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Abstract: Bio-inspired Event-Based (EB) cameras are a promising new technology that outperforms
standard frame-based cameras in extreme lighted and fast moving scenes. Already, a number of
EB corner detection techniques have been developed; however, the performance of these EB corner
detectors has only been evaluated based on a few author-selected criteria rather than on a unified
common basis, as proposed here. Moreover, their experimental conditions are mainly limited to less
interesting operational regions of the EB camera (on which frame-based cameras can also operate),
and some of the criteria, by definition, could not distinguish if the detector had any systematic bias.
In this paper, we evaluate five of the seven existing EB corner detectors on a public dataset including
extreme illumination conditions that have not been investigated before. Moreover, this evaluation is
the first of its kind in terms of analysing not only such a high number of detectors, but also applying
a unified procedure for all. Contrary to previous assessments, we employed both the intensity
and trajectory information within the public dataset rather than only one of them. We show that a
rigorous comparison among EB detectors can be performed without tedious manual labelling and
even with challenging acquisition conditions. This study thus proposes the first standard unified EB
corner evaluation procedure, which will enable better understanding of the underlying mechanisms
of EB cameras and can therefore lead to more efficient EB corner detection techniques.

Keywords: event-based camera; corner detector; event-based corners

1. Introduction

Event-Based (EB) cameras, a promising new technology, consist of independent pixels
that acquire data only if there is a change in their field of view. As such, the amount of
information that must be processed, particularly in surveillance tasks, is greatly reduced.
Each pixel operates asynchronously; therefore, the sensor can achieve low latency in its
output and can spot fast variations in the scene.

By providing high temporal resolution and high dynamic range, event-based cameras
are revolutionising the way machines perceive the visual world. Accordingly, commer-
cial interest [1,2] has quickly increased in order to exploit the intrinsic advantages over
traditional visual cameras for a variety of applications such as automotive, augmented
reality, surveillance, and monitoring [3]. In particular, EB sensors have been increasingly
explored for navigation and have been creating much excitement, as well as hope that they
can push new boundaries [4–6]. That being said, their asynchronous nature has imposed a
paradigm shift in the way perceptual information is acquired and processed. Hence, it has
been necessary to redefine existing image processing tools in an EB formulation.

Image corners are distinct features that can be located with high precision, therefore
making them desirable for especially fine localisation and tracking solutions. With a similar
motivation, a few EB corner detectors [7–13] have been developed aiming at the precise
localisation at high speed and in High Dynamic Range (HDR) conditions. For a high level
understanding, a brief overview of these EB corner detectors is given in Table 1. More
details on the selected detectors are given in Section 2.2. Unsurprisingly, except the plane
fitting method [7], which searches the space-time representation of the event stream for the
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intersection of moving edges, most of these methods can be also considered to be an EB
adaptation of well-known image-based techniques such as the Harris [14] and FAST [15]
corner detectors. Often, each polarity is treated separately, and algorithms are tested on
fast moving scenes.

Table 1. Event-Based (EB) corner detector algorithms’ properties and their respective paper’s evaluation criteria. eHarris,
event-based Harris corner detector; eFAST, event-based FAST corner detector; CHEC, Continuous Harris Event Corner
detector; FA-Harris, Fast and Asynchronous Harris corner detector; SITC, Speed Invariant Time surface corner detector;
HDR, High Dynamic Range.

localPlane eHarris eFAST Arc CHEC FA-Harris SITC
[7] [8] [9] [10] [11] [13] [12]

Algorithm Properties
Uses surface of active events 3 3 3 3 7 3 7

Event-by-event processing 3 3 3 3 3 * 3 3

Adaptation of an image-based tech-
nique

7 3 3 3 3 3 3

Evaluation Criteria
Quantitative testing 3 3 3 3 7 3 3

Tested on a public dataset 7 7 3 3 3 3 3 **
Testing on scenes ≥ 60 s 7 7 3 Partial N/A Partial 3

Tested on fast moving scenes 3 3 3 Partial Partial Partial 3

Tested on HDR scenes 7 7 7 7 7 7 3

Manually labelled ground truth 3 3 7 7 7 7 7

Uses camera trajectory 3 3 7 Partial N/A Partial 3

Ground truth requires on intensity
frames

7 7 7 3 N/A 3 7

* With degradation of the performance; ** the proposed public ATIS dataset does not include the pixel intensity values used for the algorithm training.

Unfortunately, most of the experiments have not evaluated detector performances
in HDR conditions even though the advantages of EB cameras in HDR are discussed
in the papers. Moreover, new evaluation procedures are introduced every time a new
algorithm is proposed perhaps to distinguish their solutions in a favourable manner. Some
evaluation criteria [10,13] only rely on intensity images, which are limited to less interesting
conditions (i.e., moderate motion speed and illumination conditions), while others [9]
associate the nearby corners without considering the actual feature trajectory. Among all,
the triangulation-based evaluation criterion [12] is found to be the most rigorous method
that can measure the performance of the detectors also in challenging scenarios. However,
this evaluation protocol completely puts aside the comparison of EB corners with image
corner detectors, which could be still insightful to understand the underlying processes of
the EB techniques as the ultimate goal is to keep the existing features and complements in
challenging scenarios.

In this paper, we present a unified EB corner detector evaluation protocol that can
provide better understanding of the underlying processes of EB cameras. We combine the
strengths of the evaluation procedures proposed by the previous EB corner detector papers
with our additional evaluation metrics. The primary part of the evaluation investigates
the performance in terms of computational complexity and precision by using the camera
trajectory, while the secondary part provides the accuracy metrics by comparing these
with the intensity image information. Our comprehensive evaluation protocol is used
to assess the performance of five EB corner detectors [8–11,13] in various challenging
scenarios, including HDR conditions, which is has been barely investigated until now,
using a public dataset. As such, our comprehensive evaluation methodology already
shows its significance by indicating research avenues to explore and infertile research
directions to avoid based on the current state-of-the-art. The contributions of this paper are
thus two-fold: the first unified EB corner detection evaluation protocol and the thorough
comparison of existing EB corner detectors using this protocol.
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The paper is structured as follows: Section 2.1 introduces the necessary EB terminol-
ogy used in the paper. Section 2.2 describes the EB corner detectors that are evaluated.
Section 2.3 details the elements of the proposed evaluation criteria. The results of each
evaluation criterion are given in Section 3 and discussed in Section 4, while the conclusions
are summarised in Section 5.

2. Materials and Methods
2.1. Event-Based Computing Terminology

EB cameras output a stream of asynchronous events where each event ei describes the
contrast change at a given pixel location (xi, yi) and at a given time ti. This representation
can be described as:

ei = (ti, xi, yi, pi) = (ti, ui, pi) (1)

where ui is the pixel location and pi is the polarity describing the brightness change as
positive (i.e., increasing intensity) or negative (i.e., decreasing intensity) over time.

Surface of Active Events

The Surface of Active Event (SAE) is a concept that describes a time-space represen-
tation of events [16]. An SAE stores the latest event trigger time (i.e., time dimension) of
a pixel (i.e., spatial dimension). Hence, the SAE is defined for the full sensor dimension
and updated by each event at its pixel location. However, event polarity information is
not explicitly embedded. Generally, events of different polarity form separate SAEs. For
a black rectangle object moving towards the right bottom corner of a scene, Figure 1a–c
shows the resulting SAE of positive polarity events in 3D and 2D, respectively.
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Figure 1. Surface of Active Event (SAE) representation of positive events. (a) The intensity scene
where a black rectangle object is moving towards the green arrow; SAE representation of the resulting
positive events in (b) 3D and (c) 2D (i.e., the time information is colour coded).

2.2. Event-Based Corner Detectors

This study focuses on five EB corner detectors for their performance evaluation:
the event-based Harris corner detector (eHarris) (using the public implementation pro-
vided by the authors of eFAST [9] https://github.com/uzh-rpg/rpg_corner_events) [8],
eFAST (using the public implementation provided by the authors of eFAST [9] https:
//github.com/uzh-rpg/rpg_corner_events) [9], Arc (using the public implementation
provided by the authors https://github.com/ialzugaray/arc_star_ros) [10], Fast and
Asynchronous (FA)-Harris (using the public implementation provided by the authors
https://github.com/ruoxianglee/fa_harris) [13], and the Continuous Harris Event Corner
detector (CHEC) (using the original implementation of the authors) [11]. In this evaluation,
the LocalPlane [7] and SITC [12] algorithms are not included. In the case of LocalPlane [7],
the reasoning is its high computational complexity (i.e., multiple optimisation process
per event), which is considered less attractive for EB applications [9]. In the case of the
SITC [12] algorithm, neither the trained model nor the fine details of the training procedure
are available in order to achieve the required confidence level for this comparative analysis.

https://github.com/uzh-rpg/rpg_corner_events
https://github.com/uzh-rpg/rpg_corner_events
https://github.com/uzh-rpg/rpg_corner_events
https://github.com/ialzugaray/arc_star_ros
https://github.com/ruoxianglee/fa_harris
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Moreover, the publicly available dataset is missing important intensity information for the
algorithm training to replicate the results accurately.

The algorithms were all implemented in C++, using the Robotic Operating System
(ROS) and OpenCV libraries. This section provides a brief description of each method.

2.2.1. Event-Based Harris Corner Detector

The event-based Harris corner detector [8] (eHarris) is an event-based adaptation of
the Harris detector [14]. For each polarity, the algorithm establishes the SAEs and then
binarises these SAEs by thresholding the newest N events. By doing so, the 3D SAE
information is converted to a 2D binary frame where 0 and 1 represent the absence and
presence of an event in a given pixel location. If we let ∑b as the local patch of the binary
SAE, which is centred at the pixel location of the newest event e, the symmetric Harris
matrix M can then be computed as:

M = ∑
e∈∑b

g(e)∇I(e)∇IT(e) (2)

where g(e) is a Gaussian window function and ∇I(e) is the gradient of the binary image
patch ∑b convolved with a Sobel filter. Like the Harris detector, the corner metric H of
eHarris is given by:

H = det(M)− k · Tr(M)2 (3)

where k = 0.04 is an empirically defined parameter. If H is larger than a certain threshold,
the newest event e is classified as a corner. In this study, we use the improved version of
eHarris by [9], which defines the newest N events for each local patch of the SAE rather
than the global SAE. Thanks to this spatially-adaptive solution, the new version of the
algorithm is scene and sensor size independent; therefore, the evaluation can be done with
the best possible performance.

The challenges of this algorithm are: (1) the selection of N number of events, which is a
hand-tuned parameter depending on the scene complexity, (2) for each event e, a frame-like
binary patch is processed, which causes time delays due to number of time-consuming
computations (e.g., convolution).

2.2.2. Event-Based FAST Corner Detector

The event-based FAST corner detector [9] (eFAST) is an event-based adaptation of the
FAST detector [15]. For each polarity, the algorithm establishes an SAE and extracts a local
SAE patch that is centred at event e, like in eHarris. Within this window, the algorithm
searches for continuous streaks on two different circles, which are referred as the inner
and outer circles, as shown in Figure 2. If the search finds a continuous streak that has a
length equal to the third of each circle for a given patch, then the event e is classified as a
corner event.

(a) event and circles in 2D

X

Y

t

(b) SAE local patch in 3D

Figure 2. The inner (green) and outer (purple) circles that are centred at the current event (black) for
given local SAEs. In this example, the event under consideration (black) is classified as a corner event.



J. Imaging 2021, 7, 25 5 of 15

2.2.3. Asynchronous Corner Detector: Arc

The asynchronous corner detector, called Arc [10], can be considered as a modified
version of the eFAST detector [9]. In addition to the corner definition of eFAST, Arc also
searches for corners with angles greater than 180◦. This is achieved by searching the arc as
in eFAST, but this time in both directions: clockwise and counter-clockwise.

Instead of the traditional SAE, Arc uses a modified version of the SAE, which stores
the additional information of reference time tr in addition to the spatiotemporal structure
(i.e., event position and time) of traditional SAEs. While the spatiotemporal information
of the SAE is updated with each event, the related tr is only updated with the latest event
time: (1) if the previous activation of the same pixel is older than a predefined time-window
κ, which is set to 50 ms during the experiments [10]; (2) if the polarity of the previous event
of the same pixel differs. By doing so, the reference time tr provides a sort of noise filtering
to traditional SAEs caused by the hardware when consecutive activation of the same pixel
is faster than the timestamp registration process [10].

The algorithm uses this new filtered SAE with the reference time tr in order to form the
required spatiotemporal space, which is called SAE* hereinafter. Similar to [9], a circular
mask of a 3 and 4 pixel radius centred at the current event location within the local SAE*
is searched for continuous streaks (i.e., the oldest timestamp of the streak is newer than
the adjacent locations on the circle) with the same lengths (i.e., 3–6 pixels for the inner
and 4–8 pixels for the outer circle), as in [9]. The difference of Arc lies in the fact that the
complementary streak on the circle is also checked for whether the length condition is
satisfied or not (i.e., by the double directional search). By checking the complementary
streak, Arc includes the corners with angles greater than 180◦.

2.2.4. Continuous Harris Event Corners

The Continuous Harris Event Corner detector (CHEC) [11], is based on the convolution
of the event stream as the internal state of a continuous-time filtering technique. By
employing a high-pass filter on the system, the drifting sensor noise over time, which
shows low temporal frequency, is removed. As an internal state of the filter, CHEC
establishes the image gradients Ĝx(x, t) and Ĝy(x, t), which are used to compute the Harris
corner metric [14].

Contrary to eHarris, the image gradients Ĝx(x, t) and Ĝy(x, t) are related to the in-
tensity information of the scene rather than an artificially created binary image from the
SAE by thresholding for each polarity. Instead of convolving the intensity image with a
3× 3 Sobel kernel, each event is converted to nine artificial kernel events where the kernel
is centred at the original event. These artificial events have the same timestamp as the
original event and perform an exponential decay at pixel locations to estimate a priori
gradient Ĝ(x, t−i ) at given event location x.

Ĝ(x, t−i ) = e−α(ti−tx)Ĝ(x, tx) (4)

where ti is the event timestamp, α is the cut-off frequency to reduce the low temporal
noise, and tx is the previous timestamp at pixel x. Then, a posteriori gradient Ĝ(x, t+i ) is
estimated as:

Ĝ(x, t+i ) = Ĝ(x, t−i ) + pic(K ∗ δxi)(x) (5)

where pi is the polarity, c is the EB camera contrast threshold, K is the kernel, and δxi is the
delta function that is non-zero at event timestamp ti and location x.

By using this gradient estimation, an internal state that describes the intensity Harris
corner metric is calculated locally. It is important to note that non-maximum suppression
techniques are necessary to retrieve decent corners from this internal state. This non-
maximum suppression is applied periodically by the authors for the results that were
presented in their paper [11]. In this context, CHEC can be considered as a hybrid solution
since the first part of the computations that computes the corner metric is EB, while the
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detection of a decent corner by employing the non-maximum suppression technique is a
somewhat frame-based approach.

Our study focuses on the EB performance of the algorithm; therefore, we do not
implement a frame-based non-maximum suppression technique, which would greatly
increase the computation time. A localised non-maximum suppression solution that could
be implemented in EB is found to extremely penalise the corner event stream and presents
frequent discontinuities, which is not favourable. Instead, a very high corner threshold
(i.e., 0.015) is employed such that the detector outputs a comparable event corner stream
for the evaluation.

2.2.5. Fast and Asynchronous Corner Detector

The Fast and Asynchronous corner detector (the so-called FA-Harris detector) [13]
is a corner detection pipeline that uses features from Arc [10] and eHarris [9]. First, the
event stream is filtered before forming the SAE, and the corner events are selected as in [10].
The difference is that these detected EB corners are considered as candidate events in the
FA-Harris algorithm. Consecutively, these events are reprocessed by eHarris [8] in order to
be selected as the real EB corners, which is claimed to be a more refined output.

2.3. Evaluation Criteria
2.3.1. Reduction Rate

Considering the high output rate of the EB camera, reducing the event-stream into the
most relevant and manageable number of events results in the need for feature extraction.
In this study, the reduction rate R(%) is defined as:

R(%) =

(
1− #ecorner

#etotal

)
× 100 (6)

where #ecorner is the number of corner events and #etotal is the total number of events as
described in previous studies [9,10].

2.3.2. True Positive Rate/Sensitivity

Similar to the methods presented in [10,13], intensity image corners detected by the
Harris detector [14] are tracked by using KLT [17] over time when compatible with the
dataset (i.e., no motion blur, favourable illumination conditions).

For each track i, a pair of successive image corners is connected by a line segment,
which forms the centre of an oblique cylinder with radius r pixels, and the depth is the time
difference between their respective images. All events within this cylinder are considered
as the true corner events generated by the actual image corners, and the total number
of these events is defined as E[≤ r]All

i . For each EB detector, the detected event corners
within this cylinder are labelled as the True Positives (TPs) and defined as E[≤ r]Det

i . On
the other hand, events that are within the cylinder, but not detected by the EB detector
are considered as the False Negatives (FNs). Consecutively, the True Positive Rate (TPR)
of each EB detector can be described as in Equation (7), which allows us to evaluate
their sensitivity.

TPR =
TP

TP + FN
=

∑i E[≤ r]Det
i

∑i E[≤ r]All
i

(7)

Contrary to earlier studies [10,13], we do not define another cylinder with a larger
radius, which is used to identify the negative samples (i.e., detected events that are not
actual event corners). Such a metric is considered as possibly misleading for our deductions
since the underlying processes of image and event generation are different and EB detectors
are likely to be more sensitive than intensity-based imagers. While all image corners are
expected to be detected by an ideal EB corner detector, the reverse is not necessarily true.
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Since our end goal is to understand the relationship between the image and EB corners,
cylinders with three different radius values (i.e., 1.5, 3.5, 5 pixels) are analysed in this study.
In previous studies, only one radius (i.e., 3.5 pixel) was used [10,13].

2.3.3. 3D Reprojection Error

Considering the fact that EB cameras have higher output rates than frame-based
cameras, a stable EB corner detector should provide continuous tracks without requiring
complex tracking techniques. Therefore, decent tracking results can be achieved by employ-
ing a simple nearest neighbour matching in space and time, as discussed by [12], which we
also use in our evaluations.

For tracking, each new coming event at time ti is compared with the feature tracks
that are updated within the last δT seconds and within the radius of r to the event. Then,
the event is assigned to the longest track within this list. In order to remove the noise
from the feature tracks and increase the feature location accuracy, the tracker averages the
location of the last n events as the location of the feature and does not evaluate the location
of the first n events. The details of this simple nearest neighbour matching algorithm can be
found in [12]. For our evaluations, r, δT, and n are taken as 3 pixels, 50 ms, and 10 events,
respectively.

In order to evaluate the performance of EB corner trackers using public datasets
that are non-planar and/or have an event rate higher than the ground truth rate, we
used the reprojection error associated with the 3D triangulation of events belonging to
each feature track (described in the previous paragraph) for a given ground truth camera
pose, as in [12,18,19]. As in [12,18], tracks with a reprojection error of less than 5 pixels
are considered as “valid tracks”. The quality of the EB corner detector is defined by the
percentage of valid tracks and the mean reprojection error of the triangulated 3D points
over the respective valid tracks. Moreover, the average track lifetime per dataset is also
provided to evaluate the traceability of the EB corner detectors.

3. Results
3.1. Datasets

The evaluation of EB corner detectors is performed by using the public DAVIS
240Cdataset. A few scene extracts are shown in Figure 3, and further details can be
found in [20]. Each dataset consists of DAVIS images, events, camera calibration, and the
ground truth information. The ground truth for the slider is simply given by its position.
The ground truths for all the other datasets are recorded using a motion capture system.
All scenarios last around 60 s with the exception of the slider dataset, which is around
six seconds.

Compared to the previous studies [9,10,13], our study also analyses, for the first time,
the following scenarios: calibration, slider_close, slider_far, slider_hdr_close, slider_hdr_far,
and hdr_poster. Among these datasets, the suffixes “close” and “far” describe the dis-
tance to the planar scene, whereas “hdr” describes the challenging illumination conditions.
A high total number of events indicates more complex and textured scenes. Except for
the slider dataset, the duration of all acquisitions is similar; therefore, a significant in-
crease in the number of events can be related to the scene textures or dramatic changes in
scene illumination.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Dataset scenes: (a) chequerboard, (b) slider, (c) shapes, (d) dynamic, (e) poster, (f) boxes.

3.2. Reduction Rate Performance

For the entire dataset of this study, the event reduction rate for each EB corner detector
is shown in Table 2. For relevant scenarios, our results are compatible with the results of
the previous studies [9,10,13]. There is only a small bias of approximately 0.3% with the
FA-Harris detector with its original paper even though the authors’ public implementation
was used. This could be due to the corner threshold selection, which was not given by their
paper (our study sets the corner threshold to eight).

For all detectors, scenarios with “shape” scenes have the lowest reduction rate com-
pared to the rest of the scenarios. This can be related to the low texture of the scene where
events are generated by geometrical shapes on a white background. Extreme illumination
(spotlight) that is present at the second half of the slider_hdr datasets results in a decrease
in the total number of events. This means that even though EB cameras can operate in
extreme illumination conditions, without parameter adjustments, their sensitivity degrades.
However, there is no significant effect of scene illumination on the reduction rate of EB
corner detectors.

Moreover, the reduction rate of EB corner detectors depends on the scene, but not on
the camera trajectory (i.e., the reduction rate for translations, rotation, and six degree of
freedom trajectories of the same scene are similar for all detectors). For the slider dataset,
which is the slowest among all and has the only constant speed trajectory, CHEC seems
unable to detecta tangible number of EB corners. This could be related to a lower number of
updates of the internal gradient estimates due to less events generated by the slow motion
and eventually leading to a lower Harris corner metric, which remains below the selected
constant threshold.

In Table 2, the highest reduction rate for each scene is highlighted. However, CHEC is
not the best EB corner detector. The purpose of this metric is to evaluate the data reduction
of EB corner detectors, as this is interesting for higher level algorithms. This metric by itself
cannot assess if the remaining feature events are all of the intended data or good enough for
post-processing. The higher reduction rate is favourable as long as all meaningful data are
kept. Therefore, to make more comprehensive conclusions, this metric shall be used along
with the other metrics. Hence, this fact again suggests the importance of our comprehensive
evaluation procedure rather than single aspect studies that may be misleading.
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Table 2. Reduction rate of EB corner detectors per algorithm for each scene. For readability, the highest value for each row is
highlighted in bold; this does not necessarily correspond to the best algorithm, as this metric should be read in conjunction
with the other results.

Scene Total # of
Events eHarris (%) eFAST (%) Arc (%) CHEC (%) FA-Harris (%)

calibration 21,340,629 92.1 95.3 92.8 95.6 98.3

shapes_translation 17,363,976 91.7 87.8 88.1 98.3 95.6
shapes_rotation 23,126,288 92.7 88.9 87.7 99.1 95.4

shapes_6dof 17,962,477 90.6 87.0 88.3 97.8 95.7

dynamic_translation 35,809,924 95.3 96.7 92.7 96.3 98.7
dynamic_rotation 71,324,510 95.1 96.4 91.7 98.2 98.0

dynamic_6dof 57,174,637 95.4 96.4 92.2 97.6 98.3

poster_translation 100,033,286 92.3 95.8 90.9 98.3 97.8
poster_rotation 169,350,136 92.6 95.7 89.9 97.3 97.4

poster_6dof 133,464,530 92.4 95.6 90.2 97.5 97.5

hdr_poster 102,910,720 93.5 96.2 92.4 98.2 98.3

boxes_translation 112,388,307 92.4 96.7 92.2 99.1 97.9
boxes_rotation 185,688,947 92.1 96.7 91.9 97.5 97.7

boxes_6dof 133,085,511 92.7 96.8 92.2 98.2 98.0

slider_close 4,032,668 92.8 92.7 89.8 100.0 97.6
slider_far 3,442,683 91.7 95.8 92.8 99.9 98.3

slider_hdr_close 3,337,787 95.4 93.8 90.4 100.0 98.4
slider_hdr_far 2,509,582 91.7 94.2 90.9 100.0 97.8

3.3. True Positive Rate/Sensitivity Performance

In our analysis, we used the first 10 s of each dataset and only the image corner tracks
that were longer than one second. Table 3 shows the TPR of the event corner detectors with
respect to the tracked intensity corners for different radii. As expected, the TPRs of eHarris
and eFAST for a radius of 3.5 pixel were found to be similar to the results given in [10].
Small variations compared to [10] are associated with the definitions of track refinement
and short tracks, which were not explicitly described in the original paper.

The analysis of the different trajectories of the same scene suggests that the TPRs of EB
corner detectors are more closely related to the scene structure than the camera trajectory.
EB detectors perform particularly well for highly geometric scenes with strong gradients
such as the calibration and shapes datasets. This could be related to the constant contrast
threshold of the EB camera over different dataset acquisitions. For the shapes dataset in
particular, all EB detectors provided high precision, which can be identified by a significant
decrease in TPR from 1.5 pixels to five pixels, as shown in Table 3.

The CHEC detector shows a significant degradation of its performance for the slider
dataset, which has the slowest trajectory among all the datasets. This could be related to
the fewer updates at the internal gradient estimates due to the fewer events generated by
the slow motion and eventually leading to a lower Harris corner metric, which remains
below the selected constant threshold.
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Table 3. True Positive Rate (TPR) of EB corner detectors for given scenes. For each row, the best score per radius value is
highlighted in bold.

Scene eHarris eFAST Arc CHEC FA-Harris

Radius (pix) 1.5 3.5 5 1.5 3.5 5 1.5 3.5 5 1.5 3.5 5 1.5 3.5 5

calibration 20.4 16.5 13.0 16.0 12.7 9.8 11.7 11.0 9.5 17.9 14.1 11.4 3.6 3.1 2.4

shapes_translation 15.4 13.1 10.5 22.6 19.3 15.4 13.6 11.7 9.5 7.8 7.0 6.3 5.7 4.8 3.6
shapes_rotation 16.6 14.7 11.4 23.0 20.1 15.8 14.6 12.8 10.3 7.6 6.7 5.9 6.2 5.5 4.0
shapes_6dof 15.8 13.5 11.0 21.5 18.9 15.4 11.4 10.6 9.0 12.4 11.0 10.0 4.3 3.7 2.9

dynamic_translation 11.1 8.1 7.0 6.7 4.8 4.1 10.1 9.2 8.6 7.3 7.0 7.1 2.5 1.8 1.5
dynamic_rotation 10.4 9.2 8.4 6.5 5.8 5.4 11.3 11.5 11.3 3.9 3.8 3.8 2.9 2.7 2.4
dynamic_6dof 10.0 7.9 6.6 6.6 4.8 4.0 9.8 9.0 8.4 7.7 7.1 6.8 2.2 1.6 1.3

poster_translation 11.1 10.0 9.0 4.1 4.1 3.7 6.3 6.4 6.4 3.7 3.9 3.8 1.6 1.5 1.4
poster_rotation 12.8 11.6 10.1 5.2 5.1 4.3 7.5 7.3 6.8 2.7 3.2 3.0 1.9 1.9 1.6
poster_6dof 12.5 11.0 9.8 4.7 4.5 4.0 6.8 6.6 6.3 4.1 4.6 4.5 1.4 1.3 1.2

boxes_transl. 12.5 10.4 8.9 4.1 3.6 3.2 7.1 6.5 6.1 2.3 2.0 2.0 2.1 1.7 1.4
boxes_rotation 9.5 9.0 8.3 3.1 2.8 2.8 6.0 5.7 5.8 1.2 1.2 1.1 1.7 1.5 1.4
boxes_6dof 11.1 9.1 8.0 3.6 3.0 2.7 6.6 6.2 5.8 1.4 1.2 1.1 1.7 1.4 1.2

slider_close 16.7 16.2 14.5 12.4 14.9 13.2 14.5 16.1 15.2 0.4 0.1 0.1 4.8 5.5 5.0
slider_far 16.1 14.6 12.1 5.3 6.2 5.2 10.5 9.3 8.3 0.2 0.1 0.1 2.7 2.4 2.0

FA-Harris shows the poorest performance among all EB corner detectors, except for
the slider dataset. This result is interesting because FA-Harris claims to achieve better
performance by combining the strengths of eHarris and Arc. However, our findings show
that such a combination rather penalises the TPR of the detector. On the other hand, eHarris
shows one of the best TPRs among all EB corner detectors over all datasets. Since the TPR
is based on the tracks of image-based Harris corners and eHarris uses the same algorithm
on artificially created SAE images, this result may indicate a close relationship between the
SAE and intensity images. However, such reasoning requires further analysis in order to
be justified.

Figure 4 shows the TPR of EB corner detectors over time for the shapes_translation
dataset along with the normalised speed of the trajectory, which is also proportional to the
number of events per second. As can be seen for all EB detectors, the initial TPR is zero and
requires about 30 ms to reach its average value over the entire evaluation duration. This
shows that none of the EB corner detectors reach their nominal performances immediately
after the acquisition start. This is as expected because all algorithms somehow accumulate
events in the form of either SAEs or internal gradients. Without sufficient accumulation of
event information over time, their algorithm cannot detect them.

At the times of directional changes in motion, as shown by the minima of speed
in Figure 4, the number of event fired decreases significantly compared to fast motion.
These are also the times when EB corner detectors’ TPR decreases compared to high speed
trajectories. Nevertheless, Arc shows comparatively better results for directional changes in
motion. This could be related to the fact that Arc is specifically designed to detect corners
with angles larger than 180◦, and directional motion change may result in small corner
angles becoming larger from the EB perspective. Moreover, we observe a general trend of
better TPRs at increasing speeds, which can be seen at the second half of the trajectory for
eFAST, eHarris, and Arc. This could be related to the fact that a higher speed generates
more events and consecutively more updates in the SAE, which allows the algorithms to
detect EB corners better.
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Figure 4. TPR of EB corner detectors over time for the shapes_translation dataset along with the
normalised speed of the trajectory.

3.4. 3D Reprojection Error Performance

Comparing EB corner detectors only with intensity corners provides a better under-
standing of their similarities. However, this limits the evaluation to the operational region
of frame-based cameras such as slow, favourable illumination conditions. Therefore, this
part of the evaluation investigates their performance from the speed and illumination
perspective. Figure 5 shows the 3D reprojection error performance of each EB detector for
such varying scenes. Each EB corner detector is colour coded, and the percentage of valid
tracks is shown with a pie chart and given within, as well as at the side legend of the figure.

Over all the datasets presented, the shortest average feature track times of all EB
detectors are observed for the shapes_rotation dataset Figure 5g. This suggests that EB
corner detectors are affected by rotational motions. Interestingly, CHEC corners have
the longest feature track lifetime in the shapes_rotation dataset compared to other EB
corner detectors, despite showing the worst lifetime performance in all other datasets.
Considering the fact that CHEC somehow establishes a short-term spatiotemporal memory
in the vicinity of an event spike, the exploitation of such memory could be an interesting
avenue to explore a rotation invariant EB corner detector.

The calibration dataset presents a slower trajectory compared to the shapes dataset,
while both last around 60 s and consist of geometrical patterns. As can be seen clearly in
Figure 5e, the percentage of valid tracks and the track lifetime of all EB detectors are higher
and longer than their performance on the shapes dataset in Figure 5f–h.

The slider_hdr datasets observe the same scene as the slider datasets, but the second
half of their trajectory is affected by the harsh illumination conditions. For EB corner
detectors, except CHEC, we do not observe any performance variation between these two
types of datasets. In the slider_hdr_close dataset, CHEC corners were not sufficient to form
feature tracks. This could be related to the selection of a constant Harris corner threshold
for the entire dataset and searching at a single scale. Even though CHEC shows a better
reprojection error for the slider_hdr_far dataset compared to slider_far, the feature tracks
are significantly shorter than for the other EB corner detectors; therefore, this result could
be due to the fortunate small parallax, and it is hard to deduce anything reasonable.
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Figure 5. Average 3D reprojection error versus the average lifetime of feature tracks resulting from
EB corner detector outputs for datasets: (a) slider_close, (b) slider_hdr_close, (c) slider_far, (d)
slider_hdr_far, (e) calibration, (f) shapes_translation, (g) shapes_rotation, (h) shapes_6dof.
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3.5. Computational Performance

All experiments were run on a single core of an Intel Core i7-4702MQ CPU at 2.20 GHz
using a single threaded C++ implementation. Table 4 shows the average process duration
for a single event and the respective maximum event rate in millions of events per second
for each detector. For comparison, we also provide the real-time performance of each EB
corner detector for the shapes_translation and boxes_translation datasets. Except eHarris,
all EB corner detectors could achieve real-time performance for the shapes_translation
dataset. However, the significant event rate increase for the boxes_translation dataset
cannot be handled by EB corner detectors, except the Arc detector, which is implemented to
perform over a reduced number of events. Moreover, we also observe that eHarris performs
worse than FA-Harris, which simply implements eHarris on refined events. These results
suggest that implementing pre-processing to reduce the number of events for computations
with a higher complexity can improve the real-time performance of EB corner algorithms.

Table 4. Computational performance of event corner detectors for given scenes.

Detector Time Per Event Max. Event Rate Real-Time Performance
(µs/event) (Mevents /s) shapes_trans. boxes_trans.

eHarris 6.93 0.14 7 7
eFAST 1.13 0.88 3 7
Arc 0.22 4.65 3 3
CHEC 1.90 0.53 3 7
FA-Harris 1.11 0.90 3 7

4. Discussion

Our analysis suggests the that reduction rates of the selected EB corner detectors are
more affected by the scene structure than by the trajectory profile. When the illumination
of a scene increases significantly without changing anything else, EB cameras stream less
events; however, this does not change the reduction rate of EB corner detectors. This
decrease in the number of event is due to the logarithmic sensitivity of EB detectors. Since
the reduction rate is not affected in such a condition, the number of EB corners provided
will also decrease. Therefore, higher level algorithms should be designed to adapt to such
a change. Overall, Arc shows the lowest reduction rate, while CHEC and FA-Harris show
the highest.

Generally speaking, the TPR performances of EB corner detectors are also found to
be more highly correlated with the scene structure than the trajectory profile. The CHEC
detector shows significant degradation in TPR performance with decreasing speed, which
is related to the low update rate of the internal gradients. FA-Harris shows the worst
performance among all EB corner detectors, except for the slider dataset, even though
FA-Harris claims to achieve better performance by combining the strengths of eHarris and
Arc. The overall performance of eHarris is found to be good. Even though this could be an
indication of a close relationship between the SAE and intensity frames, such reasoning
requires further analysis in order to be justified. We also found that the accumulation
of events that is required for the computations of all EB corner detectors creates a delay
between the start of the acquisition and nominal detection performance.

In terms of reprojection error, we found that the selected EB corner detectors were not
rotation invariant. However, CHEC had a comparatively better response to this variation,
suggesting that the exploitation of short-term spatiotemporal memory in the vicinity of
event spikes could be an avenue to investigate. Increasing trajectory speeds were also
shown to degrade the quality of the EB corners. Harsh illumination conditions did not
affect the quality of the detected EB corners.

Arc shows the best performance among all EB corner detectors in terms of computa-
tional time. This is related to the prefiltering of events before performing time-consuming
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corner detection calculations. This is the main difference between the Arc and eFAST
algorithms in terms of computational complexity.

Our analysis concludes that the current usage of prefiltering has a positive impact on
algorithm computational complexity. Scene structure and speed show more significant
effects on EB corner detectors than the trajectory profile (i.e., rotation, translation). The per-
formances of current state-of-the-art solutions are robust to harsh illumination conditions.
Arc is found to be a good compromise for real-time constraints and satisfactory accuracy.
However, Arc still suffers from rotational motion and requires some time for nominal
operational performance after the start of the acquisition. Nevertheless, none of these
solutions are truly event-based: they all rely on some sort of spatiotemporal accumulation
for their computations. In order to tap into the real potential of EB cameras, a true EB
corner detection and tracking algorithm is needed.

5. Conclusions

This paper provides two main contributions. First, our study provides the first step
in a more rigorous comparison of EB corner detection algorithms through our unified EB
corner evaluation procedure, which could become the gold standard. This is ever more
important since EB processing has now reached a new maturity: there are increasingly
numerous databases and a fair number of existing EB corner detection algorithms to
compare. Any new proposition of an EB algorithm can and should be evaluated rigorously.

Second, by applying our unified EB corner detection evaluation protocol to the most
well-known EB corner detectors, we can highlight that current EB corner detectors seem
to be reasonably robust to illumination conditions, but their performance still depends
on the scene structure and the present trajectory. Above all, theses solutions require the
accumulation of events in order to perform their calculations. Thus, to achieve a real EB
corner detection and tracking algorithm, these issues still need to be addressed.
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