+3 × 𝑊7,6 + 𝐼𝑖+4,𝑗+4 × 𝑊7,8

𝑂𝑖 × 2+1,𝑗 × 2+1 = 𝐼𝑖+1,𝑗+1 × 𝑊1,1 + 𝐼𝑖+1,𝑗+2 × 𝑊1,3 + 𝐼𝑖+1,𝑗+3 × 𝑊1,5 + 𝐼𝑖+1,𝑗+4 × 𝑊1,7 +

+𝐼𝑖+2,𝑗+1 × 𝑊3,1 + 𝐼𝑖+2,𝑗+2 × 𝑊3,3 + 𝐼𝑖+2,𝑗+3 × 𝑊3,5 + 𝐼𝑖+2𝑗+,4 × 𝑊3,7 +

+𝐼𝑖+3,𝑗+1 × 𝑊5,1 + 𝐼𝑖+3,𝑗+2 × 𝑊5,3 + 𝐼𝑖+3,𝑗+3 × 𝑊5,5 + 𝐼𝑖+3,𝑗+4 × 𝑊5,7 +

(1)

Figure 3. Example of computation with k = 9, SD = 2, and KC = 5: (a) The remapped window RI;
(b) the filter W.

Oi×2, j×2 = Ii,j × W0,0 + Ii,j+1 × W0,2 + Ii,j+2 × W0,4 + Ii,j+3 × W0,6 + Ii,j+4 × W0,8+
+Ii+1,j × W2,0 + Ii+1,j+1 × W2,2 + Ii+1,j+2 × W2,4 + Ii+1,j+3 × W2,6 + Ii+1,j+4 × W2,8+
+Ii+2,j × W4,0 + Ii+2,j+1 × W4,2 + Ii+2,j+2 × W4,4 + Ii+2,j+3 × W4,6 + Ii+2,j+4 × W4,8+
+Ii+3,j × W6,0 + Ii+3,j+1 × W6,2 + Ii+3,j+2 × W6,4 + Ii+3,j+3 × W6,6 + Ii+3,j+4 × W6,8+
+Ii+4,j × W8,0 + Ii+4,j+1 × W8,2 + Ii+4,j+2 × W8,4 + Ii+4,j+3 × W8,6 + Ii+4,j+4 × W8,8

Oi×2, j×2+1 = Ii,j+1 × W0,1 + Ii,j+2 × W0,3 + Ii,j+3 × W0,5 + Ii,j+4 × W0,7+
+Ii+1,j+1 × W2,1 + Ii+1,j+2 × W2,3 + Ii+1,j+3 × W2,5 + Ii+1,j+4 × W2,7+
+Ii+2,j+1 × W4,1 + Ii+2,j+2 × W4,3 + Ii+2,j+3 × W4,5 + Ii+2,j+4 × W4,7+
+Ii+3,j+1 × W6,1 + Ii+3,j+2 × W6,3 + Ii+3,j+3 × W6,5 + Ii+3,j+4 × W6,7+
+Ii+4,j+1 × W8,1 + Ii+4,j+2 × W8,3 + Ii+4,j+3 × W8,5 + Ii+4,j+4 × W8,7

Oi×2+1, j×2 = Ii+1,j × W1,0 + Ii+1,j+1 × W1,2 + Ii+1,j+2 × W1,4 + Ii+1,j+3 × W1,6 + Ii+1,j+4 × W1,8+
+Ii+2,j × W3,0 + Ii+2,j+1 × W3,2 + Ii+2,j+2 × W3,4 + Ii+2,j+3 × W3,6 + Ii+2,j+4 × W3,8+
+Ii+3,j × W5,0 + Ii+3,j+1 × W5,2 + Ii+3,j+2 × W5,4 + Ii+3,j+3 × W5,6 + Ii+3,j+4 × W5,8+
+Ii+4,j × W7,0 + Ii+4,j+1 × W7,2 + Ii+4,j+2 × W7,4 + Ii+4,j+3 × W7,6 + Ii+4,j+4 × W7,8

Oi×2+1, j×2+1 = Ii+1,j+1 × W1,1 + Ii+1,j+2 × W1,3 + Ii+1,j+3 × W1,5 + Ii+1,j+4 × W1,7+
+Ii+2,j+1 × W3,1 + Ii+2,j+2 × W3,3 + Ii+2,j+3 × W3,5 + Ii+2j+,4 × W3,7+
+Ii+3,j+1 × W5,1 + Ii+3,j+2 × W5,3 + Ii+3,j+3 × W5,5 + Ii+3,j+4 × W5,7+
+Ii+4,j+1 × W7,1 + Ii+4,j+2 × W7,3 + Ii+4,j+3 × W7,5 + Ii+4,j+4 × W7,7

(1)

As expected, the results Oi×2+p, j×2+q, corresponding to p and/or q greater than zero,
are obtained by accumulating less than KC × KC products, and the missing products are
simply ignored, since they are related to multiplications by zero.

J. Imaging 2021, 7, 210 7 of 16

The computations described above are repeated for each pixel of the ifmap and, upon
completion, the Hi × Wi groups of SD × SD results obtained in this way are arranged in
the ofmap, as illustrated in Figure 4. In the figure, different colors are used to highlight each
group of SD × SD results computed in parallel.

J. Imaging 2021, 7, 210 7 of 17

+𝐼𝑖+4,𝑗+1 × 𝑊7,1 + 𝐼𝑖+4,𝑗+2 × 𝑊7,3 + 𝐼𝑖+4,𝑗+3 × 𝑊7,5 + 𝐼𝑖+4,𝑗+4 × 𝑊7,7

As expected, the results 𝑂𝑖 × 2+𝑝,𝑗 × 2+𝑞, corresponding to p and/or q greater than zero,

are obtained by accumulating less than KC × KC products, and the missing products are

simply ignored, since they are related to multiplications by zero.

The computations described above are repeated for each pixel of the ifmap and, upon

completion, the Hi × Wi groups of SD × SD results obtained in this way are arranged in the

ofmap, as illustrated in Figure 4. In the figure, different colors are used to highlight each

group of SD × SD results computed in parallel.

Figure 4. The arrangement of the computed results within the generic ofmap.

It is worth noting that when SD is 1, KC is equal to k and the sliding window does not

require remapping operations; in such a case, the proposed algorithm performs a standard

CONV. With the input volume consisting of M ifmaps, all of the computations described

above must be repeated M times. The M intermediate ofmaps computed in this way are

summed up to populate the volume of the expected N ofmaps.

4. The Proposed Run-Time Reconfigurable Hardware Accelerator

The novel method presented above to convert TCONVs into CONVs is employed

within a reconfigurable hardware structure purposely designed to perform both CONVs

and TCONVs by run-time, adapting itself to different operating modes.

In order to achieve high computational speeds, the proposed hardware accelerator

exploits a certain level of parallelism. In the following, it is shown that the TM ifmaps and

TN filters are processed at a time, with TM and TN varying at run-time in accordance with

the current operation mode, the kernel size k, and the up-sampling factor SD. For the op-

erations of the generic layer to be completed, regardless of whether it is a CONV or a

TCONV layer, ⌈
𝑀

𝑇𝑀
⌉ × ⌈

𝑁

𝑇𝑁
⌉ steps are needed.

Figure 5 depicts the top-level architecture of the proposed hardware accelerator that

consists of a computational module (CM) and a finite state machine (FSM). The former

receives, as inputs, TM ifmaps and TN filters, each consisting of TM kernels collecting k × k

coefficients, and provides TN ofmaps at a time. Conversely, the FSM is fed with the input

configuration, which sets the required operating mode (indicating whether CONVs or

TCONVs must be performed), the kernel size k, the fmap sizes, and the window size KC,

and furnishes proper control/configuration signals to the CM. Through these signals, the

FSM configures the CM and supervises the overall data flow.

Figure 4. The arrangement of the computed results within the generic ofmap.

It is worth noting that when SD is 1, KC is equal to k and the sliding window does not
require remapping operations; in such a case, the proposed algorithm performs a standard
CONV. With the input volume consisting of M ifmaps, all of the computations described
above must be repeated M times. The M intermediate ofmaps computed in this way are
summed up to populate the volume of the expected N ofmaps.

4. The Proposed Run-Time Reconfigurable Hardware Accelerator

The novel method presented above to convert TCONVs into CONVs is employed
within a reconfigurable hardware structure purposely designed to perform both CONVs
and TCONVs by run-time, adapting itself to different operating modes.

In order to achieve high computational speeds, the proposed hardware accelerator
exploits a certain level of parallelism. In the following, it is shown that the TM ifmaps and
TN filters are processed at a time, with TM and TN varying at run-time in accordance with
the current operation mode, the kernel size k, and the up-sampling factor SD. For the
operations of the generic layer to be completed, regardless of whether it is a CONV or a
TCONV layer,

⌈
M
TM

⌉
×

⌈
N

TN

⌉
steps are needed.

Figure 5 depicts the top-level architecture of the proposed hardware accelerator that
consists of a computational module (CM) and a finite state machine (FSM). The former
receives, as inputs, TM ifmaps and TN filters, each consisting of TM kernels collecting k × k
coefficients, and provides TN ofmaps at a time. Conversely, the FSM is fed with the input
configuration, which sets the required operating mode (indicating whether CONVs or
TCONVs must be performed), the kernel size k, the fmap sizes, and the window size KC,
and furnishes proper control/configuration signals to the CM. Through these signals, the
FSM configures the CM and supervises the overall data flow.

J. Imaging 2021, 7, 210 8 of 17

Figure 5. The top-level architecture of the proposed hardware accelerator.

The CM splits the incoming TN filters into R groups and employs as many

CONV/TCONV units (CTCUs). Each CTCU, depending on the received control and con-

figuration signals, arranges data in proper sliding windows and executes either CONVs

or TCONVs by processing the TM ifmaps and its own ⌈
𝑇𝑁

𝑅
⌉ filters. The results provided by

the CTCUs are then dispatched to the subsequent modules passing through the routing

logic purposely designed to take into account that the supported operating modes lead to

different data flows. In fact, depending on whether CONVs or TCONVs are performed,

the intermediate results related to the current TM input channels must be accumulated by

the proper adder trees (ATs). Then, data must be routed either to the ofmaps buffers, which

happens when the computation of the current TN ofmaps is not yet completed, or, vice

versa, to the parametric rectified linear units (PReLUs) that implement the linear rectifi-

cation method demonstrated in [24].

The generic CTCU is structured as illustrated in Figure 6. The ifmaps buffer (IFB) and

the weights buffer (WB) collect, respectively, the NA-bit pixels of the incoming TM ifmaps

and the NW-bit coefficients of the received ⌈
𝑇𝑁

𝑅
⌉ filters. In particular, the IFB circuit is re-

sponsible for arranging the KC × KC-sized sliding windows that will be processed through

the proposed algorithm. When TCONVs are executed, the remap unit (RU) performs the

first step of the proposed approach. It implements the novel logic discussed above in Sec-

tion 3 to remap the TM KC × KC sliding windows into as many k × k windows. The ⌈
𝑇𝑁

𝑅
⌉

CONV/TCONV engines (CTCEs) execute the element-wise multiplications and the accu-

mulations (steps 2 and 3 in Figure 2a); they receive the TM remapped windows and the

filters coefficients as arranged, in the meantime, by the WB. When CONVs are executed

with kernel sizes greater than 1, the RU is bypassed; thus, the IFB and WB feed directly

the CTCE. In the case of 1 × 1 CONVs, both the IFB and the RU are bypassed, thus input-

ting the ifmaps directly to the CTCE.

Figure 6. The architecture of the CONV/TCONV unit.

Figure 5. The top-level architecture of the proposed hardware accelerator.

J. Imaging 2021, 7, 210 8 of 16

The CM splits the incoming TN filters into R groups and employs as many CONV/TCONV
units (CTCUs). Each CTCU, depending on the received control and configuration signals,
arranges data in proper sliding windows and executes either CONVs or TCONVs by
processing the TM ifmaps and its own

⌈
TN
R

⌉
filters. The results provided by the CTCUs are

then dispatched to the subsequent modules passing through the routing logic purposely
designed to take into account that the supported operating modes lead to different data
flows. In fact, depending on whether CONVs or TCONVs are performed, the intermediate
results related to the current TM input channels must be accumulated by the proper adder
trees (ATs). Then, data must be routed either to the ofmaps buffers, which happens when the
computation of the current TN ofmaps is not yet completed, or, vice versa, to the parametric
rectified linear units (PReLUs) that implement the linear rectification method demonstrated
in [24].

The generic CTCU is structured as illustrated in Figure 6. The ifmaps buffer (IFB) and
the weights buffer (WB) collect, respectively, the NA-bit pixels of the incoming TM ifmaps
and the NW-bit coefficients of the received

⌈
TN
R

⌉
filters. In particular, the IFB circuit is

responsible for arranging the KC × KC-sized sliding windows that will be processed through
the proposed algorithm. When TCONVs are executed, the remap unit (RU) performs the
first step of the proposed approach. It implements the novel logic discussed above in
Section 3 to remap the TM KC × KC sliding windows into as many k × k windows. The⌈

TN
R

⌉
CONV/TCONV engines (CTCEs) execute the element-wise multiplications and the

accumulations (steps 2 and 3 in Figure 2a); they receive the TM remapped windows and
the filters coefficients as arranged, in the meantime, by the WB. When CONVs are executed
with kernel sizes greater than 1, the RU is bypassed; thus, the IFB and WB feed directly the
CTCE. In the case of 1 × 1 CONVs, both the IFB and the RU are bypassed, thus inputting
the ifmaps directly to the CTCE.

J. Imaging 2021, 7, 210 8 of 17

Figure 5. The top-level architecture of the proposed hardware accelerator.

The CM splits the incoming TN filters into R groups and employs as many

CONV/TCONV units (CTCUs). Each CTCU, depending on the received control and con-

figuration signals, arranges data in proper sliding windows and executes either CONVs

or TCONVs by processing the TM ifmaps and its own ⌈
𝑇𝑁

𝑅
⌉ filters. The results provided by

the CTCUs are then dispatched to the subsequent modules passing through the routing

logic purposely designed to take into account that the supported operating modes lead to

different data flows. In fact, depending on whether CONVs or TCONVs are performed,

the intermediate results related to the current TM input channels must be accumulated by

the proper adder trees (ATs). Then, data must be routed either to the ofmaps buffers, which

happens when the computation of the current TN ofmaps is not yet completed, or, vice

versa, to the parametric rectified linear units (PReLUs) that implement the linear rectifi-

cation method demonstrated in [24].

The generic CTCU is structured as illustrated in Figure 6. The ifmaps buffer (IFB) and

the weights buffer (WB) collect, respectively, the NA-bit pixels of the incoming TM ifmaps

and the NW-bit coefficients of the received ⌈
𝑇𝑁

𝑅
⌉ filters. In particular, the IFB circuit is re-

sponsible for arranging the KC × KC-sized sliding windows that will be processed through

the proposed algorithm. When TCONVs are executed, the remap unit (RU) performs the

first step of the proposed approach. It implements the novel logic discussed above in Sec-

tion 3 to remap the TM KC × KC sliding windows into as many k × k windows. The ⌈
𝑇𝑁

𝑅
⌉

CONV/TCONV engines (CTCEs) execute the element-wise multiplications and the accu-

mulations (steps 2 and 3 in Figure 2a); they receive the TM remapped windows and the

filters coefficients as arranged, in the meantime, by the WB. When CONVs are executed

with kernel sizes greater than 1, the RU is bypassed; thus, the IFB and WB feed directly

the CTCE. In the case of 1 × 1 CONVs, both the IFB and the RU are bypassed, thus input-

ting the ifmaps directly to the CTCE.

Figure 6. The architecture of the CONV/TCONV unit.

Figure 6. The architecture of the CONV/TCONV unit.

While the WB uses just simple NW-bit shift registers, as shown in Figure 7, the IFB
consists of three main parts:

• The register window (RW), composed of KM × KM NA-bit registers, with KM being set
to TM × k × k, thus ensuring that up to TM k × k sliding windows can be accommo-
dated at a time. The sparse multiplexing logic visible in Figure 7 guarantees that the
used registers are properly cascaded according to the current value of k.

• The line shift buffer, used to locally store Wi − k pixels of k − 1 rows of each re-
ceived ifmap, and to perform shift operations, as conventionally required to properly
accommodate the sliding windows during the overall computation.

• The padding logic, used to establish if the current sliding windows must be zero-
padded, which occurs when the current anchor points are associated with the border-
ing pixels of the processed ifmaps.

J. Imaging 2021, 7, 210 9 of 16

J. Imaging 2021, 7, 210 9 of 17

While the WB uses just simple NW-bit shift registers, as shown in Figure 7, the IFB

consists of three main parts:

 The register window (RW), composed of KM × KM NA-bit registers, with KM being set

to TM × k × k, thus ensuring that up to TM k × k sliding windows can be accommodated

at a time. The sparse multiplexing logic visible in Figure 7 guarantees that the used

registers are properly cascaded according to the current value of k.

 The line shift buffer, used to locally store Wi−k pixels of k−1 rows of each received

ifmap, and to perform shift operations, as conventionally required to properly accom-

modate the sliding windows during the overall computation.

 The padding logic, used to establish if the current sliding windows must be zero-

padded, which occurs when the current anchor points are associated with the bor-

dering pixels of the processed ifmaps.

Figure 7. The organization of the ifmaps buffer.

Within the CTCE, multiplications and accumulation are performed, respectively,

through two different pipeline sub-circuits, here named Type-A (TA) and Type-B (TB). As

visible in Figure 8, each tile consists of several processing elements (PEs). The PEs inside

the TAs execute MACs, whereas the PEs within the TBs perform two-operand additions.

In order to provide a flexible architecture, suitable for performing both CONVs and

TCONVs under different operating conditions, the CTCE exploits several TA and TB cir-

cuits, which are connected to one another by multiplexers. The latter allow to activate a

specific path within the CTCE, depending on the currently processed kernel size. Taking

into account that, as observed in the previous sections, at the parity of the kernel size, the

TCONVs are more complex than CONVs, the employed sub-circuits TAs and TBs have

been organized to comply with the computational capability required by TCONVs in the

worst case, thus intrinsically being able to also satisfy the computational requirements of

CONVs. As an example, Figure 9 illustrates the design of the CTCE when it has to comply

with a 9 × 9 TCONVs at SD = 2. In this regard, 13 TAs and eight TBs are properly arranged

to accomplish steps 2 and 3 of the proposed method. The TAs, consisting of 81 PEs, exploit

as many multipliers to execute the element-wise matrix multiplication (step 2). Accumu-

lators internal to the TAs, in conjunction with the 12 PEs provided by the TBs, perform

the chessboard accumulations (step 3) to furnish the parallel results as in Equation (1). In

Figure 9, the SD × SD parallel outputs are labeled as 5 × 5_r0, 5 × 4_r, 4 × 5_r, and 4 × 4_r,

respectively. Subsequently, the external module ATs for TCONVs (visible in Figure 5)

Figure 7. The organization of the ifmaps buffer.

Within the CTCE, multiplications and accumulation are performed, respectively,
through two different pipeline sub-circuits, here named Type-A (TA) and Type-B (TB). As
visible in Figure 8, each tile consists of several processing elements (PEs). The PEs inside
the TAs execute MACs, whereas the PEs within the TBs perform two-operand additions. In
order to provide a flexible architecture, suitable for performing both CONVs and TCONVs
under different operating conditions, the CTCE exploits several TA and TB circuits, which
are connected to one another by multiplexers. The latter allow to activate a specific path
within the CTCE, depending on the currently processed kernel size. Taking into account
that, as observed in the previous sections, at the parity of the kernel size, the TCONVs are
more complex than CONVs, the employed sub-circuits TAs and TBs have been organized
to comply with the computational capability required by TCONVs in the worst case, thus
intrinsically being able to also satisfy the computational requirements of CONVs. As
an example, Figure 9 illustrates the design of the CTCE when it has to comply with a
9 × 9 TCONVs at SD = 2. In this regard, 13 TAs and eight TBs are properly arranged to
accomplish steps 2 and 3 of the proposed method. The TAs, consisting of 81 PEs, exploit as
many multipliers to execute the element-wise matrix multiplication (step 2). Accumulators
internal to the TAs, in conjunction with the 12 PEs provided by the TBs, perform the
chessboard accumulations (step 3) to furnish the parallel results as in Equation (1). In
Figure 9, the SD × SD parallel outputs are labeled as 5 × 5_r0, 5 × 4_r, 4 × 5_r, and 4 × 4_r,
respectively. Subsequently, the external module ATs for TCONVs (visible in Figure 5) sums
the referred outputs to the homologous results furnished by the other CTCEs operating in
parallel. In addition, both TAs and TBs can be used to perform different CONVs, as follows:

J. Imaging 2021, 7, 210 10 of 17

sums the referred outputs to the homologous results furnished by the other CTCEs oper-

ating in parallel. In addition, both TAs and TBs can be used to perform different CONVs,

as follows:

Figure 8. Example of PEs arranged in tiles: (a) TA with four Pes; (b) TB with two PEs.

Figure 9. An example of the computations performed by CONV/TCONV engine (CTEC) when k is

up to 9 and SD = 2.

Figure 8. Example of PEs arranged in tiles: (a) TA with four Pes; (b) TB with two PEs.

J. Imaging 2021, 7, 210 10 of 16

J. Imaging 2021, 7, 210 10 of 17

sums the referred outputs to the homologous results furnished by the other CTCEs oper-

ating in parallel. In addition, both TAs and TBs can be used to perform different CONVs,

as follows:

Figure 8. Example of PEs arranged in tiles: (a) TA with four Pes; (b) TB with two PEs.

Figure 9. An example of the computations performed by CONV/TCONV engine (CTEC) when k is

up to 9 and SD = 2.
Figure 9. An example of the computations performed by CONV/TCONV engine (CTEC) when k is
up to 9 and SD = 2.

1. Twelve 1 × 1 CONVs, whose results are 1 × 1_ru, with u = 0, . . . ,11;
2. Nine 3 × 3 CONVs, with the furnished results being 3 × 3_rx, with x = 0, . . . ,8;
3. Three 5 × 5 CONVs, whose results are 5 × 5_ry, with y = 0, . . . ,2;
4. One 7 × 7 CONV; in this case the results 5 × 5_r0 and the 5 × 5_r1 are added by the

external module ATs for CONVs;
5. One 9 × 9 CONV; in such a case the results 5 × 5_r0, the 5 × 4_r, 4 × 5_r, and 4 × 4_r

are summed up by the external module ATs for CONVs.

Depending on which operation must be currently performed (e.g., CONVs or TCONVs)
and based on the filter size k, the auxiliary multiplexing logic also depicted in Figure 9 coor-
dinates the cooperation between TAs and TBs and guarantees that the different supported
operations are performed correctly. The gray boxes represent the pipeline stages that, being
deep as indicated by the reported numbers, time-align the performed computations.

It is worth noting that, in order to make the above-described CTCE able to support
different up-sampling factors, just a few and simple modifications are required, either on
the viable paths or on the compositions of the sub-circuits TAs and TBs.

In order to explain the rest of the elaboration, let us refer to Figure 6 and suppose
that the first computational step, related to the first TM ifmaps, is just completed with
the delivery of the first TN intermediate ofmaps as provided either by the module ATs for
TCONVs or by the module ATs for CONVs. In the first step, such intermediate ofmaps are

J. Imaging 2021, 7, 210 11 of 16

locally stored in the ofmaps buffer, waiting to be accumulated to the TN intermediate ofmaps
that will be produced at the next step. The accumulation results are again locally stored in
the buffer for the subsequent accumulations, and the operations go on in this way until
the execution of the

⌈
M
TM

⌉
-th step takes place, thus furnishing the final TN ofmaps. Before

being transferred to an external data memory, the latter are rectified by the PReLU units
implementing the linear rectification approach demonstrated in [24].

All of the operations described above are executed
⌈

N
TN

⌉
times, i.e., until all the N

final ofmaps are computed.

5. Experimental Results and Comparisons

As a case study, the real context of CNN-based SR imaging was referred to and the
proposed approach was adopted to accelerate the popular FSRCNN model [10]. For this
purpose, the hardware architecture described in the previous section was tailored to comply
with the configurations summarized, layer by layer, in Table 1. Here, M and N refer to the
number of ifmaps and ofmaps, k and SD are the kernel size and the up-sampling factor, and
TM and TN are the number of ifmaps and ofmaps processed in parallel. It is worth noting that
how many instances of the CTCU module are used, i.e., the value of R, is established at the
design time to achieve a better trade-off between speed performances and area occupancy.
For the referred case study, R = 12 was chosen, since it complies well with the requirements
of the overall network model and allows reducing the inference time by more than 90%
with respect to the case in which R = 1. Table 1 also reports the parameter PN, which
indicates how many output values are computed in parallel for each of the TN furnished
ofmaps. When the TCONV layer is executed, PN equals SD × SD, with SD being set to 2,
3, or 4, as established at the design time. The parameters M, N, k, and SD are elaborated
by the FSM that: (1) The run-time configures the proposed hardware accelerator, thus
ensuring that TM and TN change properly as required by each layer; (2) scans the various
computational steps.

Table 1. The run-time configurations of the novel hardware accelerator related to the FSRCNN.

Layer Op Mode M N k SD TM TN PN

1 CONV 1 56 5 1 1 3 × R 1
2 CONV 56 12 1 1 56 R 1
3 CONV 12 12 3 1 9 R 1
4 CONV 12 12 3 1 9 R 1
5 CONV 12 12 3 1 9 R 1
6 CONV 12 12 3 1 9 R 1
7 CONV 12 56 1 1 12 3 × R 1

8 TCONV 56 1 9 2, 3, or 4 R 1 4, 9, or 16

The novel accelerator exploits fixed-point arithmetic with activations and filters quan-
tized, respectively, to 16 and 10 bits. Such a choice, which arises from a preliminary analysis
conducted to evaluate the impact of different quantization levels on the quality of recon-
structed images, allows improving the area occupancy by 60% and 18% with respect to
32- and 16-bit fixed-point versions, respectively, with detrimental effects on the quality of
reconstructed images. Three different versions of the novel accelerator, each performing
the TCONV layer with a specific up-sampling factor, have been designed by using the
very high-speed integrated circuits hardware description language (VHDL) at the register
transfer-level abstraction. Experimental tests were performed using the Xilinx ZCU102
development board [25], experiencing a frame rate of 192.3 fps when 256 × 256 input
images were processed. Implementation results, obtained utilizing the Xilinx XC7K410T
and XCZU9EG FPGA devices and the 2019.2 Vivado Design Suite, were collected in Table 2,
reporting that:

J. Imaging 2021, 7, 210 12 of 16

- The amount of occupied look-up tables (LUTs), flip-flops (FFs), blocks of random
access memory (BRAMs), and digital signal processing slices (DSPs);

- The power consumption, estimated through the switching activity values file (SAIF)
that, referring to several benchmark images, taking into account the real activities of
all nodes within the analyzed circuit;

- The speed performance, evaluated in terms of the maximum running frequency
and the giga operations per second (GOPS), which is the ratio between the overall
computational complexity of the referred model and the inference time;

- The energy efficiency (GOPS/W), which is defined as the ratio between the GOPS and
the power consumption.

Table 2. Implementation results and comparison with state-of-the-art competitors.

Accelerator Proposed Proposed [11] [13] [15] [17]

FPGA Device XCK410T XCZU9EG XCK410T XCVU095 XCZU9EG XCVU9P
Model FSRCNN(x,y,z,w) (56, 12, 4, 9) (56, 12, 4, 9) (25, 5, 1, 7) (56, 12, 4, 8) (32, 5, 1, 9) (32, 5, 1, -) 2

Variable k Yes, No Yes, No No, Yes Yes, 1 Yes No, No No, No

Supported SD 2, 3, 4 2, 3, 4 2, 3, 4 2, 3, 4 2 2

#bits (activations, filters) (16, 10) (16, 10) (13, 13) (16, 8) (16, 16) (14, 10)
Max frequency [MHz] 227 250 130 200 200 200

LUTs
SD = 2 63.1 k 60.6 k

167 k 42 k
168.6 k 94 k

SD = 3 56.9 k 54.6 k - -
SD = 4 77.2 k 74.4 k - -

FFs
SD = 2 101.2 k 101.2 k

158 k 20 k
NA 19 k

SD = 3 85.5 k 85.5 k - -
SD = 4 122.8 k 122.8 k - -

BRAMs [Mb]
SD = 2 14.3 12

7.2 4.85
10.9 0.4

SD = 3 14.3 12 - -
SD = 4 18.6 15.5 - -

DSPs
SD = 2 1212 1212

1512 576
746 2146

SD = 3 1140 1140 - -
SD = 4 1296 1296 - -

Power [W]
SD = 2 3.6 3.8 5.4 3.71 NA 6.9
SD = 3 3.5 3.85 - - - -
SD = 4 3.9 4 - - - -

GOPS
SD = 2 654.3 720.6 780 605.6 795.2 3 541.4 4

SD = 3 1223.5 1347.5 1576.3 1086.1 - -
SD = 4 2022.2 2227 2691 1868.8 - -

GOPS/W
SD = 2 181.8 189.6 144.9 163.7 NA 78.5
SD = 3 349.6 350 293 293.5 - -
SD = 4 518.5 556.8 500.2 505.1 - -

1 The CONV kernel sizes range from 1 × 1 to 4 × 4. 2 The TCONV layer is replaced with an ESPCN layer. 3 Calculated considering the
120.4 frames per second declared in [15]. 4 Calculated considering the 60 frames per second declared in [17].

Table 2 also summarizes the implementation characteristics of representative state-
of-the-art FPGA-based designs that, being devoted to the acceleration of CNNs for the SR
imaging, have been selected as the direct competitors, even though they refer to somewhat
different models from the original FSRCNN presented in [10]. As an example, while
the designs proposed here were characterized referring to the whole model reported in
Table 1, thus performing four cascaded CONV layers with k = 3 (i.e., layers 3, 4, 5, and 6),
the accelerators presented in [11,15,17] refer to simplified models and perform only one
CONV layer with k = 3. As a further simplification, to relieve the computational load, the
design described in [17] replaces the TCONV with an efficient sub-pixel CONV (ESPCN)
layer that provides up-sampled ofmaps through a periodic shuffling [26]. Conversely,
the reconfigurable design presented in [13] refers to the original FSRCNN model, but it

J. Imaging 2021, 7, 210 13 of 16

performs CONVs with kernels sizes ranging from 1 × 1 to 4 × 4 and changes the TCONV
kernel size from 9 × 9 to 8 × 8.

In order to point out the main differences between the network models accelerated
by the compared designs, they are referenced in Table 2 as FSRCNN(x,y,z,w). There, x, y,
z, and w are, respectively, the number of ofmaps outputted by the first CONV layer, the
number of ofmaps furnished by the subsequent CONV layers, the last excepted, the number
of cascaded CONV layers with kernel size k = 3, and the TCONV kernel size.

By examining the results summarized in Table 2, it can be observed that, although
referring to the most complex CNN model, due to their particularly efficient flexible archi-
tecture, the proposed accelerators lead to lower power consumptions. The power savings
achieved with respect to [11,17] come from the capability of the proposed designs of the
run-time adapting to different CONV kernel sizes. Without such a capability, the imple-
mentations characterized in [11,15,17] must employ a different ad-hoc architecture for each
layer, thus negatively affecting the power consumption and the resources requirements.

In comparison to [11], the proposed XCK410T-based implementations save more than
53.7% LUTs, 22.3% FFs, and 14.3% DSPs, and improve the energy efficiency by up to
25.5%, which is also the result of avoiding multiplications with sparse filters, as required
by [11]. These advantages are obtained even though the CNN model referenced in the
novel designs is more complex than [11], which instead benefits from the reduced model
complexity in terms of GOPS.

Table 2 clearly shows that the design demonstrated in [13] is particularly efficient in
terms of occupied hardware resources. Nevertheless, when compared to [13], the novel
accelerators implemented on the XCZU9EG chip consume ~3% less power and achieve up
to ~16% higher GOPS, although they perform CONVs and TCONVs with greater kernel
sizes and coefficients bit width.

The accelerator presented in [15] sacrifices a certain amount of hardware resources
to implement a very deep pipeline, thus reaching the highest GOPS. However, such
an advantage is obtained to the detriment of occupied LUTs, as a consequence of the
Winograd algorithm implementation: In comparison to the proposed accelerator at a
parity of implementation chip and SD, [15] performs ~9.5% more GOPS, but the amount of
occupied LUTs is ~2.8 times higher.

Finally, from Table 2, it can be seen that, despite the simplifications introduced to
reduce the computational complexity of the referred CNN model, at a parity of the up-
sampling factor SD = 2, the design proposed in [17] occupies ~48.9% and ~77% more
LUTs and DSPs than the novel accelerator targeting the XCK410T chip. Furthermore, the
design presented here exhibits considerably improved speed performances and power
consumption, which lead to a ~2.3 times higher energy efficiency.

For the sake of a fair analysis, the FSRCNN models referenced in Table were compared
also in terms of the quality achieved at different up-scaling factors.

Software routines modeling the proposed accelerators were on-purpose written to
process the popular Set-5, Set-14, and B100 datasets and to evaluate the peak signal-to-
noise ratio (PSNR) and the structural similarity (SSIM) [27]. Table 3 clearly shows that
the strategy adopted here to transform TCONVs into CONVs does not affect the quality
of reconstructed images. Indeed, in most of the analyzed cases, slightly improved PSNR
and SSIM were achieved with respect to [11,13,17]. Furthermore, the small quality loss
experienced in a few cases is well compensated by the benefits offered by the proposed
method over its competitors in terms of some implementation characteristics. It is worth
noting that the counterpart [15] was not included in the comparisons because the quality
metrics furnished in the original paper are related to quite different datasets.

Finally, Figure 10 shows a sample image from the Set-5 dataset that was up-sampled
by using the proposed approach at SD = 2. As expected, the details were well reconstructed
and, in this case, the achieved PSNR was 31.48 dB.

J. Imaging 2021, 7, 210 14 of 16

Table 3. Comparison results in terms of the PSNR and SSIM quality metrics.

Proposed [11] [13] [17]

Dataset SD PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set-5 2 35.68 0.9459 36.40 0.9527 35.85 NA 36.42 0.9529
Set-14 2 31.34 0.8650 32.21 0.9047 NA NA 32.27 0.9045
B100 2 30.28 0.8765 31.15 0.8858 NA NA 31.18 0.8859
Set-5 3 32.52 0.8816 32.48 0.9043 32.03 NA NA NA
Set-14 3 29.04 0.7975 29.03 0.8146 NA NA NA NA
B100 3 28.27 0.7854 28.25 0.7808 NA NA NA NA
Set-5 4 30.6 0.8577 30.17 0.8532 29.48 NA NA NA
Set-14 4 27.52 0.7480 27.24 0.7414 NA NA NA NA
B100 4 26.90 0.7135 26.71 0.7041 NA NA NA NA

J. Imaging 2021, 7, 210 14 of 17

advantage is obtained to the detriment of occupied LUTs, as a consequence of the Wino-

grad algorithm implementation: In comparison to the proposed accelerator at a parity of

implementation chip and SD, [15] performs ~9.5% more GOPS, but the amount of occupied

LUTs is ~2.8 times higher.

Finally, from Table 2, it can be seen that, despite the simplifications introduced to

reduce the computational complexity of the referred CNN model, at a parity of the up-

sampling factor SD = 2, the design proposed in [17] occupies ~48.9% and ~77% more LUTs

and DSPs than the novel accelerator targeting the XCK410T chip. Furthermore, the design

presented here exhibits considerably improved speed performances and power consump-

tion, which lead to a ~2.3 times higher energy efficiency.

For the sake of a fair analysis, the FSRCNN models referenced in Table were com-

pared also in terms of the quality achieved at different up-scaling factors.

Software routines modeling the proposed accelerators were on-purpose written to

process the popular Set-5, Set-14, and B100 datasets and to evaluate the peak signal-to-

noise ratio (PSNR) and the structural similarity (SSIM) [27]. Table 3 clearly shows that the

strategy adopted here to transform TCONVs into CONVs does not affect the quality of

reconstructed images. Indeed, in most of the analyzed cases, slightly improved PSNR and

SSIM were achieved with respect to [11], [13], and [17]. Furthermore, the small quality loss

experienced in a few cases is well compensated by the benefits offered by the proposed

method over its competitors in terms of some implementation characteristics. It is worth

noting that the counterpart [15] was not included in the comparisons because the quality

metrics furnished in the original paper are related to quite different datasets.

Finally, Figure 10 shows a sample image from the Set-5 dataset that was up-sampled

by using the proposed approach at SD = 2. As expected, the details were well reconstructed

and, in this case, the achieved PSNR was 31.48 dB.

Table 3. Comparison results in terms of the PSNR and SSIM quality metrics.

 Proposed [11] [13] [17]

Dataset SD PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set-5 2 35.68 0.9459 36.40 0.9527 35.85 NA 36.42 0.9529

Set-14 2 31.34 0.8650 32.21 0.9047 NA NA 32.27 0.9045

B100 2 30.28 0.8765 31.15 0.8858 NA NA 31.18 0.8859

Set-5 3 32.52 0.8816 32.48 0.9043 32.03 NA NA NA

Set-14 3 29.04 0.7975 29.03 0.8146 NA NA NA NA

B100 3 28.27 0.7854 28.25 0.7808 NA NA NA NA

Set-5 4 30.6 0.8577 30.17 0.8532 29.48 NA NA NA

Set-14 4 27.52 0.7480 27.24 0.7414 NA NA NA NA

B100 4 26.90 0.7135 26.71 0.7041 NA NA NA NA

(a) (b)

Figure 10. Sample results obtained with SD = 2: (a) The original image (from the public dataset Set-5

http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html (accessed on 25 August 2021) [28]); (b) the re-

constructed image.

0

50

100

150

200

250

0 100 200
0

100

200

300

400

500

0 100 200 300 400 500

Figure 10. Sample results obtained with SD = 2: (a) The original image (from the public dataset Set-5
http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html (accessed on 25 August 2021) [28]); (b) the
reconstructed image.

6. Conclusions

This paper presented an efficient hardware-oriented algorithm suitable to comply with
the computational requirements of both the CONV and TCONV layers of many popular
CNNs. The proposed approach was implemented by a flexible hardware architecture able
for the run-time to adapt itself to different operating modes at various kernel and fmap sizes.
In contrast to state-of-the-art counterparts, the novel strategy adopted here to transform
TCONVs into CONVs does not require either pre-processing stages or offline kernels
decompositions. Indeed, it exploits a simple reorganization of the sliding windows picked
up from the incoming ifmaps. The capability of supporting different operating conditions
and the simplicity of the remapping strategy led to reconfigurable hardware designs
characterized by low power consumption, high-speed performance, and parsimonious
utilization of logic resources.

In order to demonstrate the efficiency of the proposed approach, a fast super reso-
lution CNN was referenced as a case study. Three versions of the novel reconfigurable
hardware accelerator were implemented, each supporting a specific up-sampling factor.
The characterization results obtained using the Xilinx XC7K410 FPGA device demonstrated
that, although they refer to more complex CNN models, the proposed designs consume less
power than their counterparts, occupying from 1.5 to 2.7 times less LUTs, and exhibiting
an energy efficiency from 1.1 to 2.3 times higher. The tests performed on several datasets
also demonstrated that the above advantages are achieved without compromising either
the PSNR or the SSIM quality metrics.

Author Contributions: Conceptualization, F.S. and S.P.; methodology, C.S., F.S. and S.P.; validation,
C.S. and F.S.; formal analysis, C.S., F.S. and S.P.; investigation, C.S., F.S. and S.P.; writing—review
and editing, C.S., F.S. and S.P.; supervision, S.P. All authors have read and agreed to the published
version of the manuscript.

http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html

J. Imaging 2021, 7, 210 15 of 16

Funding: This research was supported by “POR Calabria FSE/FESR 2014-2020 International Mobility
of PhD students and research grants/type A Researchers.” Actions 10.5.6 and 10.5.12, actuated by
Regione Calabria, Italy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Figure A1 details how the proposed approach processes the generic KC × KC sliding
window with the pixel Ii,j in the top-left position.

J. Imaging 2021, 7, 210 16 of 17

Figure A1. Software model of the proposed approach.

References

1. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149.

2. Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. HCP: A Flexible CNN Framework for Multi-Label Image

Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1901–1907.

3. Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ben Ayed, I. HyperDense-Net: A Hyper-Densely Connected CNN

for Multi-Modal Image Segmentation. IEEE Trans. Medic. Imaging 2019, 38, 1116–1126.

4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90.

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference

on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

6. Wu, R.; Guo, X.; Du, J.; Li, J. Accelerating Neural Network Inference on FPGA-Based Platforms—A Survey. Electronics 2021, 10,

1025.

7. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.

Mach. Intell. 2016, 38, 295–307.

8. Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Conference

on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004.

9. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. “Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19,

2861–2873.

10. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European

Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016.

Figure A1. Software model of the proposed approach.

J. Imaging 2021, 7, 210 16 of 16

References
1. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
2. Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. HCP: A Flexible CNN Framework for Multi-Label

Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1901–1907. [CrossRef] [PubMed]
3. Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ben Ayed, I. HyperDense-Net: A Hyper-Densely Connected CNN

for Multi-Modal Image Segmentation. IEEE Trans. Medic. Imaging 2019, 38, 1116–1126. [CrossRef] [PubMed]
4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
6. Wu, R.; Guo, X.; Du, J.; Li, J. Accelerating Neural Network Inference on FPGA-Based Platforms—A Survey. Electronics 2021, 10, 1025.

[CrossRef]
7. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.

Mach. Intell. 2016, 38, 295–307. [CrossRef] [PubMed]
8. Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Conference on

Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004.
9. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. “Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19,

2861–2873. [CrossRef] [PubMed]
10. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European

Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016.
11. Chang, J.-W.; Kang, K.-W.; Kang, S.-J. An Energy-Efficient FPGA-Based Deconvolutional Neural Networks Accelerator for Single

Image Super-Resolution. IEEE Trans. Circ. Syst. Video Tech. 2020, 30, 281–295. [CrossRef]
12. Perri, S.; Sestito, C.; Spagnolo, F.; Corsonello, P. Efficient Deconvolution Architecture for Heterogeneous Systems-on-Chip.

J. Imaging 2020, 6, 85. [CrossRef] [PubMed]
13. Mao, W.; Lin, J.; Wang, Z. F-DNA: Fast Convolution Architecture for Deconvolutional Neural Network Acceleration. IEEE Trans. VLSI

2020, 28, 1867–1880. [CrossRef]
14. Tang, Z.; Luo, G.; Jiang, M. FTConv: FPGA Acceleration for Transposed Convolution Layers in Deep Neural Networks.

In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA,
24–26 February 2019.

15. Shi, B.; Tang, Z.; Luo, G.; Jiang, M. Winograd-based Real-Time Super-Resolution System on FPGA. In Proceedings of the 2019
International Conference on Field-Programmable Technology, Tianjin, China, 9–13 December 2019.

16. Kim, Y.; Choi, J.-S.; Kim, M. A Real-Time Convolutional Neural Network for Super-Resolution on FPGA with Applications to 4k
UHD 60 fps Video Services. IEEE Trans. Circ. Syst. Video Tech. 2019, 29, 2521–2534. [CrossRef]

17. Lee, S.; Joo, S.; Ahn, H.K.; Jung, S.-O. CNN Acceleration with Hardware-Efficient Dataflow for Super-Resolution. IEEE Access
2020, 8, 187754–187765. [CrossRef]

18. Dumoulin, V.; Visin, F. A Guide to convolution arithmetic for deep learning. arXiv 2021, arXiv:1603.07285.
19. Yu, Y.; Zhao, T.; Wang, M.; Wang, K.; He, L. Uni-OPU: An FPGA-Based Uniform Accelerator for Convolutional and Transposed

Convolutional Networks. IEEE Trans. VLSI 2020, 28, 1545–1556. [CrossRef]
20. Sestito, C.; Spagnolo, F.; Corsonello, P.; Perri, S. Run-Time Adaptive Hardware Accelerator for Convolutional Neural Networks.

In Proceedings of the 16th Conference on PhD Research in Microelectronics and Electronics, online, 19–22 July 2021.
21. Yazdanbakhsh, A.; Brzozowki, M.; Khaleghu, B.; Ghodrati, S.; Samadi, K.; Kim, N.S.; Esmeilzadeh, H. FlexiGAN: An End-to-End

Solution for FPGA Acceleration of Generative Adversarial Networks. In Proceedings of the 2018 IEEE 26th Annual Symposium
on Field-Programmable Custom Computing Machines, Boulder, CO, USA, 29 April–1 May 2018.

22. Wang, D.; Shen, J.; Wen, M.; Zhang, C. Efficient Implementation of 2D and 3D Sparse Deconvolutional Neural Networks with a
Uniform Architecture on FPGAs. Electronics 2019, 8, 803. [CrossRef]

23. Di, X.; Yang, H.-G.; Jia, Y.; Huang, Z.; Mao, N. Exploring Efficient Acceleration Architecture for Winograd-Transformed Transposed
Convolution of GAN on FPGAs. Electronics 2020, 9, 286. [CrossRef]

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015.

25. ZCU102Evaluation Board User Guide UG1182 (v1.6). Available online: https://www.xilinx.com/content/dam/xilinx/support/
documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf (accessed on 24 September 2021).

26. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

27. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity.
IEEE Trans. Image Processing 2004, 13, 600–612. [CrossRef] [PubMed]

28. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, M.L.A. Low-complexity single-image super-resolution based on nonnegative
neighbor embedding. In Proceedings of the British Machine Vision Conference, Surrey, UK, 7–10 September 2020; pp. 1–10.

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/TPAMI.2015.2491929
http://www.ncbi.nlm.nih.gov/pubmed/26513778
http://doi.org/10.1109/TMI.2018.2878669
http://www.ncbi.nlm.nih.gov/pubmed/30387726
http://doi.org/10.1145/3065386
http://doi.org/10.3390/electronics10091025
http://doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
http://doi.org/10.1109/TIP.2010.2050625
http://www.ncbi.nlm.nih.gov/pubmed/20483687
http://doi.org/10.1109/TCSVT.2018.2888898
http://doi.org/10.3390/jimaging6090085
http://www.ncbi.nlm.nih.gov/pubmed/34460742
http://doi.org/10.1109/TVLSI.2020.3000519
http://doi.org/10.1109/TCSVT.2018.2864321
http://doi.org/10.1109/ACCESS.2020.3031055
http://doi.org/10.1109/TVLSI.2020.2995741
http://doi.org/10.3390/electronics8070803
http://doi.org/10.3390/electronics9020286
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction
	Background and Related Works
	The Hardware-Oriented Algorithm Proposed to Convert TCONVs into CONVs
	The Proposed Run-Time Reconfigurable Hardware Accelerator
	Experimental Results and Comparisons
	Conclusions
	
	References

