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Abstract: Powered wheelchairs have enhanced the mobility and quality of life of people with special
needs. The next step in the development of powered wheelchairs is to incorporate sensors and
electronic systems for new control applications and capabilities to improve their usability and the
safety of their operation, such as obstacle avoidance or autonomous driving. However, autonomous
powered wheelchairs require safe navigation in different environments and scenarios, making their
development complex. In our research, we propose, instead, to develop contactless control for
powered wheelchairs where the position of the caregiver is used as a control reference. Hence, we
used a depth camera to recognize the caregiver and measure at the same time their relative distance
from the powered wheelchair. In this paper, we compared two different approaches for real-time
object recognition using a 3DHOG hand-crafted object descriptor based on a 3D extension of the
histogram of oriented gradients (HOG) and a convolutional neural network based on YOLOv4-Tiny.
To evaluate both approaches, we constructed Miun-Feet—a custom dataset of images of labeled
caregiver’s feet in different scenarios, with backgrounds, objects, and lighting conditions. The
experimental results showed that the YOLOv4-Tiny approach outperformed 3DHOG in all the
analyzed cases. In addition, the results showed that the recognition accuracy was not improved
using the depth channel, enabling the use of a monocular RGB camera only instead of a depth camera
and reducing the computational cost and heat dissipation limitations. Hence, the paper proposes an
additional method to compute the caregiver’s distance and angle from the Powered Wheelchair (PW)
using only the RGB data. This work shows that it is feasible to use the location of the caregiver’s feet
as a control signal for the control of a powered wheelchair and that it is possible to use a monocular
RGB camera to compute their relative positions.

Keywords: 3D object recognition; YOLO; YOLO-Tiny; 3DHOG; histogram of oriented gradients;
ModelNet40; feature descriptor; Intel RealSense; depth camera; wheelchair

1. Introduction

Powered wheelchairs (PWs) have improved the quality of life of many disabled peo-
ple by providing them more independence and greater transport means, reducing their
dependence on caregivers. The next step in PWs’ development is to improve their usability
and the safety of their operation by integrating new features such as obstacle avoidance
or autonomous driving control. This involves the use of additional sensors and electronic
systems to measure the PW’s environment, detect objects, and determine their relative
positions. However, fully autonomous PWs have many challenges and navigation limita-
tions due to the wide variability of indoor and outdoor scenarios, lighting conditions, and
obstacles, which limit their applications in practice. Despite the technological limitations,
image-processing techniques enable new applications to control PWs to improve their
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usability. This work is focused on the development of a semi-autonomous contactless
control of PWs that uses the position of a caregiver as a reference control in a side-by-side
configuration. A camera system detects, recognizes, and tracks the caregiver walking
beside the PW by measuring the caregiver’s relative distance and position with respect to
the PW. Contactless control improves the PW’s operation when the user cannot properly
control the PW, as well as improves the communication between the caregiver and the PW
user, and thus the user’s quality of life [1].

Computer vision has become a cutting-edge research topic in recent years, especially
in applications of autonomous robot navigation. Since the popularization of consumer
depth cameras, image-processing and object-recognition techniques have been extended to
include 3D data in the recognition pipeline. According to the measurement requirements
of the contactless steering control of PWs presented in previous research [2], depth cameras
allow measuring relative distances while capturing visual images of the PW’s environment,
which makes them a good candidate for our application. However, 3D computer-vision
techniques can be very computationally expensive and, therefore, pose a severe limitation
for real-time operation in embedded systems.

Currently, there are two different approaches for object recognition: (1) hand-crafted
features and (2) deep learning. In previous research, we evaluated the performance and
limitations of a hand-crafted approach to object recognition based on an extension of the
3D data of a histogram of oriented gradients (3DHOG) object descriptor in combination
with a Support Vector Machine (SVM) classifier [3–5]. The results showed relatively good
recognition performance and good processing times, making it suitable for real-time
operation. However, hand-crafted approaches require additional image preprocessing to
segment the objects from the 3D data, which can lead to misclassification depending on the
performance.

In this paper, we compared the 3DHOG approach with a deep-learning approach
based on YOLOv4-Tiny to detect the feet of a caregiver next to a PW as the base in-
put for semi-autonomous PW navigation. To compare both approaches, we constructed
Miun-Feet—a custom dataset of images of caregiver’s feet taken from the PW in different
scenarios, with different backgrounds and lighting conditions. The scientific contribu-
tions of this paper are as follows: (1) the generation of the Miun-Feet dataset using a
depth camera placed on the PW in real working conditions with synchronized depth,
RGB, RGB+depth, and point cloud data frames, including labels for the caregiver’s feet;
(2) a method to segment the caregiver’s feet from the point cloud data using the RGB
labels; (3) the evaluation of YOLOv4-Tiny using the input depth, RGB, and RGB-depth
images; (4) a comparison of the hand-crafted 3DHOG and deep-learning YOLOv4-Tiny
approaches in different scenarios and lighting conditions; (5) the proposed alternative
method to compute the caregiver’s distance and angle using the RGB data channels.

2. Related Works

There has been extensive research on autonomous control and navigation for PWs.
The research has focused on developing control systems and human–machine interfaces
to facilitate the PW’s control in the case of severe mobility impairments [6–8] and au-
tonomous navigation in controlled environments [9–11]. Contactless control of PWs using
the caregiver as a control reference was explored in [12,13] using a combination of three
LiDAR sensors and an omnidirectional camera placed on a pole. The detection and position
measurement of the caregiver were performed using the LiDAR sensors, which measured
the human chest profile represented by an ellipse, while the omnidirectional camera distin-
guished the caregiver from the other people next to the PW. Despite the good detection
performances, it was difficult to integrate all the required sensors and electronic systems
into the wheelchair due to the limited installation space for an additional embedded system
as well as the limited power supply. In addition, placing the camera on a pole modified the
ergonomics and appearance of the PW, making it unsuitable as a commercial product. A
better camera placement was shown in [14], where a stereo-camera was mounted on the
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armrest of the PW. However, a lower camera placement does not allow the measurement
of the complete human body shape due to limitations of the camera’s field of view (FoV).
Therefore, caregiver detection was performed by detecting the caregiver’s legs.

On the other hand, 3D object recognition has been a fundamental research topic
for computer vision since the popularization of consumer depth cameras and 3D object
databases [15,16]. Besides an RGB camera, depth cameras enable a better understand-
ing of the environment and, thus, a variety of applications, such as autonomous robot
navigation [17], aerial robot surveying [18], or 3D shape reconstruction [19].

Three-dimensional recognition methods are generally categorized into (1) hand-
crafted approaches and (2) deep learning approaches. Hand-crafted approaches are the
classical computer vision techniques for object recognition. They are based on a combina-
tion of an object descriptor and a machine learning classifier. Thus, an object descriptor
first extracts a key set of features from the objects and later a classifier estimates the class
to which the object belongs. Generally, hand-crafted descriptors are categorized as global
or local descriptors. Local descriptors focus on the local neighborhood and geometry of
the keypoints of interest. They require the detection of the keypoints that contain infor-
mation about their class and encode the local geometric information around them with a
multidimensional feature vector [20]. Some of the popular local descriptors for 3D object
recognition are the SIFT [21], SGCs [22], SHOTS [23], or RCS [24]. Local descriptors are
robust to occlusions and therefore suitable for 3D object recognition in cluttered scenes.
However, they require detailed object resolution to identify the keypoints, and therefore,
they are not suitable for depth cameras due to the lower image resolution of the depth
channel compared to an RGB camera. In contrast, global descriptors encode the entire
object data in a single feature vector rather than just key-points of the object. Therefore,
they require a prior object segmentation pre-processing before their computation but are
less computationally and memory demanding than local descriptors. An example of global
descriptors for 3D object recognition are: SI [25], VFH [26], FPFH [27], ESF [28], VFD [29],
TriLCI [30] or the 3DHOG [3]. Three-dimensional hand-crafted descriptors perform well
when objects have detailed shape information, but they are unable to adapt to complex
shapes and scenes, limiting their success for uncontrolled scenarios such as autonomous
navigation [31].

Current research in 3D object recognition is turning to deep learning approaches
due to their higher recognition accuracy compared to hand-crafted approaches. Deep
learning approaches are based on convolution neural networks (CNNs) that directly extract
a hierarchical set of abstract features to maximize recognition accuracy. Deep learning
approaches are categorized depending on the representation the object data as: (1) Voxel-
based methods, e.g., VoxNet [31], ShapeNets [16], VoxelNet [32], or (2) Point-set-based
methods, e.g., PointNet [33], FoldingNet [34] and, finally, (3) View-based methods, e.g.,
RotationNet [35], HMVCM [36] and Complex-YOLO [37]. Voxel-based and Point-set-
based methods, also referred to as model-based methods [38], use a 3D volumetric CNN,
and therefore, they exploit the 3D geometry of the objects. However, volumetric CNNs
have a large and complex CNN architecture and require high computational and memory
resources, and these are therefore not suitable for real-time applications. View-based
methods, instead, transform the 3D objects into a series of 2D images from different
viewpoints. As a consequence, they use 2D CNN methods and do not fully exploit the
3D data geometry of the objects, although they achieve good recognition performances,
especially in the case of occlusions [38]. An alternative method for object recognition by a
depth camera is to include the depth channel along RGB channels (RGB-D) in combination
with a 2D CNN [39] and recursive neural networks (RNNs) [40] or encode the depth
channel in jet color maps and the surface of normals [41]. Consequently, RGB-D methods
for 3D recognition do not fully exploit 3D geometric information, but they reduce the
hardware requirements compared to model-based methods and thus enable real-time
applications, which is the intended use for contactless PW control.
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3. Methodology
3.1. Application Description

The application description is shown in Figure 1b. The caregiver location is identified
by detecting the position of the caregiver’s feet next to the PW. The required accuracy for
the caregiver measurement is defined by the human social walking behavior [42,43], which
is, therefore, between 0.7 and 1 meters. Feet recognition allows reducing the required
FoV of the camera when detecting full size body shapes [44]. In addition, feet recognition
enables the use of ground-plane (GP) detection and removal algorithms to segment the
feet above the GP when using a hand-crafted recognition approach.

We chose the active depth camera Intel RealSense D455 [45] and installed it un-
der the PW right armrest, tilted down 45 degrees with respect to the floor, as shown in
Figures 1a and 2. This placement allows for good measurement of the caregiver’s feet with-
out compromising the ergonomics and appearance of the PW. To evaluate the influence
of ambient lighting, we also placed a LED lighting system in the armrest of the PW, next
to the depth camera, to illuminate the scene. The D455 depth camera provides aligned
RGB and depth streams with global shutter for both the stereo and RGB cameras, enabling
the application of object recognition in a moving environment [2]. In addition, camera
software provides the necessary functions to compute the point cloud 3D representation
of the aligned RGB and depth images. The configuration parameters of the D455 depth
camera are listed in Table 1.

(a) (b)
Figure 1. Power wheelchair setup and description of feet recognition approach. (a) PW with a depth camera below the
armrest. (b) Caregiver feet recognition description.

Table 1. Intel RealSense D455 active depth camera configuration.

Configuration preset High density
Frame Resolution 640 × 480 pixels
Aligned RGB and Depth streams Yes
Frame Rate 6 fps
Exposure 156 ms Auto
Active lighting power Maximum

Figure 2. Camera placement on a wheelchair armrest and different camera outputs.

3.2. Experiments Definition

We defined the following experiments in order to compare a hand-crafted approach
as an object recognition approach with a deep learning approach:
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• Experiment 1: We used the Miun-Feet custom dataset of images captured by a depth
camera for training, validation and test in combination with a YOLOv4-Tiny-based
approach for object recognition. We evaluated the different camera output formats in
terms of Mean Average Precision (mAP). Therefore, as camera outputs, we use: (1) the
depth channel (1 channel), (2) the visual RGB channels (3 channels), and finally, (3) a
combination of RGB and depth (4 channels) to recognize the caregiver’s feet walking
next to the PW, Figure 3a.

• Experiment 2: We used a synthetic dataset of objects segmented from the Modelnet40
dataset [16] for training and validation and the Miun-Feet dataset used in Experiment
1 for testing. We evaluated a hand-crafted approach based on the 3DHOG in terms of
mAP. See Figure 3b for the voxel grid resolutions of 203, 303 and 403 Voxels.

• Experiment 3: We propose an alternative method to measure the relative distance and
angle of the caregiver beside a PW using the RGB camera output. We compared the
results with respect to the ground truth data measured by the depth camera.

(a) (b)
Figure 3. Experiment definition. (a) Experiment 1: YOLOv4-Tiny. (b) Experiment 2: 3DHOG.

3.3. Miun-Feet Dataset Construction

The Miun-Feet custom dataset was generated by measuring a caregiver walking
next to the PW using a depth camera Intel RealSense D455. The dataset contains images
with different shoes, backgrounds and lighting conditions. Figure 4 provides examples
for each configuration. The scenarios used for the data generation are summarized in
Table 2. Additionally, we recorded empty frames (without feet) for training purposes. The
captured data include ground truth distance labels that can be used during model training
and evaluation.

For each camera scenario measurement, we collected the following data:

• RGB frames: Visual data frames (3 channels);
• Depth frames: Depth map image that includes true distances measurements from the

camera for each pixel value (1 channel);
• RGB-D frames: 4-channels image that stacked visual frames (3 channels) and depth

frames;
• Point cloud: Unstructured 3D data representation.

Based on the collected data, we construct sub-datasets for training, validation and
testing by selecting the frames randomly and balancing the data according to the lighting
conditions and eight different shoes models, as shown in Tables 3 and 4. We include
ground truth labels for both model training and validation datasets using LabelImg, also
considering feet occlusions.
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Figure 4. Miun-Feet dataset examples in different scenarios and shoes models.

Table 2. Miun-Feet dataset scenarios construction.

Scenario Placement Background Light Conditions Exposure Shoes Model

Indoor1-Dark Tunnel corridor Tiles/wall Low light 156 ms 1–5
Indoor1-Light Tunnel corridor Tiles/wall LED lighting 156 ms 1–5
Indoor2-Dark University corridor Hall Low light 156 ms 1–5
Indoor2-Light University corridor Hall LED lighting 156 ms 1–5
Outdoor1 Pedestrian asphalt Road Sunny Auto 1–5
Outdoor2 Pedestrian tiles Grass Sunny Auto 1–5

Indoor3-Dark Tunnel corridor Tiles/wall Low light 156 ms 6–8
Indoor3-Light Tunnel corridor Tiles/wall LED lighting 156 ms 6–8
Indoor4-Dark University corridor Hall Low light 156 ms 6–8
Indoor4-Light University corridor Hall LED lighting 156 ms 6–8
Outdoor3 Pedestrian asphalt Road Sunny Auto 6–8
Outdoor4 Pedestrian tiles Grass Sunny Auto 6–8
Outdoor5 Pedestrian tiles Bikes parking Sunny Auto 6–8

Darkness Laboratory Wall/chairs Darkness 156 ms 6–8

Table 3. Miun-Feet training and validation datasets definition.

Scenarios

Dataset
Indoor1-

Dark
(Feet/Empty)

Indoor1-
Light

(Feet/Empty)

Indoor2-
Dark

Feet/Empty

Indoor2-
Light

(Feet/Empty)

Outdoor1
(Feet/Empty)

Outdoor2
(Feet/Empty)

Total
(Feet/Empty)

Training 500/500 500/500 500/500 500/500 500/500 500/500 3000/3000
Validation 100/100 100/100 100/100 100/100 100/100 100/100 600/600

3.4. Synthetic Dataset Generation

To compare this work to the results obtained in a previous 3DHOG evaluation [4,5], we
use a synthetic dataset for Experiment 2 (Figure 3b) to train the SVM classifier when using
the 3DHOG object descriptor. We extracted the synthetic feet data from the ModelNet40
dataset [16] using the objects of the class person and manually segmenting the feet portion
of each representation (Figure 5). To match the synthetic objects with the objects of the
Miun-Feet dataset measured by the depth camera, we perform the following pre-processing
tasks (Figure 3b):

• (1) Frontal projection : the depth camera does not capture the data the object itself
obscures. Therefore, it is necessary to compute the frontal projection of each synthetic
object with respect to the camera angle and remove the occluded data.

• (2) Dataset augmentation: The 3DHOG object descriptor is sensitive to the rotation.
Thus, we perform dataset augmentation by rotating each synthetic object along the
X-axis (0,15,30) degrees, the Y-axis (0,15,30) degrees and the Z-axis (0,30,60) degrees,
giving a total of 27 rotations per synthetic object.
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Table 4. Training, validation and test datasets definition for both YOLOv4-Tiny and 3DHOG recognition approaches.

YOLOv4-Tiny 3DHOG
Dataset No.Frames No.Empty No.Obj. Dataset No.Feet No.Others Total Obj.

Training Real 3000 3000 5880 Synthetic 50 × 27 1350 2700
Validation Real 600 600 1178 Real 1178 1178 2356

Test:
Indoor1-Dark Real 100 100 188 Real 188 188 376
Indoor1-Light Real 100 100 199 Real 199 199 398
Indoor2-Dark Real 100 100 199 Real 199 199 398
Indoor2-Light Real 100 100 188 Real 188 188 376
Indoor3-Dark Real 90 90 171 Real 171 171 342
Indoor3-Light Real 90 90 181 Real 181 181 362
Indoor4-Dark Real 90 90 175 Real 175 175 350
Indoor4-Light Real 90 90 177 Real 177 177 354
Outdoor1 Real 100 100 199 Real 199 199 398
Outdoor2 Real 100 100 200 Real 199 200 400
Outdoor3 Real 90 90 179 Real 179 179 358
Outdoor4 Real 90 90 177 Real 177 177 354
Outdoor5 Real 150 150 297 Real 297 297 594
Darkness Real 80 80 155 Real 155 155 310

Figure 5. Examples of different synthetic objects segmented from the ModelNet40 dataset, including the frontal-view
post-processing using a voxel grid of 203 voxels.

3.5. Point Cloud Object Segmentation

The 3DHOG object descriptor requires point cloud data pre-processing to segment
the caregiver’s feet, as shown in Figures 3b and 6. The position of the feet is defined by
the corresponding ground truth label file. We use a pinhole camera model and the depth
camera intrinsic parameters to compute the angles α and β defined by the corners of the
boundary boxes of each label with respect to the camera center as follows:

α = arctan
Lc − Cx

fx
β = arctan

Lc − Cy

fy
, (1)

where Lc is the label corner in pixels, Cx and Cy are the camera center in pixels and fx and
fy the camera focal length in pixels.

Label angles α and β for each label corner are then transferred to the point cloud
representation. The caregiver’s feet are segmented by removing the data outside of the 3D
rectangular pyramid defined by the label angles. Additionally, we perform a ground plane
subtraction from the point cloud representation using the (M-estimator sample-consensus)
MSAC algorithm [46].

Figure 6. Point cloud object segmentation using the RGB labels.
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3.6. YOLOv4-Tiny Approach

The YOLOv4-Tiny approach is evaluated in Experiment 1 (Figure 3a), and it is based
on a compressed YOLOv4 approach [47] to make it less computationally and memory
demanding. Therefore, it is particularly suitable for real-time operation in embedded
systems. As a drawback, the target detection network of YOLOv4-Tiny is relatively simple,
and therefore, the detection accuracy is lower than in YOLOv4, especially for smaller targets
sizes [48]. However, in our application, the targets (feet) are relatively large with respect to
the camera FoV.The YOLOv4-Tiny uses the CSPDarknet53 as the backbone network, which
limits the input images to 1–3 channels. Hence, we modified the CSPDarknet53 to allow
RGB-D (4 channels) input images. This is achieved by disabling the OPENCV option in the
makefile and removing the limitation to 3 channels in the functions hsv_rgb and rgb_hsv
from the file image.c. The used YOLOv4-Tiny hyperparameters are listed in Table 5.

Table 5. YOLOv4-Tiny hyperparameters.

Batch size 64
Sub-division 24

Width 640
Height 480

Channels 1(Depth), 3(RGB), 4(RGB-D)
Momentum 0.9

Decay 0.0005
Max.batch 2000

Burn in 500
Steps 1800, 1900
Scales 0.1, 0.1

Anchors
(10,14), (23,27)
(37,58), (81,82)
(135,169), (344,319)

3.7. 3DHOG Approach

The 3DHOG approach, evaluated in Experiment 2 (Figure 3b) uses a combination of
the 3DHOG object descriptor and a Support Vector Machine (SVM) feature classifier. The
3DHOG [3] is a hand-crafted object descriptor based on the popular HOG [49]. Originally,
the 3DHOG was developed for hazard detection in 3D scenes, and it has been extensively
addressed in previous research [4,50]. As a drawback, the 3DHOG object descriptor leads
to high-dimensional feature vector and therefore requires additional post-processing to
reduce it and enable real-time performance. Hence, we computed the principal components
analysis (PCA) of the 3DHOG feature matrix in order to select a reduced set of features
that contain most of the initial data variance. The descriptor parameters and feature dimen-
sionality for each voxel grid defined in Experiment 2 are summarized in Tables 6 and 7,
respectively.

Table 6. 3DHOG and feature dimensionality for a 203, 303 and 403 voxel grids.

Voxel Grid 203 303 403

NBlocks 1 8 27
NCells 8 8 8

NFeatures 1296 10,368 34,992
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Table 7. Descriptor configuration parameters.

Parameter Value

ϕBins 18
θBins 9

CellSize 6
BlockSize 2
StepSize 2

3.8. Caregiver Distance and Angle Computation

We propose an alternative method to measure the relative distance and angle of the
caregiver’s feet using only the RGB data. We used the center of each bounding box to
compute the relative caregiver’s angle and distance. The ground truth data for the distance
is measured by the depth channel. The ground truth for the angle is given by the annotated
objects, and thus, the accuracy is correlated to the mAP. Distances are measured using the
RGB data, assuming the GP is perpendicular to the PW along the detection range, and
feet are located in the center of the predicted boundary boxes. The measurement setup is
shown in Figure 7. Relative distances are computed using the intrinsic camera parameters
as follows:

φ = arctan
C − Cc

f
α = arctan

R − Rc

f
β = (α − 45◦) d = h tan β, (2)

where R is the row coordinate of the predicted label, C is the column coordinate of the
predicted label, Rc is the camera height center in pixels, Cc is the camera width center in
pixels, α is the relative angle of the R with respect to the RGB camera, φ is the relative angle
of the C with respect to the RGB camera, f is the focal length in pixels, β is the camera
angle relative to the GP, h the camera height with respect to the GP in meters and d is the
relative distance to the caregiver’s feet in meters.

Figure 7. Caregiver distance and angle measurement.

4. Results and Analysis
4.1. Experiment 1. YOLOv4-Tiny

The experimental results for the YOLOv4-Tiny approach for the different test cases
and methods are summarized in Tables 8 and 9 and Figures 8 and 9. Figure 10 shows the
detected bounding boxes. For all scenarios of the Miun-Feet validation dataset (Table 3),
mAP is around 99% and thus has excellent performance. For the remaining Miun-Feet test
datasets scenarios including different shoes and backgrounds, mAP drops to 96% and thus
also has excellent performance. All analyzed methods do not show significant differences
in terms of mAP. Only for the method RGB-D (4 channels), mAP is slightly lower (−2%) for
the test scenarios. All test data were not considered in the training and validation steps. As
expected for the Darkness scenario, the mAP drops to zero when using the RGB method.
However, when we include the depth channel in the analysis, the mAP is around 95%, and
therefore, it is possible to recognize the objects even in complete darkness. On the other
hand, in low light conditions (Indoor1-Dark), it is possible to recognize the caregiver’s feet
without decreasing the performance compared to the light and sunny scenarios.
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Table 8. mAP(%) results for the different test datasets and recognition approaches using the same shoes and scenarios used
in the training dataset.

Method Test Cases

Validation
mAP(%)

Indoor1-
Dark

mAP(%)

Indoor1-
Light

mAP(%)

Indoor2-
Dark

mAP(%)

Indoor2-
Light

mAP(%)

Outdoor1
mAP(%)

Outdoor2
mAP(%)

Depth (1CH) 99.24 99.33 100 99.46 99.88 99.91 99.19
RGB (3CH) 99.83 99.98 100 100 99.78 100 100

RGB-D (4CH) 99.52 99.82 100 99.96 99.97 99.83 99.85

3DHOG, 203 Voxels 84.93 84.04 87.44 86.93 84.09 84.17 83
3DHOG, 303 Voxels 78.06 76.86 79.40 79.65 79.29 81.41 71.75
3DHOG, 403 Voxels 76.49 76.86 75.38 76.13 75.00 78.64 73.75

Table 9. mAP(%) results for the different test datasets and recognition approaches using new shoes and including additional
scenarios.

Method Additional Test Cases

Indoor3-
Dark

mAP(%)

Indoor3-
Light

mAP(%)

Indoor4-
Dark

mAP(%)

Indoor4-
Light

mAP(%)

Outdoor3
mAP(%)

Outdoor4
mAP(%)

Outdoor5
mAP(%)

Darkness
mAP(%)

Depth (1CH) 98.66 99.39 96.45 98.78 99.10 97.61 99.17 97.68
RGB (3CH) 99.33 99.99 97.63 98.50 96.15 99.32 96.70 0

RGB-D (4CH) 98.83 99.88 95.46 97.58 98.64 95.92 96.23 94.98

3DHOG, 203 Voxels 83.92 81.49 76.29 83.33 88.55 88.98 86.53 83.23
3DHOG, 303 Voxels 77.19 76.52 69.14 75.42 76.26 77.97 80.98 74.84
3DHOG, 403 Voxels 75.44 71.82 72.86 74.29 76.54 80.51 75.59 73.87

Figure 8. YOLOv4-Tiny results for the different test datasets using 1-channel depth, 3-channel RGB
and 4-channel RGB+D input images.
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Figure 9. YOLOv4-Tiny results for the different test datasets using 1-channel depth, 3-channel RGB
and 4-channel RGB+D input images.

Figure 10. From top to bottom and left to right: YOLOv4-Tiny results using the 3-channel RGB frames
for the 1-Indoor1-Dark, 2-Indoor1-Light, 3-Indoor2-Dark, 4-Indoor2-Light, 5-Outdoor1, 6-Outdoor2,
7-Darkness and 8-Outdoor5 scenarios.

4.2. Experiment 2: 3DHOG Approach

The experimental results for the 3DHOG approach for the different test cases and
methods are summarized in Tables 8 and 9 and Figure 11. The best mAP result is 84.93%,
which is relatively lower than the results obtained with YOLOv4-Tiny in all analyzed test
scenarios. Moreover, the 3DHOG results are better when the lower voxel grid (203 voxels)
is used. Experiment 2 also evaluates the feature dimensionality reduction by applying
PCA analysis Figure 12. The maximum number of Principal Components (PCs) are limited
by the total number of synthetic objects (total_No) in the training dataset. Hence, it is not
possible to reduce the initial number of features in more than Total_No-1 PC. The results
show that feature dimensionality can be reduced without significant mAP loss. However,
when we use a higher number of PCs (1000 PCs), the mAP drops significantly. These results
match with the obtained result when using synthetic data for the test [4]. In addition, it is
not possible to improve the mAP compared to the case where we use the full set of features.
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Figure 11. 3DHOG results for the different test datasets using 1-channel depth, 3-channel RGB and
4-channel RGB+D input images.

Figure 12. 3DHOG mAP and PCA dimensionality feature reduction.

4.3. Experiment 3: Caregiver’s Distance and Angle Computation

Experimental results of a caregiver distance measurement are shown in Figure 13.

(a) (b)
Figure 13. Experiment 3 results to measure the caregiver’s relative distance and angles using the RGB data. (a) Experiment 3:
Caregiver’s distance measurement. (b) Experiment 3: Caregiver’s angle measurement.

We used an outdoor test dataset for the experiment that contains 30 s of images of a
caregiver walking beside the PW. We first measure the ground truth distances using the
depth channel (Figure 13a). Measured distances using the depth channel are affected by
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the movement of the feet due to the walking motion and therefore are not constant over
time. Then, we measured the distances and angles using the RGB data and the method
introduced in Section 3.8. In the same way as for the feet distance measurements, the
caregiver’s feet angle are affected by the feet motion but also by the motion of the PW.

Additionally, we evaluated the measured distances considering on-air feet not lying
above the GP due to the walking motion (Figure 14). We consider that the on-air feet
introduce an error in the distance measurement. Hence, we categorized each foot’s position
for each frame according to its position above the GP. We evaluated the quality of the
measurement with respect to the ground truth data by computing the linear regression of
the whole feet data and only of the grounded feet, measuring the Root Mean Squared Error
(RMSE) as a quality index. The evaluation shows that when the feet are above the GP, the
distance measurements have a lower RMSE and, therefore, a higher degree of confidence
(Table 10).

Figure 14. Experiment 3: Ground truth and measured distances using an RGB data.

Table 10. Root mean squared error of caregiver distance measurement.

All Feet Ground Feet

RMSE (m) 0.077 0.035

5. Discussion
Evaluation of the Methods

Both recognition approaches analyzed perform with enough accuracy to recognize
the objects. The YOLOv4-Tiny achieved good recognition results even when working in
low lighting conditions, thus enabling the development of a reliable contactless driving
system for PW and autonomous robotic applications. In addition, it is possible to recognize
the objects in complete darkness using the depth channel (1-channel) or merging the RGB
and depth channels (4-channels) without degrading the recognition performances, making
it especially suitable for applications that require good and reliable object recognition
performances despite the lighting conditions and light saturation artifacts.

The 3DHOG approach requires previous point cloud pre-processing to segment the
objects from the unstructured 3D points. The pre-processing segmentation causes a higher
computational cost but also leads to segmentation errors, which affect the recognition
performance [5]. In Experiment 2, we used a new method of the object segmentation using
the same labels we used for the YOLOv4-Tiny approach. As a result, object segmentation
avoids errors, improves the recognition performances and allows us to compare both object
recognition approaches regarding segmentation artifacts. However, the segmentation
method only works on labeled data, and therefore, it is not valid for new unlabeled data
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frames. Hence, the proposed segmentation method does not solve the problem of having
segmentation artifacts when using the 3DHOG and point cloud input data.

On the other hand, YOLOv4-Tiny requires, instead, a labeled dataset of images for
training and validation, covering all the possible scene variations with respect to back-
grounds, lighting, targets and obstacles. Hence, it is necessary to consider all the possible
indoor and outdoor scenarios due to the high variability of environments where a PW is
intended to be used, and as consequence, to collect and label a large dataset of images. This
drawback can lead to recognition problems when the PW is used in a different scenario not
considered during the training, although our experimental results are good even in this
situation. In order to address this problem and to avoid the requirement of large labeled
datasets, it is possible to use transfer learning [51] or few-shot [52] techniques.

YOLOv4-Tiny results show good recognition performances when using only the RGB
data (3 channels). Therefore, it is not required to include the depth data for an object
recognition application. This result enables using only a monocular RGB camera instead of
a depth camera for a caregiver recognition application. As a drawback, a monocular RGB
camera does not allow measuring relative distances of the caregiver’s feet and also does
not enable caregiver detection in complete darkness conditions.

The experimental results for a caregiver distance measurement using only the RGB
data results in an average error of 3 cm. However, we assumed that the GP is perpendicular
to the PW throughout the caregiver’s detection range. In the case of not having a flat GP,
this assumption can lead to distance miscalculations. This drawback especially affects
outdoor scenarios when the GP is not flat. In order to solve this miscalculation caused by
the feet motion and position above the GP, it is required to detect the feet position and
measure its relative distance only when the feet are above the GP and thus discard the
measurements when feet are on-air. Regarding the caregiver’s feet angle, it is not possible
discard on-air or ground feet angle measurements due to the motion of the PW. Hence, it
is required to perform an average of the measured caregiver’s feet angle to estimate the
caregiver’s angle position according to the PW.

6. Conclusions

Despite the relatively good performances of the 3DHOG approach for 3D object
recognition, the YOLOv4-Tiny approach outperforms it in all the test scenarios and light
conditions evaluated on the Miun-Feet dataset. The experimental results show that in-
cluding the depth channel does not improve the recognition accuracy compared to using
only RGB channels. In addition, it is possible to compute the caregiver relative distances
and angles using only the RGB data. Only in the case of complete darkness, the object
recognition is improved using the depth channel. However, complete darkness is not a
requirement for a PW operation. Therefore, we believe a monocular RGB camera is a better
option for a contactless PW control application.
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