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Abstract: Table detection is a preliminary step in extracting reliable information from tables in
scanned document images. We present CasTabDetectoRS, a novel end-to-end trainable table de-
tection framework that operates on Cascade Mask R-CNN, including Recursive Feature Pyramid
network and Switchable Atrous Convolution in the existing backbone architecture. By utilizing
a comparativelyightweight backbone of ResNet-50, this paper demonstrates that superior results
are attainable without relying on pre- and post-processing methods, heavier backbone networks
(ResNet-101, ResNeXt-152), and memory-intensive deformable convolutions. We evaluate the pro-
posed approach on five different publicly available table detection datasets. Our CasTabDetectoRS
outperforms the previous state-of-the-art results on four datasets (ICDAR-19, TableBank, UNLV, and
Marmot) and accomplishes comparable results on ICDAR-17 POD. Upon comparing with previous
state-of-the-art results, we obtain a significant relative error reduction of 56.36%, 20%, 4.5%, and
3.5% on the datasets of ICDAR-19, TableBank, UNLV, and Marmot, respectively. Furthermore, this
paper sets a new benchmark by performing exhaustive cross-datasets evaluations to exhibit the
generalization capabilities of the proposed method.

Keywords: table detection; table recognition; cascade Mask R-CNN; atrous convolution; recursive
feature pyramid networks; document image analysis; deep neural networks; computer vision;
object detection

1. Introduction

The process of digitizing documents has received significant attention in various do-
mains, such as industrial, academic, and commercial sectors. The digitization of documents
facilitates the process of extracting information without manual intervention. Apart from
the text, documents contain graphical page objects, such as tables, figures, and formu-
las [1,2]. Albeit modern Optical Character Recognition (OCR) systems [3–5] can extract the
information from scanned documents, they fail to interpret information from graphical
page objects [6–9]. Figure 1 exhibits the problem of extracting tabular information from a
document by applying open-source Tesseract OCR [10]. It is evident that even the state-of-
the-art OCR system fails to parse information from tables in document images. Therefore,
for complete table analysis, it is essential to develop accurate table detection systems for
document images.

The problem of accurate table detection in document images is still an open problem in
the research community [8,11–14]. The high amount of intra-class variance (arbitraryayouts
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of tables, varying presence of rulingines) andow amount of inter-class variance (figures,
charts, and algorithms equipped with horizontal and verticalines thatookike tables) makes
the task of classifying andocalizing tables in document images even more challenging.
Owing to these involved intricacies in table detection, custom heuristics based methodsack
in producing robust solutions [15,16].

Figure 1. Illustrating the need of applying table detection before extracting information in document
images. We apply open source Tesseract-OCR [10] on a document image containing two tables.
Besides the textual content, the OCR system fails miserably in interpreting information from tables.

Prior works have tackled the involved challenges of table detection througheverag-
ing meta-data or utilizing morphological information from tables. However, these meth-
ods are vulnerable in case of scanned document images [17,18]. Later, the utilization of
deepearning-based approaches to attempt the task of table detection in document images
have shown a remarkable improvement in the past few years [8]. Intuitively, the task of
table detection has been formulated as an object detection problem [7,19–21], in which
a table can be a targeted object present in a document image instead of a natural scene
image. Consequently, the rapid progress in object detection algorithms hased to the ex-
traordinary improvement in state-of-the-art table detection systems [11–13,20]. However,
the prior approaches struggle in predicting preciseocalization of tabular boundaries in
distinctive datasets. Moreover, they either rely on external pre-/post-processing methods
to further refine their predictions [11,13] or incorporate memory intensive deformable
convolutions [12,20]. Furthermore, prior state-of-the-art methods relied on heavy and high
resolution backbones, such as ResNeXt-101 [22] and HRNet [23], which require expensive
process of training.

To tackle the aforementioned issues present in existing approaches, we present CasTab-
DetectoRS, an end-to-end trainable novel object detection pipeline by incorporating the
idea of Recursive Feature Pyramids (RFP) and Switchable Atrous Convolutions (SAC) [24]
into Cascade Mask R-CNN [25] for detection of tables in document images. Furthermore,
this paper empirically establishes that generic and robust table detection systems can be
built without depending on pre-/post-processing methods and heavy backbone networks.

To summarize, the main contribution of this work are explained below:

• We present CasTabDetectoRS, a novel deepearning-based table detection approach
that operates on Cascade Mask R-CNN equipped with recursive feature pyramid and
switchable atrous convolution.

• We experimentally deny the dependency of custom heuristics or heavier backbone
networks to achieve superior results on table detection in scanned document images.

• We accomplish state-of-the-art results on four publicly available table detection
datasets: ICDAR-19, TableBank, Marmot, and UNLV.

• We demonstrate the generalization capabilities of the proposed CasTabDetectoRS by
performing the exhaustive cross-datasets evaluation.
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The remaining paper is structured as follows. Section 2 categorizes the prioriterature
into rule-based, earning-based, and object detection-based methods. Section 3 describes
the proposed table detection pipeline by addressing all the essential modules, such as RFP
(Section 3.1), SAC (Section 3.2), and Cascade Mask R-CNN (Section 3.3). Section 4 presents
the comprehensive overview of employed datasets, experimental details, and evaluation
criteria, along with quantitative and qualitative analysis that follows with a comparison
with previous state-of-the-art results and cross datasets evaluation. Section 5 concludes the
paper and outlines possible future directions.

2. Related Work

The problem of table detection in documents has been investigated over the
past few decades [16,26]. Earlier, researchers employed rule-based systems to solve
table detection [16,26–29]. Afterwards, researchers exploited statisticalearning, mainly
machineearning-based approaches, which were eventually replaced with deepearning-
based methods [7,8,11,12,19,20,30–34].

2.1. Rule-Based Methods

To the best of our knowledge, Itonori et al. [26] addressed the problem of table detec-
tion in document images by employing a rule-based method. The proposed approachever-
aged the arrangements of text-blocks and position of rulingines to detect tables in docu-
ments. Chandran and Kasturi [27] proposed another method that operates on rulingines
to resolve table detection. Similarly, Pyreddy and Croft [35] published a heuristics-based
table detection method that first identifies structural elements from a document and then
filters the table.

Researchers have defined tabularayouts and grammars to detect tables in docu-
ments [29,36]. The correlation of white spaces and vertical connected component analysis
is employed to predict tables [37]. Another method that transforms tables present in HTML
documents into aogical structure is proposed by Pivk et al. [36]. Shigarov et al. [18] capital-
ized the meta-data from PDF files and treated each word as a block of text. The proposed
method restructured the tabular boundaries byeveraging bounding boxes of each word.

We direct our readers to References [15,16,38–40] for a thorough understanding of
these rule-based methods. Although the prior rule-based systems detect tables in docu-
ment havingimited patterns, they rely on manual intervention toook for optimal rules.
Furthermore, they are vulnerable in producing generic solutions.

2.2. Learning-Based Methods

Similar to the field of computer vision, the domain of table analysis have experienced
a notable progress after incorporatingearning-based methods. Initially, researchers in-
vestigate machineearning-based methods to resolve table detection in document images.
Unsupervisedearning was implemented by Kieninger and Dengel [41] to improve table de-
tection in documents. Later, Cesarini et al. [42] employed supervisedearning-based system
to find tables in documents. Their system reforms document into MXY tree representation.
Later, the method predicts the tables by searching for blocks that are surrounded with
rulingines. Kasar et al. [43] proposed a blend of SVM classifier and custom heuristics [43]
to resolve table detection in documents. Researchers have also explored the capabilities
of Hidden Markov Models (HMMs) toocalize tabular areas in documents [44,45]. Even
though machineearning-based approaches have alleviated the research for table detection
in documents, they require external meta-data to execute reliable predictions. Moreover,
they fail to obtain generic solutions on document images.

Analogous to the field of computer vision, the power of deepearning has made a
remarkable impact in the field of table analysis in document images [2,8]. To the best of
our knowledge, Hao et al. [46] introduced the idea of implementing Convolutional Neural
Network (CNN) to identify spatial features from document images. The authors merged
these features with the extracted meta-data to predict tables in PDF documents.
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Although researchers have employed Fully Convolutional Network (FCN) [47,48] and
Graph Neural Network (GNN) [34,49] to perform table detection in document images, object
detection-based approaches [7,8,11,12,19,20,30–34] have delivered state-of-the-art results.

2.3. Table Detection as an Object Detection Problem

There has been a direct relationship with the progress of object detection networks
in computer vision and table detection in document images [8]. Gilani et al. [19] formu-
lated the problem of table detection as an object detection problem by applying Faster
R-CNN [50] to detect tables in document images. The presented work employed distance
transform methods to modify pixels in raw document images fed to the Faster R-CNN.

Later, Schreiber et al. [7] presented another method that exploits Faster R-CNN [50]
equipped with pre-trained base networks (ZFNet [51] and VGG-16 [52]) to detect tables
in document images. Furthermore, Siddiqui et al. [20] published another Faster R-CNN-
based method equipped with deformable convolutions [53] to address table detection
having arbitraryayouts. Moreover, in Reference [33], the authors employed Faster R-
CNN with a coronerocating an approach to improve the predicted tabular boundaries in
document images.

Saha et al. [54] empirically established that Mask R-CNN [55] produces better results as
compared to Faster R-CNN [50] in detecting tables, figures, and formulas. Zhong et al. [56]
presented a similar conclusion by applying Mask R-CNN toocalize tables. Moreover,
YOLO [57], SSD [58], and RetinaNet [59] have been employed to exhibit the benefits of
closed domain fine-tuning on table detection in document images.

Recently, researchers have incorporated novel object detection algorithms, such as Cas-
cade Mask R-CNN [25] and Hybrid Task Cascade (HTC) [60], to alleviate the performance
of table detection systems in document images [11–14]. Although these prior methods
have progressed state-of-the-art results, there is significant room for improvement inocaliz-
ing accurate tabular boundaries in scanned document images. Furthermore, the existing
table detection methods either rely on heavier backbones or incorporate memory-intensive
deformable convolutions. However, this paper proposes that state-of-the-art results can be
achieved on table detection in scanned document images with intelligent incorporation
of a relatively smaller backbone network with recursive feature pyramid networks and
switchable atrous convolutions.

3. Method

The presented approach incorporates RFP and SAC into a Cascade Mask R-CNN to
attempt table detection in scanned document images as exhibited in Figure 2. Section 3.1
discusses the RFP module, whereas Section 3.2 talks about SAC module. Section 3.3
describes the employed Cascade Mask R-CNN, along with complete description of the
proposed pipeline.

3.1. Recursive Feature Pyramids

Instead of the traditional Feature Pyramid Networks (FPN) [61], in our table detection
framework, we incorporate Recursive Feature Pyramids (RFP) [24] to improve the pro-
cessing of feature maps. To understand the conventional FPN,et Nj denote the j-th stage
of a bottom-up backbone network, and Fj represent the j-th top-down FPN function. The
backbone network N having FPN produces a set of feature maps, where total feature maps
are equal to the number of stages. For instance, a backbone network with three stages is
demonstrated in Figure 3. Therefore, with a number of stages S = 3, the output feature f j is
given by:

f j = Fj( f j+1, ij), ij = Nj(ij−1), (1)

where j iterates over 1, . . . , S, i0 represents the input image, and fS+1 is set to 0. However,
in the case of RFP, feedback connections are added to the conventional FPN, as illustrated
in Figure 3 with solid black arrows. If we include feature transformations Tj before joining
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the feedback connections from FPN to the bottom-up backbone, then, the output feature f j
of RFP is explained in Reference [24] as:

f j = Fj( f j+1, ij), ij = Nj(ij−1, Tj( f j)), (2)

where j enumerates over S, and the transformation of FPN to RFP makes it a recursive
function. If we unfold the RFP to a sequence of T, mathematically, it is given by:

f t
j = Ft

j ( f t
j+1, it

j), it
j = Nt

j (i
t
j−1, Tt

j ( f t
j )), (3)

where t enumerates over U, and U is the number of unfolded steps. The superscript t
represents the function and the features at unfolded step t. We empirically set U = 2 in
our experiments. For a comprehensive explanation of the RFP module, please refer to
Reference [24].

ResNet-50
having SAC

RPN
Network

D1
C1

B1

D2

D3

Pool

Pool

Pool
C2

B2

C3

B3

S

C

B

S

Bounding box

Classification

Segmentation

RFP
Network

Figure 2. Presented table detection framework consisting of Cascade Mask R-CNN, incorporating RFP and SAC in backbone
network (ResNet-50). The modules RFP and SAC are illustrated in separate figures.

Figure 3. Illustrating design of Recursive Feature Pyramid module. The Recursive Feature Pyramid
includes feedback connections that are highlighted with solidines. The top-down FPNayers send the
feedback to the bottom-up backboneayers by inspecting the image twice.

3.2. Switchable Atrous Convolution

We replace the conventional convolutions present in backbone network ResNet [62] and
FPN with SAC. The atrous convolution also referred to as dilated convolution [63] enables
the ability to increase the size of effective receptive field by introducing an atrous rate. For an
atrous rate of l in atrous convolution, it adds l− 1 zeros between the values of consecutive
filter. Due to this, the kernel with a size of k× k filter enlarges to a size of k + (k− 1)(l− 1)
without causing any change in the number of network parameters. Figure 4 depicts an
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example of a 3× 3 atrous convolution with the atrous rate of 1 (displayed in red), whereas
an atrous rate of 2 is demonstrated in green color.

Switch On

Switch Off

Lock

Figure 4. Illustrating Switchable Atrous Convolution. The red symbol
⊗

depicts atrous convolu-
tions with an atrous rate set to 1, whereas the green symbol

⊕
denotes an atrous rate of 2 in a

3 × 3 convolutionalayer.

To transform a convolutionalayer to SAC, we employ the basic atrous convolutional
operation Con that takes input i, weights w, and an atrous rate l and outputs y. Mathemati-
cally, it is given by:

y = Con(i, w, ). (4)

In case of SAC explained in Reference [24], the above convolutionalayer converts into:

Con(i, w, 1) SAC−−→ S(i) . Con(i, w, ) + (1− S(i)) . Con(i, w + ∆w, ), (5)

where S(.) defines the switch function which is implemented is a combination of an average
pooling and convolutionayer with kernel of 5× 5 and 1× 1, respectively. The symbol ∆w
is trainable weight, and l is a hyper-parameter. Owing to switch function, our backbone
network adapts to arbitrary scales of tabular images, defying the need for deformable
convolutions [53]. We empirically set the atrous rate, l to 3 in our experiments. Moreover,
we implement the idea ofocking mechanism [24] by setting the weights to w + ∆w in order
to exploit the backbone network pre-train on MS-COCO dataset [64]. Initially, ∆w = 0,
and w is set according to the pre-trained weights. We refer readers to Reference [24] for a
detailed explanation on SAC.

3.3. Cascade Mask R-CNN

To investigate the effectiveness of Recursive Feature Pyramid (RFP) and Switchable
Atrous Convolution (SAC) modules on the task of table detection in scanned document
images, we fuse these components into a cascade Mask R-CNN. The cascade Mask R-CNN
is a direct combination of Mask R-CNN [55] and a recently proposed Cascade R-CNN [25].

As depicted in Figure 5, the architecture of our utilized cascade Mask R-CNN closely
follows the cascaded architecture introduced in Reference [25], along with the addition
of segmentation branch at the final network head [55]. The proposed CasTabDetectoRS
consists of three detectors operating on rising IoU (Intersection over Union) thresholds of
0.5, 0.6, and 0.7, respectively. The Region of Interest (ROI) pooling takesearned proposals
from the Region proposal Network (RPN) and propagates the extracted ROI features to a
series of network heads. The first network head receives the ROI features and performs
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classification and regression. The output of the first detector is treated as an input for
the subsequent detector. Therefore, the predictions from the deeper network are refined
andess prone to produce false positives. Furthermore, each regressor is enhanced with
theocalization distribution estimated by the previous regressor instead of the actual initial
distribution. This enables the network head operating on a higher IoU threshold to predict
optimallyocalized bounding boxes. In the final stage of cascaded networks, along with
regression and classification, the network performs segmentation to advance the final
predictions further.

RPN
Network

D1
C1

B1

D2

D3

Pool

Pool

Pool
C2

B2

C3

B3

S

C

B

S

Bounding box

Classification

Segmentation

Feature Pyramid
Network

Figure 5. Explained architecture of Cascade Mask R-CNN module employed in the proposed pipeline.
The dotted boundary outlines the two-stage detection phase of Cascade Mask R-CNN.

As illustrated in Figure 2, the proposed CasTabDetectoRS employs ResNet-50 [62] as
a backbone network. Theightweight ResNet-50 backbone equipped with SAC generates
feature maps from the input scanned document image. The extracted feature maps are
passed to the RFP that optimally transforms the features byeveraging feedback connections.
Subsequently, these optimized features are passed to the RPN that estimates the potential
candidate regions of interest. In the first stage of cascade R-CNN, the network head takes
the proposals from RPN and feature maps from the FPN module and performs regression
and classification with an IoU threshold of 0.5. The subsequent stages of Cascade Mask
R-CNN further refine the predicted bounding boxes with an increasing IoU threshold.
Analogous to Reference [55], the network in the final cascaded stage segments the object in
a bounding box, along with classification and regression.

4. Experimental Results
4.1. Datasets
4.1.1. ICDAR-17 POD

The competition about detecting graphical Page Object Detection (POD) [1] was
organized at ICDAR in 2017, which yielded the ICDAR-2017 POD dataset. The dataset
contains bounding box information for tables, formulas, and figures. From 2417 images
present in the dataset, 1600 images are used to fine-tune our network, and 817 images
are utilized as a test set. Since the previous methods [12,20,30] have reported results on
varying IoU thresholds, we present our results with an IoU threshold value ranging from
0.5–0.9 to draw a direct comparison with prior methods. A couple of samples from this
dataset are illustrated in Figure 6.
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Figure 6. Sample document images from the ICDAR-17 POD dataset [1]. The red boundary represents the tabular area in
document images.

4.1.2. ICDAR-19

Another competition for Table Detection and Recognition (cTDaR) [65] is organized at
ICDAR in 2019. For the task of table detection (TRACK A), two new datasets (historical and
modern) are introduced in the competition. The historical dataset comprises hand-written
accountingedgers, train timetables, whereas the modern dataset consists of scientific papers,
forms, and commercial documents. In order to have a direct comparison against prior state-
of-the-art [11], we report results on the modern datasets with an IoU threshold ranging
from 0.5–0.9. Figure 7 depicts a pair of instances from this dataset.

4.1.3. TableBank

Currently, TableBank [66] is one of the enormous datasets publicly available for the task
of table detection in document images. The dataset comprises 417K annotated document
images that are obtained by crawling documents from the arXiv database. It is important
to highlight that we take 1500 images from the splits of Word and LaTeX and 3000 samples
from Word + LaTeX split. This enables our results to have a straightforward comparison
with earlier state-of-the-art results [11]. For a visual aid, a couple of samples from this
dataset are highlighted in Figure 8.

4.1.4. UNLV

UNLV [67] dataset comprises scanned document images collected from commercial
documents, research papers, and magazines. The dataset has around 10K images. However,
only 427 images contain tables. Since prior state-of-the-art methods [20] have only used
tabular images, we follow the identical split for direct comparison. Figure 9 depicts a pair
of document images from the UNLV dataset.
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Figure 7. Sample document images from the ICDAR 19 Track A (Modern) dataset [65]. The red boundary highlights the
tabular area in document images.

Figure 8. Sample document images from the TableBank dataset [66]. The red boundary outlines the tabular area in document images.
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Figure 9. Sample document images from the UNLV dataset [67]. The red boundary marks the tabular area in document images.

4.1.5. Marmot

Earlier, Marmot [68] was one of the most widely exploited datasets in the table
community. This dataset is published by the Institute of Computer Science and Technology
(Peking University) by collecting samples from Chinese and English conference papers.
The dataset consists of 2K images with an almost 1:1 ratio between positive to negative
samples. For direct comparison with previous work [20], we used the cleaned version
of the dataset by Reference [7] and did not incorporate any sample of the dataset in the
training set. A couple of instances from the Marmot dataset are outlined in Figure 10.

4.2. Implementation Details

We implement CasTabDetectoRS in Pytorch byeveraging the MMdetection frame-
work [69]. Our table detection method operates on ResNet-50 backbone network [62]
pre-trained on ImageNet [70]. Furthermore, we transform all the 3 × 3 conventional
convolutions present in the bottom-up backbone network to SAC. We closely follow the
experimental configurations of Cascade Mask R-CNN [25] in order to execute the training
process. All input documents images are resized with a maximum size of 1200 × 800 by
preserving the actual aspect ratio. We train all the models for straight 14 epochs by initially
setting theearning rate of 0.0025 with aearning rate decay of 0.1 after six epochs and ten
epochs. We set the IoU threshold values to [0.5, 0.6, 0.7], respectively, for the three stages of
R-CNN. We use a single anchor scale of 8, whereas the anchor ratios are set to [0.5, 1.0, 2.0].
We train all the models with a batch size of 1. We train all the models on NVIDIA GeForce
RTX 1080 Ti GPU with 12 GB memory (Santa Clara, CA, USA).
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Figure 10. Sample document images from the Marmot dataset [68]. The red boundary denotes the
tabular area in document images.

4.3. Evaluation Protocol

Analogous to the prior table detection method on scanned document
images [7,8,11,12,19,20,30–33], we assess the performance of our CasTabDetectoRS
on precision, recall, and F1-score. We have reported the IoU threshold values, along
with the achieved results for direct comparison with the existing approaches.

4.3.1. Precision

The precision [71] computes the ratio of true positive samples over the total predicted
samples. Mathematically, it is calculated as:

Precision =
True Positives

True Positives + False Positives.
(6)

4.3.2. Recall

The recall [71] is defined as the ratio of true positives over all all correct samples from
the ground truth. It is calculated as:

Recall =
True Positives

True Positives + False Negatives.
(7)

4.3.3. F1-Score

The F1-score [71] is defined as the harmonic mean of precision and recall. Mathemati-
cally, it is given by:

F1-score =
2× Precision × Recall

Precision + Recall.
(8)

4.3.4. Intersection over Union

Intersection over Union (IoU) [72] computes the intersecting region between the
predicted and the ground truth region. The formula for the calculation of IoU is:
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IoU(A, B) =
Area of Overlap region
Area of Union region

=
|A ∩ B|
|A ∪ B| . (9)

4.4. Result and Discussion

To evaluate the performance of the proposed CasTabDetectoRS, we report the re-
sults on five different publicly available table detection datasets. This section presents
a comprehensive quantitative and qualitative analysis of our presented approach on all
the datasets.

4.4.1. ICDAR-17 POD

The ICDAR-17 POD challenge dataset consists of 817 images with 317 tables in the
test set. For direct comparison with previous entries in the competition [1] and previous
state-of-the-art results, we report the results on the IoU threshold value of 0.6 and 0.8.
Table 1 summarizes the results achieved by our model. On an IoU threshold value of 0.6,
our CasTabDetectoRS achieves a precision of 0.941, recall of 0.972, and F1-score of 0.956. On
increasing the IoU threshold from 0.6 to 0.8, the performance of our network only indicates
a slight drop with a precision of 0.962, recall of 0.932, and F1-score of 0.947. Furthermore,
Figure 11 illustrates the effect of various IoU thresholds on our table detection system.
The qualitative performance of our proposed method on the ICDAR-17 POD dataset is
highlighted in Figure 12. Analysis of incorrect results discloses that the network fails
toocalize precise tabular areas or produce false positives.

Figure 11. Performance evaluation of our CasTabDetectoRS in terms of F1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the ICDAR-2017-POD table detection dataset.

Comparison with State-of-the-Art Approaches

Byooking at Table 1, it is evident that our network achieves comparable results with
the existing state-of-the-art approaches on the ICDAR-17 POD dataset. It is important to
emphasize that methods introduced in References [1,20] either rely on the heavy backbone
with memory-intensive deformable convolutions [53] or are dependent on multiple pre-
and post-processing methods to achieve the results. On the contrary, our CasTabDetectoRS
operates on aighter weight ResNet-50 backbone with switchable atrous convolutions.
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Furthermore, it is vital to mention that the system [54] that produced state-of-the-art
results on this datasetearns to classify tables, figures, and equations. Byeveraging the
information about other graphical page objects, such as figures and equations, their system
reduces the misclassification of tables. On the contrary, the proposed system only trains on
theimited tabular information and has no idea about other similar graphical page objects.
Therefore, havingow inter-class variance between the different graphical page objects
and tables in this dataset, our network produces more false positives and fails to surpass
state-of-the-art results on this dataset.

Table 1. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-
art results on table detection dataset of ICDAR-17 POD. Best results are highlighted in the table.

Method
IoU = 0.6 IoU = 0.8

Recall Precision F1-Score Recall Precision F1-Score

DeCNT [20] 0.971 0.965 0.968 0.952 0.946 0.949

NLPR-PAL [1] 0.953 0.968 0.960 0.958 0.943 0.951

VisInt [1] 0.918 0.924 0.921 0.823 0.829 0.826

GOD [54] - - 0.989 - - 0.971

CDeC-Net [12] 0.931 0.977 0.954 0.924 0.970 0.947

HybridTabNet [14] 0.997 0.882 0.936 0.994 0.879 0.933

CasTabDetectoRS (Ours) 0.941 0.972 0.956 0.932 0.962 0.947

Figure 12. CasTabDetectoRS results on the ICDAR-2017 POD table detection dataset. Green represents true positive, red
denotes false positive, and blue color highlights false negative. In this figure, (a) represents a couple of samples containing
true positives, (b) highlights true positive and false positives, and (c) depicts a true positive and a false negative.

4.4.2. ICDAR-19

In this paper, the ICDAR-19 represents the Modern Track A part of the table detection
dataset introduced in the table detection competition at ICDAR 2019 [65]. In order to draw
strict comparisons with participants of the competition and existing state-of-the-art results,
we evaluate the performance of our proposed method on the higher IoU threshold of 0.8
and 0.9. Table 2 presents the quantitative analysis of our proposed method, whereas the
performance in terms of F1-score of our table detection method on various IoU thresholds
is illustrated in Figure 13. The qualitative analysis is demonstrated in Figure 14. After
analyzing false positives yielded by our network, we realize that the ground truth of the
ICDAR-19 dataset has unlabeled tables present in the modern document images. One
instance of such a scenario is exhibited in Figure 14b.
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Table 2. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-
art results on the dataset of ICDAR 19 Track A (Modern). Best results are highlighted in the table.

Method
IoU = 0.8 IoU = 0.9

Recall Precision F1-Score Recall Precision F1-Score

TableRadar [65] 0.940 0.950 0.945 0.890 0.900 0.895

NLPR-PAL [65] 0.930 0.930 0.930 0.860 0.860 0.860

Lenovo Ocean [65] 0.860 0.880 0.870 0.810 0.820 0.815

CascadeTabNet [11] - - 0.925 - - 0.901

CDeC-Net [12] 0.934 0.953 0.944 0.904 0.922 0.913

HybridTabNet [14] 0.933 0.920 0.928 0.905 0.895 0.902

CasTabDetectoRS (Ours) 0.988 0.964 0.976 0.951 0.928 0.939

Figure 13. Performance evaluation of our CasTabDetectoRS in terms of F1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the ICDAR-2019 Track A (Modern) dataset.

Figure 14. CasTabDetectoRS results on the table detection dataset of ICDAR-2019 Track A (Modern). Green represents true
positive, whereas red denotes false positive. In this figure, (a) highlights a couple of samples containing true positives,
whereas (b) represents a true positive and a false positive.
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Comparison with State-of-the-Art Approaches

Along with presenting our achieved results on the ICDAR-19 dataset, Table 2 compares
the performance of our CasTabDetectoRS with the prior state-of-the-art approaches. It is
evident that our introduced cascade network equipped with RFP and SAC surpassed the
previous state-of-the-art results with a significant margin. We accomplish a precision of
0.964, recall of 0.988, and an F1-score of 0.976 on an IoU threshold of 0.8. Upon increasing
the IoU threshold to 0.9, the proposed table detection method achieves a precision of
0.928, recall of 0.951, and F1-score of 0.939. The higher difference between the F1-score of
our method and the previously achieved F1-score clearly exhibits the superiority of our
CasTabDetectoRS.

4.4.3. TableBank

We evaluate the performance of the proposed method on all the three splits of TableBank
dataset [66]. To establish a straightforward comparison with the recently achieved state-of-the-
art results [11] on TableBank, we report the results on the IoU threshold of 0.5. Furthermore,
owing to the superior predictions of our proposed method, we present results on a higher IoU
threshold of 0.9. Table 3 summarizes the performance of our CasTabDetectoRS on the splits of
TableBank-LaTeX, TableBank-Word, and TableBank-Both. Along with the quantitative results,
we demonstrate the performance of the proposed system in terms of F1-score by increasing
the IoU thresholds from 0.5 to 1.0. Figure 15 depicts the drop in performance on the split of
TableBank-LaTeX and TableBank-Word, whereas, Figure 16 depicts a couple of true positives
and one instance each of false positive and a false negative. Figure 17 explains the F1-score
on the split of TableBank-Both dataset.

Table 3. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-art results on various
splits of TableBank dataset. The double horizontalines divide the different splits. Best results are highlighted in the table.

Method Dataset
IoU = 0.5 IoU = 0.9

Recall Precision F1-Score Recall Precision F1-Score

CascadeTabNet [11] TableBank-LaTeX 0.972 0.959 0.966 - - -

Li et al. [66] TableBank-LaTeX 0.962 0.872 0.915 - - -

HybridTabNet [14] TableBank-LaTeX - - 0.980 - - 0.934

CasTabDetectoRS (Ours) TableBank-LaTeX 0.984 0.983 0.984 0.935 0.935 0.935

CascadeTabNet [11] TableBank-Word 0.955 0.943 0.949 - - -

Li et al. [66] TableBank-Word 0.803 0.965 0.877 - - -

HybridTabNet [14] TableBank-Word - - 0.970 - - 0.962

CasTabDetectoRS (Ours) TableBank-Word 0.985 0.967 0.976 0.981 0.963 0.972

CascadeTabNet [11] TableBank-Both 0.957 0.944 0.943 - - -

Li et al. [66] TableBank-Both 0.904 0.959 0.931 - - -

HybridTabNet [14] TableBank-Both - - 0.975 - - 0.949

CasTabDetectoRS (Ours) TableBank-Both 0.982 0.974 0.978 0.961 0.953 0.957

Comparison with State-of-the-Art Approaches

Table 3 provides the comparison between existing state-of-the-art table detection
methods and our proposed approach. It is clear that our proposed CasTabDetectoRS
has surpassed the previous baseline and state-of-the-art methods on all the three splits
of the TableBank dataset. On the dataset split of TableBank-LaTeX, we achieve an F1-
score of 0.984 and 0.935 with an IoU threshold of 0.5 and 0.9, respectively. Similarly, we
accomplish F1-scores of 0.976 and 0.972 on the IoU threshold of 0.5 and 0.9, respectively, on
the TableBank-Word dataset. Moreover, we attain F1-scores of 0.978 and 0.957 on IoU of 0.5
and 0.9, respectively, on the TableBank-(Word + LaTex) dataset.
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(a) TableBank-LaTeX. (b) TableBank-Word.

Figure 15. Performance evaluation of our CasTabDetectoRS in terms of F1-score over the varying IoU thresholds ranging
from 0.5 to 1.0 on the TableBank-LaTeX and TableBank-Word datasets.

Figure 16. CasTabDetectoRS results on the TableBank dataset. Green represents true positive, red denotes false positive, and
blue color highlights false negative. In this figure, (a) represents a couple of samples containing true positives, (b) illustrates
false positives, and (c) depicts true positives and false negatives.

Figure 17. Performance evaluation of our CasTabDetectoRS in terms of F1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the TableBank-Both dataset.
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4.4.4. Marmot

The Marmot dataset consists of 1967 document images comprising 1348 tables. Since
prior state-of-the-art approaches [12,20] have employed the model trained on the ICDAR-17
dataset to evaluate the performance on the Marmot dataset, we have identically reported
the results to have a direct comparison. Table 4 presents the quantitative analysis of our
proposed method, whereas Figure 18 illustrates the effect of our CasTabDetectoRS on
increasing the IoU threshold from 0.5 to 1.0. Figure 19 portrays the qualitative assessment
of our table detection system on the Marmot dataset by illustrating samples of true positives,
false positives, and a false negative.

Figure 18. Performance evaluation of our CasTabDetectoRS in terms of F1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the Marmot dataset.

Figure 19. CasTabDetectoRS results on the Marmot dataset. Green represents true positive, red denotes false positive, and
blue color highlights false negative. In this figure, (a) exhibits a couple of samples containing true positives, (b) illustrates
false positives, and (c) depicts true positives and false negatives.

Comparison with State-of-the-Art Approaches

Table 4 summarizes the performance comparison between the previous state-of-the-art
results and the results achieved by our CasTabDetectoRS Marmot dataset. Our proposed
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method outperforms the previous results with an F1-score of 0.958 and 0904 on the IoU
threshold values of 0.5 and 0.9, respectively.

Table 4. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-
art results on the Marmot dataset. Best results are highlighted in the table.

Method
IoU = 0.5 IoU = 0.9

Recall Precision F1-Score Recall Precision F1-Score

DeCNT [20] 0.946 0.849 0.895 - - -

CDeC-Net [12] 0.930 0.975 0.952 0.765 0.774 0.769

HybridTabNet [14] 0.961 0.951 0.956 0.903 0.900 0.901

CasTabDetectoRS (Ours) 0.965 0.952 0.958 0.901 0.906 0.904

4.4.5. UNLV

The UNLV dataset comprises 424 document images containing a total of 558 tables.
We evaluate the performance of our presented method on the UNLV dataset to exhibit the
completeness of our approach. Similarly, for direct comparison with prior works [12,19]
on this dataset, we present our results on the IoU threshold of 0.5 and 0.6 as summarized
in Table 5. Moreover, Figure 20 explains the deterioration in performance of the system
on increasing the IoU threshold from 0.5 to 1.0. For the qualitative analysis on the UNLV
dataset, examples of true positives, false positives, and a false negative are illustrated in
Figure 21.

Table 5. Performance comparison between the proposed CasTabDetectoRS and previous state-of-the-
art results on the UNLV dataset. Best results are highlighted in the table.

Method
IoU = 0.5 IoU = 0.6

Recall Precision F1-Score Recall Precision F1-Score

Gilani et al. [19] 0.907 0.823 0.863 - - -

CDeC-Net [12] 0.906 0.914 0.910 0.805 0.961 0.883

HybridTabNet [14] 0.926 0.962 0.944 0.914 0.949 0.932

CasTabDetectoRS (Ours) 0.928 0.964 0.946 0.914 0.952 0.933

Figure 20. Performance evaluation of our CasTabDetectoRS in terms of F1-score over the varying
IoU thresholds ranging from 0.5 to 1.0 on the UNLV dataset.
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Figure 21. CasTabDetectoRS results on the UNLV dataset. Green represents true positive, red denotes false positive,
and blue color highlights false negative. In this figure, (a) highlights a couple of samples containing true positives, and
(b) represents a true positive and a false positive, whereas (c) depicts true positives and false negatives.

Comparison with State-of-the-Art Approaches

The performance comparison between the proposed method and previous attempts
on the UNLV dataset is summarized in Table 5. With the obtained results, it is apparent
that our proposed system has outsmarted earlier methods with F1-scores of 0.946 and 0.933
on the IoU threshold values of 0.5 and 0.6, respectively.

4.4.6. Cross-Datasets Evaluation

Currently, the deepearning-based table detection methods are preferred over rule-
based methods due to their better generalization capabilities over distinctive datasets. To
investigate how well our proposed CasTabDetectoRS generalize over different datasets,
we perform cross-dataset evaluation by incorporating four state-of-the-art table detection
models inferred over five different datasets. We summarize all the results in Table 6.

Table 6. Examining the generalization capabilities of the proposed CasTabDetectoRS through cross datasets evaluation.

Training Dataset Testing Dataset Recall Precision F1-Score Average F1-Score

TableBank-LaTeX

ICDAR-19 0.605 0.778 0.680

0.865

ICDAR-17 0.866 0.958 0.910

TableBank-Word 0.967 0.947 0.957

Marmot 0.893 0.963 0.927

UNLV 0.918 0.856 0.885

ICDAR-17

ICDAR-19 0.649 0.778 0.686

0.812
TableBank-Word 0.983 0.943 0.963

Marmot 0.965 0.952 0.958

UNLV 0.607 0.685 0.644

ICDAR-19

ICDAR-17 0.894 0.917 0.906

0.924
TableBank-Word 0.981 0.921 0.950

Marmot 0.925 0.956 0.940

UNLV 0.898 0.876 0.887

UNLV

ICDAR-17 0.867 0.879 0.881

0.897TableBank-Word 0.903 0.941 0.922

Marmot 0.874 0.945 0.908

ICDAR-19 0.839 0.918 0.877
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With the table detection model trained on the TableBank-LaTeX dataset, apart from
ICDAR-19, we achieve impressive results on ICDAR-17, TableBank-Word, Marmot, and
UNLV with an average F1-score of 0.865. After manual inspection, we observe that the
system produces several false positives due to the varying nature of document images
in ICDAR-19 and TableBank-LaTeX. The table detection model trained on the ICDAR-17
dataset yields the average F1-score of 0.812 owing to the poor results achieved on the
ICDAR-19 and UNLV datasets. The network trained on the ICDAR-19 dataset becomes
the most generalized model accomplishing the average F1-score of 0.924. Although the
size of the UNLV dataset is small (424 document images), the model trained on this dataset
generates second-best results with an average F1-score of 0.897.

Manual investigation of cross-datasets evaluation yields the misinterpretation of other
graphical page objects [2] with tables. However, with the obtained results, it is evident that
our proposed CasTabDetectoRS produces state-of-the-art results on a specific dataset and
generalizes well over the other datasets. Such types of well-generalized table detection
systems for scanned document images are required in several domains [8].

5. Conclusions and Future Work

This paper presents CasTabDetectoRS, the novel table detection framework for scanned
document images, which comprises Cascade Mask R-CNN with a Recursive Feature Pyra-
mid (RFP) network with Switchable Atrous Convolutions (SAC). The proposed CasTabDe-
tectoRS accomplishes state-of-the-art performances on the four different table detection
datasets (ICDAR-19 [65], TableBank [66], UNLV [67], and Marmot [68]), while achieving
comparable results on the ICDAR-17-POD [1] dataset.

Upon direct comparison against previous state-of-the-art results on ICDAR-19 Track A
(Modern) dataset, we reduce the relative error by 56.36% and 29.89% in terms of achieved
F1-score on IoU thresholds of 0.8 and 0.9, respectively. On the dataset of TableBank-LaTeX
and TableBank-Word, we decrease the relative error by 20% on each dataset split. On
TableBank-Both, we reduce the relative error by 12%. Similarly, on the Marmot dataset [68],
we observe a 4.55% reduction, whereas the system achieves a relative error reduction of
3.5% on the UNLV dataset [67]. Furthermore, this paper empirically establishes that, instead
of incorporating heavy backbone networks [11,12] and memory exhaustive deformable con-
volutions [20], state-of-the-art results are achievable by employing a relativelyightweight
backbone network (ResNet-50) with SAC. Moreover, this paper demonstrates the gener-
alization capabilities of the proposed CasTabDetectoRS through extensive cross-datasets
evaluations. It is important to emphasize that our proposed network takes 9.9 gigabytes
of VRAM (Video Read Access Memory) memory with an inference time of 10.8 frames
per second. The achieved network complexity is incomparable since prior state-of-the-art
methods in this domain have not reported their network complexity and inference time.

In the future work, we plan to extend the proposed framework by tackling the even
more challenging task of table structure recognition in scanned document images. We
expect that our cross-datasets evaluation sets a benchmark that will be followed in future
examinations of table detection methods. Furthermore, the backbone network and the
region proposal network of the proposed pipeline can be enhanced by exploiting the
attention mechanism [73,74].
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