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Abstract: The World Health Organization (WHO) has declared COVID-19 a pandemic. We review
and reduce the clinical literature on diagnosis of COVID-19 through symptoms that might be remotely
detected as of early May 2020. Vital signs associated with respiratory distress and fever, coughing,
and visible infections have been reported. Fever screening by temperature monitoring is currently
popular. However, improved noncontact detection is sought. Vital signs including heart rate and
respiratory rate are affected by the condition. Cough, fatigue, and visible infections are also reported
as common symptoms. There are non-contact methods for measuring vital signs remotely that
have been shown to have acceptable accuracy, reliability, and practicality in some settings. Each
has its pros and cons and may perform well in some challenges but be inadequate in others. Our
review shows that visible spectrum and thermal spectrum cameras offer the best options for truly
noncontact sensing of those studied to date, thermal cameras due to their potential to measure
all likely symptoms on a single camera, especially temperature, and video cameras due to their
availability, cost, adaptability, and compatibility. Substantial supply chain disruptions during the
pandemic and the widespread nature of the problem means that cost-effectiveness and availability
are important considerations.

Keywords: COVID-19; vital signs; remote sensor; thermal camera imaging; video camera imaging

1. Introduction

COVID-19 cases emerged in late December 2019 as an outbreak of viral pneumonia
with cough, fever, and fatigue [1]. It has since spread rapidly throughout the world with
hundreds of thousands of reported cases and is now a major global public health threat [2].
It was declared a pandemic on 11 March 2020, by the World Health Organization (WHO) [3].
As of late March 2020, the number of cases worldwide was more than a million and the
average death rate was 4.5%, with considerable variation between countries depending on
the availability of medical services and public health measures [4].

The causative agent of COVID-19 was identified as coronavirus 2 (2019-nCoV) [5],
later designated SARS-CoV-2 [6]. Coronaviruses are non-segmented, positive-stranded
ribonucleic acid (RNA) viruses surrounded by a protein envelope with characteristic
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crown-like spikes on their surfaces. The coronaviruses that infect humans by cross-species
transmission pose a major threat to human health and have caused two serious outbreaks
of acute respiratory syndrome in the past two decades, severe acute respiratory syndrome
(SARS) in 2003, and Middle East respiratory syndrome (MERS) in 2012.

2. Epidemiology

An understanding of the epidemiology of COVID-19 is evolving as the pandemic
progresses and more information should become available in the coming months. Although
the early cases had some contact with the seafood (wet) market, it soon became clear that
human-to-human transmission occurred [7]. COVID-19 has been found to have higher
levels of transmissibility and pandemic risk than SARS [8]. Guidelines from Chinese health
authorities in early February 2020 stated an average incubation duration of seven days,
ranging from two to 14 days [7].

It also became clear early in the epidemic that the elderly were more susceptible,
whereas cases in persons under 18 years of age were few. Pediatric patients have been
found to have only mild to moderate symptoms of COVID-19, and many children were
asymptomatic [9]. A further study confirmed these findings and proposed that children
could be facilitators of transmission of COVID-19 [10]. The authors further suggested that
there is an urgent need to investigate the role of children in the transmission of COVID-19.

3. Clinical Features of COVID-19

The most common early symptoms and signs of COVID-19 include fever, dry cough,
sore throat, and fatigue. Less common symptoms are diarrhea, muscle aches, and headache,
indicating that multiple systems are involved. In a proportion of patients, reportedly
about 39% [1], the disease progresses to shortness of breath and acute respiratory distress
syndrome (ARDS), requiring mechanical ventilation. Multiple organ failure causing death
occurs in a small proportion of patients.

A study of 191 patients from two hospitals [11] showed increasing probability of death
was associated with older age, higher Sequential Organ Failure Assessment (SOFA) scores
(used to determine the rate of organ failure), and levels of d-dimer (fibrin degradation
product, indicative of thrombosis) greater than 1 ug/mL. Higher levels of comorbidities
such as hypertension, diabetes, coronary heart disease, and chronic obstructive lung disease
were found in non-surviving subjects [11]. Development of heart failure has been identified
as a particular risk in those patients with underlying cardiovascular disease [12]. Lower
mortality has been reported by early detection and intervention for those patients at risk of
serious illness [13].

The particular vulnerability of the cardiovascular system may be related to the ability
of the spike protein of the coronaviruses to bind to angiotensin converting enzyme 2
(ACE2), a transmembrane aminopeptidase that is highly expressed in the heart and lungs
and plays a vital role in the cardiovascular and immune systems [14]. The finding that
ACE2 is a functional receptor for coronaviruses and acts as an entry point for the virus into
cells and the fact that ACE2 is elevated in patients with cardiovascular disease [15] may
explain the greater vulnerability of these patients.

As yet, there is no known effective treatment for COVID-19 [16]. The current treatment
of patients is symptomatic, aimed mainly at supporting the cardiopulmonary system. The
effect of a combination of the antiviral drugs, lopinavir and ritonavir, which was found
to result in less adverse clinical outcomes during the SARS epidemic, is currently under
trial [17]. However, current research is primarily directed at finding a vaccine to prevent
infection with COVID-19.

The long-term effects of COVID-19 remain unknown. However, in a 12 year follow-up
study, subjects who recovered from SARS were found to have chronic cardiovascular
damage and disorders of lipid and glucose metabolism [18]. The similar structure of the
coronaviruses causing SARS and COVID-19 raises the possibility of chronic cardiovascular
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damage in patients with COVID-19 and the importance of cardiovascular protection during
treatment of patients [18].

4. Diagnosis of COVID-19

The first definitive test for COVID-19 was Reverse Transcriptase Polymerase Chain
Reaction (RT-PCR), which detects SARS-CoV-2 nucleic acid (RNA). This test was developed
very early after identification of the causative virus. However, RT-PCR takes time and
requires specialized laboratories and trained staff. Recently, serology antibody tests have
been developed that detect IgG and/or IgM antibodies to SARS-CoV-2. These tests use
finger-prick blood samples and provide results in 15-30 min. Their limitation is that it takes
several days after an individual becomes infected for the antibodies to become detectable.
Since COVID-19 is an emerging viral infectious disease, there is limited evidence currently
available to assess the accuracy of these new tests [19].

Comparison of serial RT-PCR assays and chest computer tomography (CT) scan results
obtained from patients with suspected COVID-19 showed that chest CT scans had a higher
sensitivity than RT-PCR for diagnosis of COVID-19 [20]. Therefore, in the hospital setting,
CT scans would be most useful in early diagnosis of suspected cases.

5. Symptoms of COVID-19 Detectable by Noncontact Sensors

The highly contagious nature of COVID-19 and the ongoing problem of detecting the
signs of the infection in large groups of people such as travelers makes the rapid detection
of the signs by noncontact sensors an important goal. The early clinical signs of COVID-19
are fever, cough, and fatigue. Later signs that have been reported in hospitalized patients
are increased heart rate, respiratory rate, and ocular signs. Those infected with COVID-19
who are seriously ill with inadequate oxygenation may have cyanosis, which is exhibited
as a blue color of the body and visible mucosa [21]. Fever, cough, fatigue, ocular signs, and
increased heart rate and respiratory rate are discussed further below.

5.1. Fever

Normal body temperature varies between individuals and with age, activity, and time
of day. The average normal body temperature is generally accepted as 37 °C, although it
has a wide range from 36.1 to 37.2 °C. Fever is commonly accepted as a body temperature
over 38 °C, indicating infection or illness [22]. A recent study of hospitalized patients with
COVID-19 showed that 98% of patients had temperatures above 37.3 °C and 78% had
temperatures above 38 °C [17].

The presence of elevated body temperature (fever) is the early sign that is currently
widely used as a screening method for detecting COVID-19 infection in groups of people
such as travelers. Early advice from the WHO was that body temperature screening
detected the majority of cases of COVID-19 [23].

Many different thermometry methods are used to detect fever in clinically ill subjects,
including oral, rectal, axillary, auditory meatus, and tympanic membrane measurements.
The method commonly used for non-invasive, rapid screening of large numbers of people
is forehead infrared body temperature measurement. A study conducted using data
obtained during the SARS epidemic in Taiwan, comparing infrared body thermometry
with measurements obtained with a tympanic thermometer, showed that measurements
of temperature from the auditory meatus but not the forehead correlated with tympanic
temperature measurements [8]. A much higher rate of false-negative results was also
reported for forehead measurements compared with auditory meatus measurements [8].
Despite the limitations of forehead infrared thermometry, it remains the most widely used
screening method.

The adequacy of body temperature measurement as a screening method for detection
of COVID-19 has been questioned, not only on methodological grounds, but also as a
result of epidemiological studies in which cases of asymptomatic subjects transmitting the
disease have been suspected [24]. The possibility of asymptomatic and presymptomatic
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transmission has recently been studied [25]. From the data available to date, the authors
concluded that, based on serial intervals defined as the time duration between a primary
case developing symptoms and a secondary case developing symptoms, it was likely that
presymptomatic transmission occurred in about 10% of cases of COVID-19 [25]. The role of
the asymptomatic transmission is less clear, but there is some evidence that this might also
occur [25,26].

Thus, there are two major limitations to the use of fever for the detection of COVID-19,
the limitations regarding the detection of elevated body temperature, and the possibility of
asymptomatic subjects. As was suggested following the SARS epidemic [8], screening for
other signs such as cough and cardiopulmonary changes would be necessary to reduce the
risk of non-detection of COVID-19 cases.

5.2. Cough

A study of forty-one hospitalized patients with COVID-19 showed that 76% had
cough [17]. Subjects with cough are highly likely to spread infection, and therefore it is
important to screen for cough in groups of people. Coughing involves a characteristic
explosive sound and movement of the rib cage that might be sensed remotely.

5.3. Fatigue

Fatigue is a subjective sensation that might not be detectable by sensors until subjects
are more severely ill and exhibit objective signs. In these subjects, multiple facial morpho-
logical features such as those reported by Li et al. [27] might be used to detect fatigue.

5.4. Ocular Signs

Ocular signs of irritated eyes including conjunctival hyperemia, swollen eyes, and
increased tear production have been reported in about 30% of patients with diagnosed
COVID-19 [28]. Evidence of irritated eyes, such as rubbing of the eyes, might be detected
by sensors in a fraction of subjects early in the disease.

5.5. Respiratory Rate and Heart Rate

The normal respiratory rate for adults at rest ranges from 14 to 20 breaths per minute.
It has been reported that respiratory rate is a commonly neglected vital sign, which may
be a predictor of clinical outcome [29]. Recent evidence suggests that a subject with a
respiratory rate greater than 20 breaths per minute is probably unwell, and a subject with a
respiratory rate greater than 24 breaths per minute is likely to be critically ill [29].

Dyspnea is a subjective sensation, also known as shortness of breath. A common
symptom of COVID-19 is dyspnea, which may manifest as an increase in respiratory rate
and heart rate. In an early study on hospitalized patients with COVID-19, 55% had dyspnea,
and about half of those had a respiratory rate greater than 24 breaths per minute [17]. In a
further study of 44,672 diagnosed cases of COVID-19, 14% had dyspnea and a respiratory
rate greater than 30 breaths per minute [30].

The mean normal heart rate for adults is 72 beats per min. In a study on the effects
of acute febrile infection on cardiac rhythm in young adult males, it was shown that a
body temperature rise of 1 °C caused a heart rate increase on an average of 8.5 beats per
minute [31].

Respiratory rate and heart rate are vital signs that would prove useful in screening for
subjects with suspected COVID-19.

6. Technology Used for Measuring Vital Signs

Human vital signs such as temperature, breathing rate (BR), heart rate (HR), heart rate
variability (HRV), blood oxygen saturation (SpO;), and blood pressure (BP) indicate human
state of health to a large extent [32,33]. COVID-19 effects on vital signs, as shown above,
are significant on cardiorespiratory state and temperature. Certain other characteristics
such as coughing and conjunctivitis are clearly detectable by video camera under the
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right circumstances, while being difficult to detect remotely using non-imaging technology.
Coughing can be detected acoustically. This review focuses on symptoms that might
be detected using noncontact sensing technology which are the internal parameters of
temperature and cardiorespiratory rates.

There are various non-contact methods for measuring vital signs remotely, including
by magnetic induction, the Doppler effect with radar or sonar, video camera imaging,
and thermal imaging [34]. These techniques have been shown to be effective in remotely
monitoring vital signs with acceptable accuracy, reliability, and sometimes practicality [34].
Each method mentioned above has its pros and cons and may outperform in some chal-
lenges but be inferior in others. Doppler radar is highly affected by motion artefacts, can
have biological effects on humans, and is not suitable for monitoring multiple subjects
simultaneously. Visible spectrum and thermal spectrum cameras offer the best options of
those studied, thermal cameras due to their potential to measure all likely symptoms on
a single camera, especially temperature, and video cameras due to their availability, cost,
adaptability, and compatibility.

6.1. Thermal Imaging Technology

Infrared thermography (IRT), also known as thermal imaging, is a promising moni-
toring and diagnostic technique in the medical field [35]. For example, thermal imaging
can be used to assess HR and BR, endocrinological disorders (especially diabetes mellitus),
vascular disorders, neurological disorders, musculoskeletal disorders, oncology, regener-
ative medicine, and surgery. Additionally, a popular application of thermal imaging is
screening persons with fever at airports, schools, hospitals, etc. Therefore, IRT is a passive,
non-contact monitoring technique, which senses the radiation naturally emitted from an
object such as human skin. Thermal imaging does not require an illuminating radiation
source or a dedicated light source. These are the most significant advantages of thermal
imaging over other non-contact techniques. They are not affected by illumination variation,
can work in darkness, and are difficult to falsify using makeup or masks [36].

Thermal cameras respond to wavelengths starting at around 3 micrometers (um)
compared to visible wavelengths, ending at about 0.75 um. An array of thermally sensitive
elements behind a specified lens produces an image much like an optical camera, with
higher radiation measured from hotter objects. This leads to a grey image, with lighter
areas being warmer rather than darker. Depending on the application, this scale might
be reversed for human operators. The use of “false color” is common in thermal images
and thermal video, because it allows for increased ability for human operators to discern
temperature. Colder temperatures are often assigned a shade of purple, blue, or green,
whereas hotter temperatures can be given a shade of orange, red, or yellow [37]. Figure 1
shows a thermal image captured by a thermal camera where the person is covered in
shades of orange and yellow, whereas other areas are blue and purple. That is because he
is radiating more heat than surrounding objects. False color is purely a remapping of grey
levels and is not a feature of the underlying thermal images.

Figure 1. Thermal image captured by thermal camera.
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Thermal cameras work on the principle that all objects that have a temperature above
absolute zero (—273.15 °C) emit electromagnetic energy, also known as infrared radiation
or thermal radiation [38].

To accurately observe the temperature of a target using a thermal camera, the target
should be an ideal black body. A black body in thermal equilibrium will absorb all incident
electromagnetic radiation and emit an equal amount of energy through isotropic radiation.
The distribution in wavelength of the emitted radiation is governed by the temperature
of the body; thus, as the temperature increases, the distribution shifts towards shorter
wavelengths. This phenomenon is described by Planck’s law. A thermal camera measures
the predominant wavelength of the radiation emitted by a body. The human body is
not an ideal Plank black body radiator but is a close approximation in some bands [38].
It is generally accepted that the emissivity of human skin in the IR range of 3-14 um is
0.98 & 0.01 [38], which, while close to that of a black body, can cause disturbances due to
non-ideal radiation emission and reflections. Thus, there will always be some degree of
ambiguity when measuring skin temperature through thermal imaging. In a controlled
environment, this can be accounted for with calibration. In uncontrolled environments,
however, it is significantly more difficult to calibrate.

This is just one of many limitations that arise when using thermal cameras for the
detection of elevated body temperature. Infrared camera manufacturers, such as FLIR [39],
state that such technology can only be used to detect skin temperature (as opposed to
core body temperature) and must be operated in a controlled environment to do so. The
temperature must be in range of 20 to 24 °C, and the relative humidity should be in the
range from 10% and 50%. The temperature measured on the skin’s surface is offset from the
subject’s core body temperature; hence, measurements must be calibrated to be indicative
of body temperature. Environmental, operational, and subjective factors such as convective
airflow, reflective surfaces, IR contamination (from sources such as sunlight and heaters
for example), the sweat produced by the subject, wearable accessories covering some
part of the face (such as glasses or baseball caps), ambient temperature, humidity, and
emissivity all have an effect on the acquired data. Thus, thermal imaging may be used
to determine anomalies relative to other subjects; however, there are many factors that
prevent determination of the absolute core body temperature of a given subject from range.
It is suggested that the area medially adjacent to the inner canthus of the eye provides the
most consistent measurement, as determined with mass screening [40].

6.1.1. Body Temperature Measured with Thermal Camera

In the literature, thermal cameras have been used by numerous researchers to extract
body temperature, as shown in Table 1. For example, Bilodeau et al. [41] proposed a
non-contact method to measure the body temperature of a moving animal or human
in a laboratory setting based on IRT using a thermal camera. As shown in Figure 2, a
region of interest (ROI) was selected manually and tracked automatically with a particle
filter. A Raw temperature signal was measured from extracted skin pixels. To minimize
camera measurement noise, a Kalman filter was applied to the raw signal. However, in the
proposed method, the ROI was selected manually.

IR Image
- Measured Skin Raw Filtered
ROI Selection ROIL Skin Pixel Pixels Temperature | Temperature | Temperature | Temperature
e . > > . . ———
& _ Extraction Measurement > Filtering
Tracking

Figure 2. The non-contact body temperature measurement framework proposed in [41].
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Table 1. Different studies to extract body temperature using thermal cameras.

Ref Sensor Used ROI Used Technique Temperature Measured
. 7.5-13 um, LWIR Particle filter,
Bilodeau et al. [41] (FLIR ThermoVision A40M) Face Kalman filter -

8-14 pm, LWIR

Aubakir et al. [42] (FLIR Lepton 2.5) Forehead V-] method 34.95 °C to 37.00 °C
7.5-13 um, LWIR
Sharma et al. [43] (FLIRN>;I6{3900) Face V-] method 29.45 °C to 32.82 °C
(CP-PLUS CP-USC-TAL2)
8-14 um, LWIR
. (FLIR Lepton 2.5) ! . o o
Lin et al. [44] 8-14 um, LWIR Forehead Deep- learning 27 °Cto 37.5°C
(KeySight Keysight U5855A)
. . 7.5-13 pum, LWIR Image filtering, o o
Sumriddetchkajorn et al. [45] (FLIR ThermoVision A40M) Face particle analysis 35°Cto40°C
. 8-14 um, LWIR Forehead, Multiple data 5 o
Silawan et al. [46] (Optris PI450) mouth, cheek comparison 360°Ct0395°C
7.5-14 um, LWIR . . o o
Thomas et al. [47] (Fluke TiS65) Face Linear regression 34°Cto41°C

Note: NIR = Near infrared, LWIR = Long wavelength infrared.

Aubakir et al. [42] used a long wavelength infrared (LWIR) camera to monitor body
temperature based on an automatic face detection using the Viola—Jones (V-J) algorithm
and ROI averaging. It is noted that this method of ROI averaging is prone to perturbances
due to environmental factors. Another study by Sharma et al. [43] proposed a contactless
approach to measure temperature using the Viola—Jones face detection algorithm. Authors
used an algorithm to select the best frame containing all the features of the face rather than
computing the temperature of the face in each frame and then calculated the temperature
for the same frame. However, the Viola—Jones face detection method was sensitive to the
subject’s head movement.

Lin et al. [44] presented a non-contact, automatic continuous body temperature mea-
surement (CBTM) system using a thermal camera. In the proposed method depicted in
Figure 3, face detection was implemented using a neural network, and a kernel correlation
filter (KCF) tracker was used to track the face region across each frame. Nevertheless, in
the proposed method, participants were advised to sit and remain stationary, making the
system not applicable for real-time situations.

Training Work (offline) Calibration (offline)

: : SSD — Parameters
:> Training ::> @ Updating
| S —

Thermal Camera Image Stream u

o Face Detection o =
: : emperature
T—— <0 - ” :> | Locating ‘ I::> Measurement

Face Tracking
/ time

Continuous

:> Body

Temperature

Figure 3. The thermal camera-based continuous body temperature measurement framework proposed in [44].

Sumriddetchkajorn et al. [45] introduced a parallel measurement technique to screen
human temperatures that is applicable to large public areas by combining infrared technol-
ogy, image processing techniques, and human flow management. Through image filtering,
morphological operations, and particle filtering, large numbers of subjects were able to be
processed efficiently. With 100% sensitivity and 36.4% specificity, however, this approach
requires refinement.
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Using an infrared thermal camera, Silawan et al. [46] proposed a novel idea to estimate
core body temperature. The method enhances the sensitivity and specificity of a fever
screening system considering various environmental situations (Figure 4).

IR Thermal
Image
o i Core body
Eif n\tnrgﬁmlen f, g ROI Selection Temperature
ects Elimination Estimation
Fever \
Comparator
No Fever
37.5°C

Figure 4. Block diagram of fever screening process proposed in [46].

A pilot study by Thomas et al. [47] explored the use of an IR camera for measuring
the core body temperature of workers in hot work environments. The strong correlation
between the measured and reference data showed potential for the infrared camera as a
non-invasive alternative to the thermometer pill and rectal thermometer.

6.1.2. HR and BR Measured with Thermal Camera

To assess a human’s health condition, especially to identify a virus-infected patient,
measuring body temperature alone is not sufficient. Other vital signs, such as breathing
rate and heart rate, should be considered as well. Thermal imaging techniques can detect
two physiological phenomena caused by cardiorespiratory activity. The first phenomenon
related to cardiac activity is the slight heat differences produced by the pulsating blood
flow in the major superficial arteries in particular anatomical regions. A thermal camera
can detect these heat differences to extract the pulse signal. The heat difference due to the
pulsating blood flow is approximately 0.08 K, which is far less than the temperature of
normal skin (310 K) from a black-body perspective [48]. The second phenomenon related to
breathing activity is the small temperature differences around the nostrils of approximately
0.1 K [49] due to the heat transfer from warm exhaled and cold inhaled lung contents.

A summary of studies in the literature where thermal cameras were used by re-
searchers to monitor the breathing rate and heart rate is shown in Table 2. Murthy et al. [50]
proposed a noncontact technique to monitor breathing rate using thermal imaging based
on a statistical methodology that modelled breathing as a combination of expiration and
non-expiration distributions. Fei et al. [51,52] enhanced the thermal imaging technique by
using an optical bandpass filter and Fourier analysis based on the fast Fourier transform
(FFT). In these studies, the ROI selection was done manually, and there was not sufficient
compensation for motion.

Sun et al. [53] presented a novel non-contact technique for measuring a cardiovascu-
lar pulse using thermal imaging. The algorithm includes motion tracking, manual ROI
selection, FFT, and adaptive estimation to measure cardiac pulse (Figure 5). However, in
this study, the subject sample size was very small. Garbey et al. [54] further elaborated
the Sun et al. method by increasing the sample size from five to 32 subjects and recording
time from two minutes to five minutes. However, both methods are highly affected by the
movement of subjects and the manual selection of ROL
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Table 2. Different studies to monitor vital signs using thermal cameras.

Ref

Sensor Used Vital Signs ROI Used Technique Result
3-5 pm, MWIR . . _ o
Murthy et al. [50] (hardware unspecified) BR Nose Advanced statistical algorithm Accuracy = 98.5%
3-5 um, MWIR
. (FLIR model unspecified) . .
Fei et al. [51,52] 3-5 um, MWIR BR Nose Optical bandpass filter -
(Indigo Systems model unspecified)
MWIR .
Sun et al. [53] (Indigo Systems model unspecified) HR Forehead, neck and wrist FFT PCC =0.994
MWIR
Garbey et al. [54] Indigo camera HR Forehead, neck and wrist FFT CAND = 88.52%
y g
(Indigo Systems model unspecified)
LWIR
Chekmenev et al. [55] (FLIR model unspecified) HR and BR Face and neck CWT -
. 3-5 um, MWIR _ o
Fei et al. [56] (FLIR SC6000) BR Nose CWT CAND =98.27%
. 7-14 um, LWIR o . _
Shakhih et al. [57] Infrared Camera Incorporation 7640 P-series TIand TE Nose Mean pixel intensity PCC =0.796 (T1), 0.961 (TE)
p
Pereira et al. [58] 7.5-14 um, LWIR BR Nose Particle filter framework and MAE = 0.33, 0.55 and 0.96
’ (Variongl\éI El_j HD II\}R?\’(} IE{%ZOS /30) terln}f;olral iiltering . breathi / mirz. :
. —5.5 um, Particle filter framework, RMSE =3 bpm (HR),
Pereira etal. [59] (InfraTec 9300) HR and BR Head and nose temporal filtering and PCA RMSE = 0.7 breaths /min.
. 7.5-14 pm, LWIR Particle filter framework and _ .
Pereira et al. [60] (VarioCAM R HD head 820S/30) BR Nose, mouth, shoulders signal fusion RMSE = 0.24, 0. 89 breaths/min.
1-14 pm, LWIR
Abbas et al. [61] (VarioCAM HR head) BR Nose CWT -
. 7.5-14 ym, LWIR Particle filter framework and . _ o
Pereira et al. [62] (VarioCAM R HD head 820S,/30) BR Nose temporal filtering Relative error = 3.42%
Pereira et al. [63] 7.5-14 pum, LWIR BR - Black-box

(VarioCAM R HD head 8205/30)

RMSE = 4.15 + 1.44 breaths/min.

Note: MWIR = Mid wavelength infrared, LWIR = Long wavelength infrared, MAE = Mean absolute error, RMSE = Root mean square error, CAND = Complement of the absolute normalized difference.
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Figure 5. Block diagram of the cardiac pulse measurement proposed in [53].
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Chekmenev et al. [55] introduced a novel non-contact method to remotely measure HR
and BR based on wavelet analysis using continuous wavelet transform (CWT), which gave
a better performance than FFT. However, they only considered four subjects to validate
their method, and the ROI selection was manual. In another study, Fei et al. [56] introduced
a new and enhanced technique to monitor BR based on automatic tracking/localization
of ROI using a coalitional tracking algorithm and wavelet analysis based on CWT. Using
CWT, not only the breathing rate, but also the full breathing waveform was recovered.

Shakhih et al. [57] presented an approach to measure the time of the inspiration (TI)
and expiration (TE) considering three different breathing patterns that were simultaneously
captured by infrared thermal imaging (ITI) and respiratory inductive plethysmography
(RIP). However, the method was highly susceptible to head movement and image process-
ing was also not sufficient.

Pereira et al. [58] presented a new robust method to remotely measure BR by using
thermal imaging captured by an LWIR camera. As shown in Figure 6, in the proposed
method, the ROI and region of measurement (ROM) were identified automatically, and
then tracked using a particle filter framework. A Butterworth bandpass filter was applied
to the raw signal. Finally, three estimators were calculated to compute instantaneous
breathing frequencies. However, the authors only considered BR.

Thermogram

Select ROI &ROM Tracking

Estimation of
Local Breath -to-
Breath Interval

Extraction of
Breathing
Waveform

Temporal Filtering

l

RR

Figure 6. Block diagram for the BR estimation proposed in [58,59].

The authors [59] proposed a non-contact method to monitor cardiorespiratory signals
using thermal imaging. BR was extracted incorporating the same algorithm as [58]. As
shown in Figure 7, feature points were detected and tracked within the manually selected
ROL Temporal filtering, principal component analysis (PCA), and peak detection were
used to estimate HR.

Most of the above-discussed methods used thermal information around the nostril
area, which is not suitable for long term monitoring, because it can happen that the nose is
not in the field of view of the thermal camera. To deal with this issue, Pereira et al. [60]
presented an enhanced and robust method to estimate BR using thermal imaging, consider-
ing both the temperature difference around the nostril area and mouth and the movement



J. Imaging 2021, 7, 28

11 0f35

of the shoulders. In the proposed algorithm, four ROIs were detected automatically and
tracked using a particle filter framework. Only five subjects were considered in this study.

Most of the works discussed above considered only adults as their subjects to mon-
itor vital signs. However, a few works did research on infants as well. For example,
Abbas et al. [61] first used infrared thermography to monitor the breathing rate of neonates
in the neonatal intensive care unit (NICU) using an infrared camera set up shown in
Figure 8 and an algorithm based on CWT. However, they did not consider a tracking
algorithm, and the sample size was small. Pereira et al. [62] proposed a feasible approach
based on IRT to monitor the BR of preterm babies incorporating the same algorithm as [58].
However, the sample size was very small, as they considered only four infants. In [63], the
authors presented a “black-box” or grid-based approach algorithm to remotely monitor
the BR of neonates in the NICU using an LWIR camera. However, this method is highly
affected by motion artefacts.

Thermogram

Select ROI &ROM Detect Feature Points Tracking

Peak Detection

Compute Vertical

PCA Temporal Filtering Trajectory

l

HR

Figure 7. Block diagram of HR estimation proposed in [59].

Figure 8. Schematic of experimental set up used in [61] to monitor BR of neonates using IR thermal camera. (1) Radiant
warmer bed, (2) bedside monitor, (3) camera field of view (FOV), (4) IR thermal camera, (5) analysis workstation, and
(6) infant under NIRT imaging.

6.1.3. Image Processing Techniques Associated to Thermal Imaging

Thermal imaging systems use several image processing techniques to extract the
required image details from the thermal images. These can range from low level image
processing to high-level deep learning-based techniques. We gather the widely used
methods for image analysis in thermal imaging.
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Having a reliable object detection model is very important for the prediction of objects
on thermal images. For detection in thermal infrared, hotspot detection or thresholding has
historically been the major approach [64]. Thresholding combined with post-processing
(e.g., merging and splitting of blobs) is an efficient detection technique in the case of
high background/object contrast, a situation more or less common depending on the
application [65,66].

In most cases in the literature for thermal infrared images, ROIs are characterized
manually because of the absence of reliable face and facial landmark detection algorithms.
In other cases, ROIs are defined semi-automatically or automatically; however, this is done
with the condition that the full-frontal view or a certain image area of the face is given [67].
Some detection methods exploit the advantages of the visual and thermal modalities,
respectively, by combining information extracted from visual and thermal imagery of the
same scene [68-70].

Recent advances in deep convolutional neural networks have helped enable sophisti-
cated facial or human body detection and recognition systems, which prove valuable in
surveillance and security systems applications [69]. Existing state-of-the-art facial recogni-
tion systems have demonstrated high-performance accuracy for automatic object detection
and identification/recognition tasks [71-75].

Although there has been great success in object detection and recognition systems in
the visible light domain [71,73,76], in other domains like the thermal domain, considerably
less work has been done to accomplish such performance. Few notable methods used deep
learning methods originally developed for RBG images [75], developing new feature detec-
tors for thermal images [77], thermal imaging datasets with multiple labelled environment
conditions [78], and thermal imaging-based augmented vision [79].

Object detection methods have progressed significantly over the years from simple
contour-based methods using support vector machines (SVM) [77,80] to those using deep
classification models [76,81] that utilize hierarchal representations of data [79].

Due to advances in deep learning, a more generalized form of object detection has
evolved over time. Convolutional classifiers have replaced the exhaustive search for
classification [79]. Object detection models have been proposed to work with relatively
good accuracy on the visible spectrum using models that consist of (i) a two-stage system
made up of a classifier connected with a region proposal network (RCNN [82]) and (ii) a
single stage network, which performs the classification and localization layers in a cohesive
space (YOLO [76] and SSD [81]).

Image segmentation partitions images into multiple parts or regions, often based on
the characteristics of the pixels in the image. It could involve separating foreground from
background, or clustering regions of pixels based on similarities in color or shape.

Because individuals are usually warmer, they appear brighter than the background
in thermal images. Thus, a common point to start to extract human candidates is a single
threshold. Calculating the threshold is as simple as finding a difference between the maxi-
mum and minimum image intensities and taking the average value of that difference [83].
Deep neural networks have been proposed to perform the semantic segmentation in com-
plex scenes recorded by synchronous RGB and thermal cameras [84,85]. However, these
networks require a large number of annotated data to train them.

The main objective of image translation is to learn one or multiple mappings between
the source domain and the target domain. This can be realized in both supervised [86] and
unsupervised [87] ways, or even in semi-supervised ways [88].

Face recognition studies in the visible light domain (VLD) have achieved impressive
performances due to the availability of massive datasets. With these great strides, it is
imperative to extend the existing VLD based face recognition systems into other less studied
domains such as near-infrared imaging (low-light) and thermal imaging (no-light) [72]. The
different domains are shown in Figure 9. The VLD domain could not be easily replicated
in the thermal domain due to the relatively small amount of training data available and the
domain gap between thermal and visible light [72].
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(a) (b) (e)

Figure 9. Sample cross-modality images of three domains from the Tufts Face Database [89]. (a) Visi-
ble light, (b) thermal, and (c) near infrared (NIR).

In recent times, the use of generative adversarial networks (GAN) [90] in arbitrary
image-to-image translation applications has shown encouraging results [91]. Using an
antagonistic game approach, GANSs significantly increased the quality of image-to-image
translation. Pix2pix GAN for geometrically aligned image pair translations was presented
by Isola et al. [86]. This work indicated phenomenal performance in arbitrary image-to-
image translations. The pix2pix was trained by Zhang et al. [92] to transform a human face
in a thermal image to a color image. In a cross-modality setting of thermal to visible range,
the quality of a face recognition performance was improved by the translation. While the
human face has a generally steady temperature, translating an image from color to thermal
image for the entire human body with an arbitrary background is more ambiguous and
is therefore constrained by the sequence of happenings for an individual [91]. Another
prominent development in this area, TV-GAN [72] translates face thermal images into
visible light images using a facial identify loss function, and this work can generate
naturally lit face images whilst preserving identity.

With the right thermal imaging camera, the right lens, and following the correct guide-
lines and standards, thermal imaging systems can be effective as a screening tool. However,
this is still a challenging and active research area with a lot of ongoing developments. A
thorough explanation on the limitations of thermal imaging can be found in [93]. Here, we
summarize a few of them:

e  Although these systems may be in use for initial temperature assessment to triage
individuals in high throughput areas (for example, airports, businesses, and sporting
events), the systems have not been shown to be effective when used to take the
temperature of multiple people at the same time. It is difficult to find stable solutions
related to “mass fever screening”.

e  These systems measure surface skin temperature, which is usually lower than a
temperature measured orally. Thermal imaging systems must be adjusted properly to
correct for this difference in measurements.

e  These systems work effectively only when all the following are true:

o The systems are used in the right environment or location.

0 The systems are set up and operated correctly.

0 The person being assessed is prepared according to instructions.

0 The person handling the thermal imaging system is properly trained.

Room temperature should be 68-76 °F (2024 °C) and relative humidity 10-50 percent.
There are items that could impact the temperature measurement:

0 Reflective backgrounds (glass, mirrors, and metallic surfaces) could reflect
infrared radiation.

0 Movement of air in the room, direct sunlight and radiant heat (portable heaters,
electrical sources).

o Strong lighting (incandescent, halogen, and quartz tungsten halogen light bulbs).

e  Some systems require the use of a calibrated blackbody (a tool for checking the calibra-
tion of an infrared temperature sensor) during evaluation to make sure measurements
are accurate.
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6.1.4. Thermal Imaging in COVID-19

In the current COVID-19 pandemic, thermal cameras are receiving increasingly more in-
terest. According to the U.S. Food and Drug Administration (FDA) [93], when used correctly,
thermal imaging systems have been shown to accurately measure surface skin temperature
without being physically close to the person being evaluated. Thermal imaging systems
offer certain benefits in that other methods need a closer proximity or contact to measure
temperature (for example, non-contact infrared thermometers or oral thermometers).

The FDA has issued guidance [94] to provide a policy to help expand the availability
of telethermographic systems (thermal imaging-based systems) used for body temperature
measurements for triage use over the duration of the public health emergency.

Telethermographic systems are capable of determining skin-surface temperature at
a reference body site (e.g., oral, tympanic membrane, inner canthus) when coupled with
software programs able to detect facial features such as the eyes, nose, and mouth. The
resultant value allows estimations of core body temperature. One advantage of using
telethermographic systems for initial temperature assessment is the potential use in high
throughput areas (e.g., airports, businesses, warehouses, factories) and in settings where
other temperature assessment products may be in short supply. As the screening system
could potentially run autonomously and without the need for an attendant, time spent
waiting for screening would see an overall reduction. The available scientific literature
supports the use of telethermographic systems in the context of initial human temperature
measurement during such a triage process [95]. Additionally, international standards and
scientific literature have described guidelines for using telethermographic systems for ini-
tial temperature assessment for triage use and best practices for standardized performance
testing of such products [96,97].

Thermal imaging techniques have been effectively trialed for the COVID-19 screening
purposes recently. Existing thermal imaging tools coupled with the state-of-the-art machine
learning algorithms have shown promising results for elevated temperature screening
scenarios. Here, we discuss a few of them.

In a recently released white paper [98], Eagle Eye Networks presented that their
tested cameras consistently reported temperatures within +/— 0.7 degrees Fahrenheit of
measurements taken with a traditional thermometer. They conducted the experiment for
approximately four weeks, testing thermal cameras for elevated temperature screening
in some real-world situations as well as lab comparisons. The testing was done with
individuals and pairs of subjects (Figure 10). As subjects entered the building, their
temperatures were automatically captured by multiple thermal cameras. The thermal
camera results were less than the handheld thermometer. The differences ranged from
—0.4 to —1.0 degrees Fahrenheit (average difference of —0.7 degrees).

A drone-based networked system was built to combat the COVID-19 pandemic [99].
The thermal imaging system was the most notable feature of their solution. They used this
feature to capture the images of people and implement social distancing measurements
and for density-based thermal imaging. The drone was tested for COVID-19 operations in
the Delhi/NCR, India.

Different organizations and workplaces look for solutions to prevent spreading the
virus while making sure their employees and customers feel comfortable. Some real-world
examples of using thermal screening for COVID-19 prevention are listed below.

e  Amazon Inc., Tyson Foods Inc., and Intel Corp have started to use thermal cameras at
their warehouses to speed up screening for feverish workers who could be infected
with the coronavirus [100].

e  Thermal camera systems have been deployed in several international airports such
as Dulles international airport [101], Hong Kong international airport [101], Incheon
international airport [102], and Canberra international airport [103] (Figure 11).

e  Asian cities have introduced temperature-check kiosks and smart bus shelters to make
public transport safer [104,105] (Figure 11).

e  Universities have introduced thermal temperature screening stations [106].
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Figure 10. The thermal image presented in [98]. The face area is detected using a face detection
algorithm and a point on the forehead (red color “+” mark) is selected for temperature measurement.
Image courtesy of een.com.

by (©)

Figure 11. Airports are testing thermal cameras and other technology to screen travelers for COVID-19. (a) The thermal

screening setup at Incheon International Airport [102], (b) a similar setup at Canberra international airport [103], and

(c) thermal camera setup in public transport [105].

Gostic et al. [107] analyzed the effectiveness of different traveler screening programs
to limit further global spread of COVID-19. Thermal scanners used for the screening were
one of their parameter values. They reported a sensitivity of infrared thermal scanners for
fever detection was 70% with 60-90% being the plausible range. Similar studies estimated
sensitivity between 60-88% [108-110]. However, a handful of studies estimated very low
sensitivity (4-30%). In general, sensitivity depended on the device used, body area targeted,
and ambient temperature.

6.2. Video Camera Imaging Technology

Video imaging is a passive and non-contact modality that can be delivered from
common sources of video data including hand-held and fixed video cameras, webcams,
smartphones, or from sensor platforms such as unmanned aerial vehicles (UAV) and robots,
shown in Figure 12. Video analysis of vital signs generally relies on two phenomena.
The first phenomenon known as color based methods or imaging photoplethysmography
(iPPG) depends on skin color variations caused by cardiorespiratory activity. The second
phenomenon, known as motion based methods, relies on cyclic body motion such as
the motion of an arterial pulse, head movements, or movements within the thoracic and
abdominal regions due to cardiorespiratory activity.

Video cameras have been shown to be able to measure heart rate in controlled clinical
settings, in the outdoors, and from multiple people and at long range [32]. Recent work
has demonstrated breathing rate in challenging scenarios such as from a drone camera
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platform [111]. Video cameras have the ability to both diagnose and identify people, which
can be useful in many scenarios [112]. Their cost is low, their installed base is large, and
the availability of video cameras that can be pressed into service is high.

()

()

Figure 12. Different sensors used as a video camera. (a) Webcam, (b) digital camera, (c) smart phone,
(d) Microsoft Kinect, and (e) UAV.

Video cameras are often integrated with a microphone that might allow detection of
coughing [113-115]. An important advantage of video cameras is the possibility of using
advanced image processing techniques to detect posture and to recognize if a patient is
coughing. From longer ranges, individuals in acute distress might be detected by their
movements or if they should collapse [111].

A significant advantage of video cameras over all other sensors, including thermal
cameras, is their ability to have arbitrary field of view, with the same camera capable of
imaging bacteria and the ice caps of Mars with a change of lens [32].

6.2.1. Vital Signs Measured with a Webcam

Webcams have been used as low-cost video cameras to monitor vital signs in literature,
as shown in Table 3. Blind source separation (BSS) was a common technique used in
different studies to reduce motion artefacts. For example, Pho et al. [116] presented a
robust and automatic technique using a webcam for monitoring heart rate based on blind
source separation. As shown in Figure 13, in the proposed method, ROI was selected
automatically using the Viola—Jones [117] algorithm. The raw signal was obtained using
spatial averaging, and independent component analysis (ICA) was applied to get the
desired source signal. Finally, FFT was done to attain a frequency spectrum where the
frequency with maximum power in the spectrum was considered as the pulse signal. It was
possible to monitor three subjects simultaneously using the proposed algorithm. However,
only small movements and no illumination variations were considered in the proposed
work. The second component obtained by ICA was considered as the desired source signal
every time, which might be limiting. Purche et al. [118] and Feng et al. [119] also measured
heart rate by means of a webcam based on ICA. Lewandoska et al. [120] introduced another
non-contact method to monitor HR via a webcam, based on principle component analysis
(PCA). They stated that PCA is better than ICA in terms of computational complexity and
time; therefore, PCA can be an alternative technique if only heart rate needs to be measured.
Nevertheless, subjects were instructed to be still during the data collection.
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Table 3. Different studies to monitor vital signs using video camera technology.

Ref Sensor Used Vital Signs ROI Used Technique Results
Pho et al. [116] Webcam HR Face ICA PCC =0.95, RMSE = 4.63 bpm
Purche et al. [118] Webcam HR Forehead, nose and mouth ICA
Feng et al. [119] Webcam HR Forehead ICA PCC=0.99
Lewandoska et al. [120] Webcam HR Face and forehead PCA
Bousefsaf et al. [121] Webcam HR Face CWT
Wu et al. [122] Webcam HR Face CWT SNR (dB) = —3.01
Wu et al. [123] Webcam HR Cheeks MRSPT RMSE = 6.44 bpm
Feng et al. [124] Webcam HR Cheeks GRD PCC=1
Cheng et al. [125] Webcam HR Face JBSS + EEMD PCC=091
Xu et al. [126] Webcam HR Face PLS + MEMD PCC=0.81
Chen et al. [127] Digital camera HR Brow area EEMD PCC=091
Lin et al. [128] Digital camera HR Brow area EEMD + MLR PCC=0.96
Lee et al. [129] Digital Camera HR Cheek MOCF RMSE = 1.8 bpm
Tarassenko et al. [130] Digital camera HR, RR, SpO; Forehead and cheek AR modelling and pole cancellation MAE =3 bpm
.. .. Face, palm, wrist, arm, neck,
Al-Naji et al. [131] Digital camera HR and RR leg, folrjehea d, head and chest EEMD + ICA PCC =0.96, RMSE = 3.52
Arts et al. [132] Digital camera HR Face and Cheek JETD -
Cobos-Torres et al. [133] Digital camera HR Abdominal area Stack FIFO PCC =094
Gibson et al. [134] Digital camera HR and RR Face and chest EVM Mean bias = 4.5 bpm
De Haan et al. [135] CCD HR Face CHROM PCC =1, RMSE = 0.5
De Haan et al. [136] CCD HR Face PBV PCC =0.99, RMSE = 0.64
Wang et al. [137] CCD HR Face and forehead 2SR PCC =094
Wang et al. [138] CCD HR Face POS SNR (dB) =5.16
Wang et al. [139] CCD HR Face Sub-band decomposition SNR (dB) =4.77
Yu et al. [140] CMOS HR and RR Palm and face SCICA PCC=0.9
Kwon et al. [141] Smartphone HR Face ICA MAE = 1.47 bpm
Bernacchia et al. [142] Microsoft Kinect HR and RR Neck, thorax and ICA PCC =091
abdominal area
Smilkstein et al. [143] Microsoft Kinect HR Face EVM -
Gambi et al. [144] Microsoft Kinect HR Forehead, cheeks, neck, EVM RMSE =2.2 bpm
Al-Naiji et al. [145] UAV HR and RR Face CEEMD + ICA PCC =0.99, RMSE= 0.7 bpm
Al-Naiji et al. [146] Digital camera, UAV HR and RR Face and Forehead CEEMDAN + CCA PCC =0.99, RMSE= 0.89 bpm
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Figure 13. Block diagram of non-contact HR monitoring system proposed in [116].

Using a webcam, Bousefsaf et al. [121] extracted both instantaneous HR and RR
considering normal head movements based on continuous wavelet transform (CWT).
Wau et al. presented a time-frequency analysis technique using CWT [122] and a motion
resistant spectral peak tracking (MRSPT) technique [123] to monitor heart rate using
webcam considering seven situations including participants who were running, driving,
and doing fitness training. To extract heart rate from moving subjects using a webcam,
Feng et al. [124] proposed a robust monitoring system based on adaptive color variation
between green and red channels, followed by an adaptive bandpass filter (ABF). However,
the above discussed methods are susceptible to illumination variation and limited to a
short distance.

Signal decomposition is a common technique used to reduce illumination variations
in literature. Cheng et al. [125] introduced a robust technique to measure heart rate
using a webcam. To reduce illumination variations, the authors combined both joint
blind source separation (JBSS) and ensemble empirical mode decomposition (EEMD) and
considered background images as well, shown in Figure 14. However, the authors mainly
considered controlled illumination variations, which confines the real time applicability of
the proposed technique. Another study by Xu et al. [126] tried to minimize the effect of
illumination variations by combining partial least squares (PLS) and multivariate empirical
mode decomposition (MEMD) to measure heart rate by means of a webcam under varying
illumination scenarios. However, only artificial illumination produced by an LED lamp was
considered in the proposed method. The above two methods only considered illumination
variations, but were susceptible to motion artefacts and again confined to short distances.

Data
Acquisition

Raw Signal

2 Peak Detection
Extraction

ROI Selection —> JBSS & EEMD |—>| —> HR

Figure

14. Block diagram of noncontact HR monitoring system proposed in [125].

6.2.2. Vital Signs Measured with Digital Cameras

Digital cameras are the most popular means of capturing videos for monitoring vital
signs. Chen et al. [127] introduced a robust system to extract heart rate using a digital
camera based on reflectance decomposition on the green channel and signal decomposition
based on EEMD to reduce the noise due to illumination variations, as shown in Figure 15.
However, EEMD can misinterpret periodic illumination variations as physiological signals,
particularly when the frequency is close to the normal pulse frequency range, specifically
from 0.75 to 4 Hz. This system was further improved in [128] based on a multiple linear
regression (MLR) model and Poisson distribution to suppress the effects of ambient light
variation. Nevertheless, both systems are not appropriate for real time applications.
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Figure 15. Block diagram of non-contact vital sign monitoring system proposed in [127].
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Lee et al. [129] proposed a different technique to measure heart rate using multi-order
curve fitting (MOCF) to minimize noise artefacts, and recorded video of participants using
digital cameras while they were watching television in a dark room. To remove the noise
caused by illumination variations, the brightness signal was subtracted from the raw
signal. Tarassenko et al. [130] demonstrated a novel technique using auto-regressive (AR)
modelling and pole cancellation to suppress the aliased frequency components due to
artificial light flicker. However, the above methods only considered illumination variations
but affected by motion artefacts.

Using a digital camera, Al-Naji et al. [131] monitored cardiorespiratory signals com-
bining both EEMD and ICA to reduce noise artefacts caused by both illumination variation
and motion artefacts.

Arts et al. [132], Cobos-Torres et al. [133], and Gibson et al. [134] also used digital cameras
to monitor heart and respiratory rates of infants in the neonatal intensive care unit (NICU).

A charged couple device (CCD) and complementary metal-oxide-semiconductor
(CMOS) cameras were used by De Haan et al. [135,136], Wang et al. [137-139], and
Yu et al. [140] to monitor vital signs. However, most of the above discussed methods
have limitations including short measurement range, considering either motion artefacts
or illumination variations and a single participant at a time.

6.2.3. Vital Signs Measured with Other Sensors

The built-in camera of a smartphone was used by Kwon et al. [141] to monitor heart
rate, and they developed an iPhone-based application, FaceBEAT, for remotely monitor-
ing heart rate. Bernacchia et al. [142] extracted heart rate and respiratory rate using a
Kinect device based on ICA. Smilkstein et al. [143] and Gambi et al. [144] also exploited
Microsoft Kinect device for measuring heart rate using the Eulerian video magnification
technique (EVM).

Al-Naji et al. [145] first used a hovering UAV, as shown in Figure 16, to remotely
monitor heart and respiratory rate based on improved video magnification technique.
The authors used advanced signal processing techniques including signal decomposition
using complete EEMD (CEEMD) and BSS using ICA to reduce noise artefacts caused by
motion artefacts and illumination variations. A robust non-contact technique was proposed
in [146] to calculate cardiorespiratory signal via a digital camera as well as a hovering UAV.
Figure 17 shows scenarios for remote optical detection of vital signs. Drone cameras have
successfully measured human vital signs, while facing challenges in image stability and
vibration. Using stationary cameras with short focal lengths, there has been consideration
of extending the capability to multiple people who might be talking and moving. With
longer focal lengths, issues of vibration, optical quality, and atmosphere start to dominate.
In the proposed method, first, video is magnified using video magnification technique
(Figure 18). Then, a ROI was selected, and raw cardiorespiratory signal was extracted. To
remove noise artefacts caused by illumination variations and movement of subjects and
cameras, the authors used a noise reduction technique integrating both complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and canonical correlation
analysis (CCA). For spectral analysis, FFT was used, and for filtering, two Butterworth
bandpass filters were applied. Finally, the MATLAB built-in function “findpeaks” was used
to find the number of peaks to measure heart and respiratory rates. Using the proposed
method, it was possible to measure vital signs of six people simultaneously, with a range of
measurement of up to 60 m, under both stationary and non-stationary situations. Moreover,
a graphical user interface (GUI) was introduced that enabled a user to load video data,
select the type of magnification, and execute the proposed algorithm.
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Figure 16. Video recorded by the UAV (3DR solo drone) [145].
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Figure 17. Scenarios for remote optical detection of vital signs [146].
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Figure 18. Block diagram of non-contact vital sign monitoring system proposed in [146].

6.3. Combinations of Different Technologies

To enhance the performance of monitoring vital signs, different technologies can be
combined, as shown in Table 4. For example, by combining an RGB camera, a monochrome
camera with color filter, and a thermal camera, a study by Gupta et al. [147] proposed
an efficient multicamera measuring system to measure HR and HRV. In the proposed
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method, face segmentation was done using conditional regression forests (CRF) to detect
facial landmarks in real-time, and an ROI was selected. The raw signal was calculated
based on a spatial average of the pixels within the ROI for each channel, i.e., red, green,
blue, magenta, and thermal (RGBMT). To recover the underlying source signals, ICA
was used, and a bandpass filter was applied to the selected source signal. Finally, peak
detection was performed to calculate HR and HRV. The experimental results showed that
the GRT (green, red, and thermal) channel combination gave the most accurate results,
demonstrating that the inclusion of more spectral channels could attain more robust and
accurate measurements.

Table 4. Different studies to monitor vital signs using combined technology.

Ref Sensor Used Vital Signs ROI Used Technique Result
Guptactal [147] ~ RGP monochromeand g opgpyry  Cheeksand ICA Error = 4.62%

Hu et al. [148]

Hu et al. [149]

Bennett et al. [150]

Viola—Jones algorithm

thell:{n?;? Sgriera BR nose and mouth together with the LCC=0.971
screening technique
RGB infrared and Mouth and . - LCC =0.831 (BR),
thermal camera HR and BR nose regions Moving average filter LCC =0.933 (HR)
C{1.“h.erma1 and HR and blood Face and arm EVM _
igital camera perfusion

Note: LCC = Linear correlation coefficient.

Hu et al. [148] presented a dual-mode imaging technique based on visible and long-
wave infrared wavelengths to extract breathing rate and pattern remotely using both
an RGB and a thermal camera. After performing image registration, to identify a ROI
in the RGB image, the cascade object detector based on the Viola—Jones algorithm and
the screening technique using biological characteristics were used. Next, to select the
corresponding regions in the thermal image, linear coordinate mapping was applied. To
select the interest points from ROIs in the visible light gray images, the Shi-Tomasi corner
detection method derived from the Harris-Stephens was applied. Cross-spectrum ROI
tracking was attained using linear coordinate mapping. After that, the mean pixel intensity
was obtained within the ROI of the thermal image. In all of the frames, the raw pixel
intensities of ROIs were smoothed by the moving average filter and smoothing method.
Finally, breathing rate was extracted from the smoothed signal. By adding RGB images, it
was possible to detect and track the face and facial tissue in thermal images more accurately
and faster. However, the above systems may not be feasible for measuring vital signs
at night.

Another dual camera imaging system was proposed in [149] to measure BR and HR
at night using an RGB infrared camera and thermal imager. Image registration was done
based on affine transformation, face detection was performed using a pre-trained boosted
Cascade classifier or fully convolutional network, and a discriminative regression-based
approach was used to select landmarks on the face. IR images were used to select ROI
from thermal images using linear coordinate mapping. ROI tracking in thermal images
was done by spatio-temporal context learning (STC). A moving average filter was applied
to the raw signal and finally, HR and BR were calculated.

Bennett et al. [150] used both a thermal and optical camera to monitor heart rate and
blood perfusion based on EVM. After identifying ROI from both thermal and optical videos,
the average intensity was computed within the ROL. After that, a Butterworth lowpass filter
was used to filter these signals, and then normalized. The experimental results of blood
perfusion showed that optical video with EVM was sensitive to skin color and lighting
conditions, while thermal video with EVM was not sensitive to these variables. However,
in the proposed method, movement of the subject was not considered, and the sample size
was small. Although a temperature response caused by blood occlusion was sensed by the
thermal camera, it was not in the pulsatile manner of perfusion.
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7. Hypoxemia Detection Using Video Cameras

Blood oxygen saturation (SpO,), alongside heart rate, respiratory rate, and body
temperature, is an important vital sign. It is a relative measure of the amount of oxygenated
hemoglobin with respect to the total amount of hemoglobin in the blood. It shows whether
an individual has an adequate supply of oxygen, hence indicating the condition of the
cardiorespiratory system. In detecting hypoxemia, it is important to monitor the level of
oxygen saturation continuously.

In recent years, different studies used video cameras to measure blood oxygen sat-
uration remotely either using ambient light or a dedicated light source based on the
ratio-of-ratios principle that calculates relative pulsatility at different wavelengths. Some
studies used monochrome cameras and others used RGB cameras to capture video of
participants.

7.1. SpOy Measured with Monochrome Camera

Wieringa et al. [151] first introduced an “SpO, camera” technology using a CMOS
camera and LED-ringlight at three wavelengths of 660, 810, and 940 nm. However, they
did not present any SpO; results due to the poor signal-to-noise ratio of the photoplethys-
mographic signals they obtained. Humphreys et al. [152,153] also demonstrated a noncon-
tact pulse oximeter using a CMOS camera and LED arrays at two different wavelengths
(760 and 880 nm). Though the authors did an experiment on ten volunteers, it was not
possible to measure SpO, accurately due to large noise in the PPG signal caused by the low
frame rate and illumination variations.

Another study by Kong et al. [154] first proposed a noncontact scheme to screen
blood oxygen saturation using two CCD cameras, individually mounted with a different
narrow band pass filter at two different wavelengths, 520 and 660 nm, under ambient light.
The experimental results showed good agreement between the proposed method and the
reference pulse oximeter. However, the study only covered a small SpO, range (97-99%).
Moreover, the proposed method was highly susceptible to motion artifacts. On the other
hand, Saho et al. [155] presented a contactless technique for monitoring SpO, using a
CMOS camera and an illumination system including two identical LED arrays varying
at two wavelengths, 611 and 880 nm. To evaluate the proposed technique, they did an
experiment over an SpO; range of 83-98%, and experimental results were consistent with
those obtained by a pulse oximeter. However, the proposed method required a dedicated
light source, which could irritate the participants. Moreover, the system was constrained
by motion artefacts, light scattering, and short range potential.

Verkruysse et al. [156] investigated the feasibility of calibrating noncontact pulse
oximetry using two monochrome cameras, individually mounted with spectral bandpass
filters at center wavelengths of 675 nm (red) and 842 nm (IR), respectively. They did an
experiment on 26 healthy subjects under hypoxic and normoxic situations (83-100%) and
slow cooling. However, the proposed method was highly affected by low pulsatile strength
and motion artefacts. Another study by Mogo et al. [157] also assessed the viability of
calibration of contactless SpO, using the ratio of ratios of red and green light. They used
three monochrome cameras, respectively, mounted with bandpass filters with green, red,
and near-infrared wavelengths of 580, 675, and 840 nm to capture the video of 46 healthy
volunteers during hypoxic and normoxic situations (85-100%) and under slow cooling.
The authors demonstrated that SpO, could be calibrated with red and green light under
controlled settings; however, the accuracy was less than that measured in the typical
red-NIR spectrum.

Gastel et al. [158] first introduced a motion-robust contactless monitoring system to
measure SpO; based on a new principle using an adaptive PBV method. They used three
identical monochrome cameras each equipped with optical filters with a center wavelength
of 760, 800, and 840 nm. To validate the method, they did a test on healthy moving
volunteers whose SpO; levels varied from 80 to 100%, caused by breath-holding actions
in order to induce hypoxemia. The experimental results showed that the new principle
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outperformed the existing noncontact ratio-of-ratios based approaches. However, the
number of participants considered to evaluate the proposed method was very limited.

7.2. SpO, Measured with RGB Camera

Instead of using a monochrome camera, a few researchers used RGB cameras to monitor
SpO, based on normalized ratio of red and blue channel. For example, Tarassenko et al. [130]
introduced a noncontact method to monitor SpO, using a digital video camera under
ambient light. Unlike others, they did a large sample size experiment on 46 patients in the
Oxford Kidney Unit, whose SpO, varied from 87% to 95%. However, calibration was a big
issue for calculating SpO,. Using a webcam and ambient light, Bal et al. [159] calculated
SpO, based on a skin detector to only identify skin pixels from the selected face region.
To evaluate their method, they did a test on six healthy participants and three paediatric
intensive care unit (PICU) patients with results showing a strong correlation in comparison
with a Masimo oximeter, covering the SpO, range between 93% and 99%.

Another study by Guazzi et al. [160] proposed a novel method to monitor changes
in oxygen saturation using an RGB camera and two LED lighting panels in a controlled
environment. An automated ROI-selection process was adopted by calculating signal-
to-noise ratios for each ROI. To validate the proposed method, an experiment was done
on five healthy participants considering an SpO, range of 80-100% for 40 minutes each
in a purpose-built chamber. However, the proposed method was affected by factors
such as illumination variations, camera spectral responses, and physiological issues like
skin type and melanin concentration. A low cost noncontact method was introduced by
Rosa et al. [161] using a Raspberry Pi camera and ambient light to monitor SPO, based on
the Eulerian video magnification (EVM) method. The EVM was employed to amplify the
light absorption variations of red and blue channels. The proposed algorithm showed good
accuracy in comparison with those measured with a commercial pulse oximeter. However,
the method was constrained to SpO, range 92-99%, a small population, and short distance.

From the above discussion, we have found that most of the methods used a com-
mercial pulse oximeter as a ground truth for validation purposes, which itself has some
errors. Moreover, most of the methods were constrained to a small test population, motion
artefacts, illumination variations, short distance, and a small range of SpO;. It is necessary
to be able to monitor SpO, over a broader range (at least 80% to 100%) for real applications,
especially for clinical applications. A controlled hypoxemia test could be helpful to drive
more variation in the oxygen level of blood.

8. Acoustic Detection of Respiratory Infection

Cough detection via acoustic sensing has been a topic of interest for many years. This
approach is relatively non-intrusive, and can be completely non-contact, requiring only the
presence of an acoustic sensing device within a reasonable proximity (primarily governed
by the level of background noise) and a device to facilitate the requisite signal processing.
Some implementations have demonstrated use of a contact microphone [162-165]; however,
many modern approaches have adopted the ubiquitous smart-phone for audio capture
(and in some instances, also processing) device [166-169]. A cough event lasts somewhere
between 300 [170] and 650 ms [171], and can be described by three distinct phases: the
expulsive phase, the intermediate phase, and the voiced phase [172].

It is common to divide the cough detection system into two distinct stages, data
pre-processing for feature extraction and machine learning for classification. The primary
difference between the approaches are the choice of features and the type of network
used for inference. A commonality observed in the data pre-processing stage is the down-
sampling of the input signal. Many recording devices capture audio at 44.1 kHz. It appears
that this is unnecessarily high for cough detection, with authors reporting success with
22 kHz [171], 16 kHz [173], 11.25 kHz [170], and even down to 400 Hz [168]; each was
able to achieve a classification accuracy of greater than 90% through various methods. A
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down-sampled signal reduces the computational requirements in the subsequent feature
extraction process; thus, it is beneficial for embedded applications.

The features extracted for the classifier vary between applications. A recent imple-
mentation shown in [170] provides a good example of the diversity in features. The signal
was first split into 75 ms windows, with 19 ms overlap (to avoid boundary effects). The
justification for this window size was that it allows accurate spectral estimation, while
accounting for the non-stationary nature of the signal. Each 75 ms frame was broken down
into five frequency bands, ranging from 0 to 5.525 kHz (without overlap). A feature set was
extracted from each band in a given frame, giving the spectral centroid, bandwidth, crest
factor, flatness, flux, roll-off, peak energy, Renyi entropy, kurtosis, skewness, 90% to 50% en-
ergy frequency ratio, relative power, harmonic ratio, Mel-frequency cepstrum coefficients,
audio spectrum flatness, normalized audio spectrum envelope, tonal index, chromatic
entropy, and sub-band spectral centroid histograms. A total of 117 features were extracted
for each window; however, feature selection was applied to remove redundant sources of
information, reducing the number of features to 29. A support vector machine (SVM) was
used for training and classification, yielding accuracy of around 90% sensitivity, and 80%
specificity.

A similar approach can be seen in Matos et al. [162], who used a keyword-spotting
approach to detect cough sounds with a hidden Markov model (HMM) classifier. The
work in [164] uses spectral, noise, and prosody features for feature extraction and tests
their efficacy with three separate classifiers: an artificial neural network (ANN), Gaussian
mixture model (GMM), and SVM. It was shown that the GMM performs best for most
feature sets. There are other applications, seen in [165,166,168,171,174-178], which use some
subset of the above mentioned features (except for [173], which uses gammatone frequency
cepstral coefficients), in conjunction with varying machine learning classifiers such as
the logistic regression model [178], k nearest neighbour [166], binary tree classifier [168],
SVM [178], and convolutional neural network (CNN) [171,177].

It is noted that in most cases, a combination of spectral and cepstral features is
extracted from sub-band frames. The cepstrum is typically used for speech detection but
also appears to contain a significant amount of information pertaining to the detection of
coughs, due to its prevalence in the literature. Interestingly, there are very few applications
that make use of the CNN architecture, despite its efficacy in relevant fields such as
environmental sound classification [179], heart sound feature extraction [180], snore sound
classification [181], and bird sound classification [182]. In such applications, it is common
to simply use the mel-spectrogram of the audio signal as the two-dimensional input to
the network [179]. It is suggested that various techniques may also be used to augment
the dataset, such as time stretching, pitch shifting, dynamic range compression, and
the addition of background noise [179]. Such techniques may be transferred to a cough-
detection data set, which is inherently sparse due to the nature of the signal [173]. Recurrent
neural networks may also be a viable alternative; although being more computationally
intensive, they are proven to perform well in speech recognition tasks [183].

It is noted that there are several limiting factors that affect the efficacy of cough de-
tection systems in practice. The signal to noise ratio is often much higher in training data
than in practice, due to the nature of the data collection process. It is recommended that
training data contains a significant amount of noise, as it is common for other sounds such
as laughter, sneezing, talking, and throat clearing to be detected as false positives [164,169].
The specificity of the network to a given person and recording device also pose limitations
when applied to new scenarios. The work presented by Barata et al. [171] addressed the
issue of device specificity by capturing samples with many different types of microphone.
The results indicate a reduced classification accuracy (by approximately 5%) when the
classifier is run on recordings from a microphone not used as part of the training process.
This reinforces the need for a diverse training set if the developers seek hardware abstrac-
tion. Computational resource requirements pose limitations to any embedded real-time
application. Testing has not been conducted with CNN architectures; however, it is noted
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that the standard approach of spectral and cepstral feature extraction and classification can
be heavily resource-consuming, costing computational resources and battery life [166]. This
is an impediment to embedded mobile applications and must be taken into consideration
during the design process. Larson et al. [169] demonstrates a unique approach to this
problem. The spectral and cepstral features are extracted from the mobile device, and
sent to a cloud-based classifier, thus reducing the amount of processing required by the
embedded system.

As a final note, relevant to the current situation, it is possible that further development
could help to discriminate between a productive cough and an unproductive cough. An
example of such work can be seen in Murata et al. [184], which, if successfully implemented,
could assist in discriminating between subjects with COVID-19 and other illnesses.

9. Video Based Cough Detection

Many cough detection studies are focused on detecting the cough using the sound
the person makes. Sometimes, this is not reliable, for example, in cases where there is no
sufficiently strong sound signal to detect. Such scenarios may include people coughing
while covering their mouth or being too weak to make a sound while coughing.

Video based cough detection provides an alternative to such problems and can also be
used to cross-validate the cough detection of acoustic models. Here, we are reviewing the
few notable studies focused on cough detection using visual features.

Cough recognition is widely studied under general action recognition. Some popular
action recognition datasets contain coughing action classes. NTU RGB + D dataset [185]
has included coughing or sneezing clips in a separate class in their datasets. UWA3D
dataset [186] also contains a coughing action class of 71 clips. ALMOND [113] is a dataset
created by merging several action recognition datasets. Its coughing/sneezing class con-
tains a total of 1019 clips collected from NTU RGB + D and UWA3D datasets. Thi et al. [114]
presented a new dataset targeting sneezing and coughing detection in videos. Their Sneeze—
Cough dataset was created to help recognize flu-like behavior symptoms in public areas.
The dataset contains 960 video clips collected from 20 human subjects (eight females and
12 males) of 20 to 50 years old.

Compared to acoustic cough detection, a relatively low number of studies have been
conducted for video-based cough detection. A cough counting study was performed by
Smith et al. [187] by comparing video and audio recordings. They studied eight patients
with chronic cough overnight in laboratory conditions. Coughs were recorded simulta-
neously using a video camera with infrared lighting and digital sound recording. They
proposed to use ambulatory digital audio recordings as the gold standard for ambulatory
validation of automated cough monitoring devices. Another notable study was performed
to recognize flu-like symptoms from videos [114]. The authors developed a new family of
kernels that explicitly integrate space—time layout and Bag-of-Words representations. The
proposed algorithm was evaluated on the new Sneeze-Cough dataset. Buzzelli et al. [113]
demonstrated a relatively similar but more generalized vision-based system for monitor-
ing common actions of elderly people at home. The proposed method consisted of deep
learning models for subject localization and action recognition.

Cough detection using drones has gained the attention of drone manufacturers [188].
Identifying subjects with coughing symptoms from the crowds could be helpful to detect
potential patients with respiratory illnesses [189] (Figure 19). High-resolution cameras,
faster data transmission links, high performing computers, and action recognition tech-
nologies could be effectively used for such solutions.
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Figure 19. Cough detection using drones. Image courtesy of Draganfly Innovations Inc.

10. Discussion

We have shown that camera imaging techniques using thermal cameras and video
cameras, separately or in concert, have been considered for measuring physiological
parameters and symptoms of illness. Most of the techniques have been developed in
laboratory and clinical environments and could best be described as “non-contact” rather
than remote. In general, measurements are under controlled lighting, indoors and at close
range, with some notable exceptions.

The challenge is to achieve detection over ranges more associated with the field
of noncontact sensing, from long range and moving platforms. In the remote sensing
field, achieving mapping or survey objectives is common, yet the research considering
non-contact sensing of illness was focused on small areas, static observation, and an
approach focused on the individual rather than the ailment. Even the studies with drone
measurement of cardiorespiratory parameters were done at quite close range, albeit limited
mainly by the characteristics of the modest sensors used.

No concerted effort to develop sensing of this most devastating of situations, a coron-
avirus, influenza, or any other type of pandemic, has been undertaken. From the literature
we find not efforts to undertake such missions, but rather technological indications that
there is an underlying feasibility. The domain seems to be wide open to research in
noncontact sensing, but the technological hurdles are significant.

We have shown that at short range acoustics might serve to detect coughs and perhaps
sneezes. At longer ranges, it should be possible to detect the actions associated with
coughing, and by analogy sneezing.

Thermal cameras have the potential to measure all likely symptoms on a single
camera, especially temperature, yet they are expensive and currently of comparatively
low resolution. Research to date, and the approved usage of such devices, is based on
short ranges with thermal calibration and a reliance on detecting anomalous individual
temperature, rather than absolute temperature. Range will continue to be limited by
the resolution of thermal sensing technology and focusing elements. Thermal imaging
techniques are susceptible to slight heat variations and some other complex factors such
as head rotation and motion artefacts. Moreover, these techniques are also susceptible to
environmental thermal noise caused by the variations of background temperature.

Video cameras, due to their availability, cost, adaptability, and compatibility, are an
attractive option, but they will not be able to directly sense temperature and might at best
be able to infer it from elevated heart rate or breathing rate of a population compared to
statistical norms. The resolution potential of visible light imaging means that they will be
useful for long range detection of symptoms that cause gestures, postures, or gaits.
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All imaging techniques that use intensity information, thermal imaging, and color
based techniques require a clear ROI. These techniques may not always be feasible if
a subject is covered by a blanket, face mask, or intubation equipment. Motion-based
techniques can be used in such situations, although they may be more limited in range and
measurement scenarios, particularly if the sensing platform is in motion.

At this stage, comprehensive studies of COVID-19 noncontact sensing have yet to be
done, although there has been a substantial deployment of thermal imaging equipment for
screening purposes. It is worth considering some appropriate configurations of COVID-19
sensing for different scenarios, based on the analysis above.

It is likely that in exigent circumstances, a normal visible light webcam can provide
some primary indications of COVID-19 symptoms, particularly with a subject at rest,
and particularly if they have a history of resting vital signs recorded. Heart rate, SpO,,
and breathing rate parameters are all measurable and indicative of different aspects of
the illness. The microphones on most web cameras also allow for cough detection, an-
other strong indicator of the illness. This solution has the advantage of cost, potentially
less than $20 USD when used with an existing computing device. Mobile telephones
have both cameras, computing and microphones. Options exist with this solution being
universally accessible.

A more comprehensive solution might consist of a LWIR camera with or without a
black body calibration device. Frequently, these solutions include a visible light camera to
classify objects and parts of the body, particularly the face. This combination of sensors
might just be used to measure temperature, but advanced systems might include soft-
ware to measure vital signs using a combination of thermal and visible image processing.
At present, these sorts of systems are expensive, requiring expensive thermal cameras,
dedicated computing, and a dedicated platform.

11. Conclusions

Noncontact sensor modalities, especially thermal and video cameras, could provide a
technique to screen large numbers of people for fever, cough, increased respiratory rate,
and heart rate with no risk to operators. Such techniques might provide more sensitive
screening methods for detecting COVID-19 than the current method of screening for fever
alone. A more useful outcome would be new methods for control and response to contagion
in human populations through surveillance and mapping.

Our review has found that the principles of noncontact detection have been demon-
strated in indoor or highly controlled environments and mostly at quite short range. The
challenge to the noncontact sensing community is to extend these techniques to longer
ranges and make them robust enough to be effective on mobile and airborne platforms. The
topic is of critical importance and represents a significant research opportunity given the
unprecedented harm done to the world’s economy, society, and stability by the pandemic.
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