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Abstract: We present a sample-efficient image segmentation method using active learning, we call it
Active Bayesian UNet, or AB-UNet. This is a convolutional neural network using batch normalization
and max-pool dropout. The Bayesian setup is achieved by exploiting the probabilistic extension of
the dropout mechanism, leading to the possibility to use the uncertainty inherently present in the
system. We set up our experiments on various medical image datasets and highlight that with a
smaller annotation effort our AB-UNet leads to stable training and better generalization. Added to
this, we can efficiently choose from an unlabelled dataset.

Keywords: Bayesian, active learning; Bayesian learning; convolutional networks; AB-UNet; stochas-
tic gradient descent

1. Introduction

Semantic image segmentation—the task of clustering image pixels into categories—
has been actively researched by the computer vision community [1]. In the last 50 years,
these methods have included thresholding, pixel clustering, detection, watershed tech-
niques, to name only a few [2–8]. With the new wave of neural networks, segmentation
is done with variants thereof, either (1) pixel-wise or (2) superpixel classification. These
recent—deep learning—methods led to improved performance in image classification and
image segmentation [9–14]. As of today, most state-of-the-art segmentation rely on convo-
lutional networks (CNN—a neural network with shared weights—the convolutions—that
lead to translation invariance [15], and therefore good performance in image processing),
outperforming methods that use low-level feature extraction [10,13,14]. We develop a
neural network-based algorithm that addresses the difficulty of collecting the training data:
to achieve segmentation, for each image we need pixel-wise labelling, that is extremely
costly. We “informatively” sample from an un-labelled set of data and ask to label only the
images that are “the most uncertain”. The result—the AB-UNet algorithm—achieves fast
and accurate segmentation with a small set of annotated data.

1.1. Problem Statement and Suggested Solution—The AB-UNet Algorithm

We aim at an iterative segmentation with a minimal set of annotated images to
minimise annotation effort. We leverage on the success of convolutional networks in
image segmentation [13] and develop a probabilistic algorithm that uses active learning for
training.

Our algorithm outputs pixel-wise uncertainty that is subsequently used for unlabelled
image selection in inter-active training. For deep models, pixel-wise uncertain image
selection is non trivial as it involves accounting for the noise in model as well as data, more
so, each pixel uncertainty has to be summarized to estimate the informativeness of the
image. We call our approach active Bayesian UNet—in abbreviated form AB-UNet. In the
algorithm we “actively choose” the most informative image to be labelled. This process is
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done by a domain expert, usually called the “oracle” (which is a labelling agent—human
or algorithmic—that performs the given task and providing the required output—image
segmentation in this case)—leading to a model with the following properties:

• Pixel-wise segmentation of the image—no need for manual labelling of the training set.
• Efficient and fast active training via informative scoring, achieving good generalization.

Also, ensure faster training after each interaction between model and the oracle.
• Translation, rotation and scale invariance to improve generalisation.

Our contribution is the Active Bayesian UNet algorithm. It is a classical UNet [13] with
a Bayesian extension based on max-pool dropout [16–18], that uses batch normalization [19].
The probabilities quantize the uncertainty, leading to the possibility to choose informa-
tive samples. The informativeness of data is used in an “active learning” scenario—see
Section 4—and we show that a committee-based Jensen divergence measure for the ac-
quisition function (see Section 4.1—inspects the unlabelled set and returns “the most
informative” item) achieves the best dice coefficient (Dice coefficient—see Section 3.3.2),
and this value will certify the validity of our methods.

1.2. Structure of the Paper

In Section 1.3 we define notations, in Section 2 gives a brief discussion on related work.
We begin the introduction of our extended UNet in Section 3. This section also includes
brief definitions of Bayesian neural networks and Monte Carlo estimates with dropout
and batch normalization. Subsequently, we present details of the AB-UNet architecture
with the proposed Bayesian sampling technique. We justify this extension with empirical
tests in Section 3.3.1. Section 4 introduces active learning and describes the proposed
acquisition functions for selecting informative images. Further down, we present our
AB-UNet algorithm. Section 4.4 presents empirical results of these acquisition functions,
while Section 5 discusses conclusions and future work.

1.3. Notation and Assumptions

We denote Xj as the jth image and Yj its corresponding segmentation mask in our
dataset D. We assume that each Yj takes on pixel values in the range of 0, 1, 2, . . . , c− 1,
where c is the number of classes. In active learning, we have a small labeled dataset X` =
{X1, X2, . . . , X`} and Y` = {Y1, Y2, . . . , Y`} such that the initial training setD`,1 = {X`,Y`},
with `� n and Xu = Xu \X`. We further assume the availability of a pool of unlabelled
data Xu = {X1, X2, ..., Xn}, and the existence of an oracle or a labeller who is an expert in
the learning domain. The oracle is simulated by holding out a subset of already—ground
truth labelled set Xu—and when selected—the “output” mask is made available.

2. Active Learning for Image Segmentation

Research into image segmentation spanning the last 50 years has seen groundbreak-
ing results, where “classical” techniques, like thresholding, pixel clustering and edge
detection [1] were the building blocks of the algorithms. In last years, there is a wave of
algorithms using artificial neural networks (ANNs) and we mainly discuss algorithms
that use ANNs. In spite of the large literature in segmentation, there are only a few that
actively select data. Instead of selecting, the emphasis was on improving the accuracy of
the segmentation task-as evident in research that uses deep neural networks like UNet,
FCN [13,14] and Masked R-CNN [12]. In this article, we focus on these active learning liter-
atures and further categorize them into two parts: (1) Graphical model-based approaches,
and (2) Neural network-based approaches.

1—Graphical model-based semantic segmentation with active learning is one of the early
techniques to build segmentation models that simultaneously aim to minimize annotation
efforts. This technique constructs graphs where nodes are super-pixels (part of an image
that is rendered with “almost” uniform colour and brightness) and edges are similarities
between super-pixels [5,20,21].

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
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Vezhnevets et al. [20] uses the graph based method with conditional random fields
(CRFs) over super-pixels; the goal is to define an energy function that captures both the
ability to classify super-pixels (unary potential) and the connectedness of super-pixels.
In their work, they applied active learning by designing a query scoring function that
maximizes the expected model change on the appearance model parameters.

Fathi et al. [21] focused on semantic video segmentation by building a graph of super-
pixels connected via a similarity metric. Here an incremental self-training approach was
proposed that iteratively first labels the least uncertain frame, followed by the update of
similarity metrics based on the extended set of labels.

2—Among neural-network based approaches there are a few that address active learning
aimed at image segmentation. The few works that exists exploit model uncertainty and
pixel information evaluated using different flavours of entropy of posterior predictive pixel
distribution.

Kendall and Gal [22] proposed a Bayesian network with heteroscedastic uncertainty
that combines input-dependent uncertainty—coming from observation noise—with epis-
temic uncertainty—from the model—, resulting in a predictive pixel distribution with pixel
information evaluated using entropy. Their Bayesian network is realized using dropouts
with a special parameter regularization term (see [22] for details).

Mahapatra et al. [23] employs the gains inherent in deep neural networks by proposing
an active learning technique and selection sampling technique using conditional genera-
tive adversarial networks (cGANs). Their framework has three components: (1) sample
generation; (2) classification/segmentation model; (3) sample informativeness calculation.
Uncertainty of samples is evaluated using a Bayesian neural network with heteroscedastic
uncertainty [22] and informativeness of samples is evaluated using a summary of pixel
entropies.

Gorriz et al. [24] proposed a closely related work in which they applied standard
dropout on UNet architecture and a Monte Carlo average of weighted pixel prediction
from the final/last layer of the network. Uncertainty in predicted samples is evaluated
using maximum variance of T forward passes and the informativeness of each image is a
summary of pixel entropies.

Our previous work [25] employs a superpixel-classification approach for prostate
segmentation. We considered a training pipeline which started by weakly segmenting and
over-sampling (using SMOTE sampling [26]) the input images, starting from a watershed
algorithm—outputting several super-pixels. These super-pixels were the basis for object
detection and it was shown that Bayesian Active learning by disagreement [27] acquisition
functions outperformed other acquisition methods benchmarked.

3. The Extended UNet Architecture—The AB-UNet

In what follows we describe the standard UNet and the extension to allow the active
learning within the segmentation task.

3.1. Standard UNet Convolutional Network

The standard UNet proposed by Ronneberger et al. [13] consists of a contractive
(encoder) convolutional part and an expansive (decoder) convolutional part, forming a
U-shape, hence its name. The contractive part consists of a rectifier unit (A rectifier is an
activation function defined as the positive part of its argument f (x) = max(0, x)) placed
after every second convolutional layer, the result is then downscaled using a max pool layer.
This contraction reduces the spatial information, while increasing feature information [13].
The expansive pathway combines the feature and spatial information through a sequence
of up-convolutions and concatenations with high-resolution features from the contracting
path (see Figure 1). In what follows we describe the probabilistic extension of the classical
UNet algorithm.
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Figure 1. The Bayesian UNet—an extension of standard UNet—where batch normalization and
max-pool dropout for posterior weight sampling were added to the architecture.

3.2. Bayesian Neural Networks

A Bayesian neural network is one with a probability distribution over its network
weights; an immediate advantage being the fully probabilistic treatment, hence the estima-
tion of the uncertainties in predictions. In a Bayesian setting, we assume a prior knowledge
or distribution p0(W) of these weights and estimate the posterior weights distribution
p(W|D) after observing the data D. This posterior weight distribution is evaluated using
Bayes rule as

p(W|D) = p(D|W)p0(W)

p(D) (1)

where p0(W) is the a-priori weight distribution—usually an isotropic Gaussian—and p(D)
is the normalizing constant of the distribution. Under this setting, predictions are done
using the posterior from Equation (1):

p(Y∗|X∗,D) =
∫

p(Y∗|, X∗,W)p(W|D)dW (2)

In our work the uncertainties arise due to sampling the dropout weights and batch
normalization, and prediction is done by averaging T forwarded passes over the network
(MCMC procedure):

p(Y∗|X∗,D) = 1
T

T

∑
t=1

p(Y∗|X∗,D,Wt) (3)

In what follows we present the network layers (maxpool, batch normalization) and
their respective contributions to uncertainty estimation, as seen in Figure 1:

1. Batch Normalization [19] is a procedure to speed up network training by reducing the
internal covariate shift (this describes the changes in the distributions of activation
units due to changes in parameters [19]) done by normalizing the hidden layers
activations using an estimated µβ and σβ from each mini-batch. Teye et al. [18] found
that batch normalization helps improving convergence.

2. Dropout [16] is a regularization technique, also viewed as an approximate Bayesian
method: the algorithm randomly removes parts of the network, making the weights
stochastic quantities: Ŵ =W ⊗ α, where α ∼ Bernoulli(p),W are the initial weights
of the network, and ⊗ is the direct product with the random binary vector.

The network is trained using the dropout Ŵ , the training method is stochastic gradient
descent, leading to both uncertainty and robustness.
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3.3. The Probabilistic Extension, the AB-UNet Architecture

We present our Bayesian UNet (AB-UNet)-an extension of the standard architecture
via sampling. We place batch normalization layer after two consecutive convolutional
layer and dropout after each max pool layer—the architecture is shown in Figure 1. The
AB-UNet contains stochastic parameters Θ = {Ŵ1..L, µ1..L

β , σi..L
β } where L is the number of

layers in the network. Similar to the standard UNet, we define the softmax output vector
p(y = i|x,D, Θ)c

i=1 with c being the number of pixel classes, and a categorical cross-entropy
loss for our model. The network is subsequently trained using stochastic gradient descent
with Adam [28]. The prediction is done by averaging forward passes as in Equation (3).

Recent researches have shown that convolutional layer dropouts are hard to train,
can lead to unstable behaviour [29] with high uncertainty in predictions. We resolved
this issue by carefully placing dropouts at different layers of the network and empirically
benchmarking the results. The result of this experiment led to placing dropouts after
each max pool hence forming the basis of our AB-UNet architecture and active learning
algorithm. We present the experiment as follows.

3.3.1. Model Performance and Uncertainty Quantification AB-UNet

We setup various experiments to compare dropout performance/uncertainty estimates
together with batch norm performance/uncertainty estimates across various datasets.
Beginning with a very small training set size to a large training set sizes, we investigated
the performance and uncertainty estimate using dice coefficient (see Section 3.3.2) of our
segmentation. The goal is to find the best performing model with the smallest dataset size,
while guaranteeing also stability.

3.3.2. Dice Coefficient

Also known as the Sorensen Index or F1 score—developed independently by Lee
R. Dice and (Thorvald) Julius Sorensen in 1945 and 1948 respectively [30,31], this is a
metric that computes similarity between two samples/vectors by balancing the trade-off
between their precision (=true positive/(true positive + false positive)) and recall (=true
positive/(true positive + false negative)). It is defined as DSC = 2||a�b||

||a||2+||b||2 , where � is the
element-wise multiplication, and a, b are vectors.

In our work, we use the dice coefficient to measure the similarity between predicted
and ground truth segmentation.

3.3.3. The Results of Model Uncertainty Quantification

In the experiments we used batch normalization and we benchmarked the following
four versions of our algorithm: (1) plain, (2) standard dropout, (3) max-pool dropout, and
(4) both standard and max-pool dropouts. The benchmarking is on four datasets—see
Figure 2 for typical images:

1. Cell membrane segmentation dataset [32] from the EM segmentation challenge. It con-
tains a full stack of EM slices images used to train machine learning models for auto-
matic segmentation of neural structures. These images contain noise and small image
alignment errors. For our experiments we discretized each pixels as binary values.

2. DIC-C2DH-HeLa (The dataset is provided by Dr. Gert van Cappellen, from the
Erasmus Medical Center, Rotterdam, The Netherlands.) cell tracking dataset of images
recorded by differential interference contrast (DIC) microscopy. We discretized each
pixel in this dataset into 20 classes.

3. PhC-C2DH-U373 dataset:The data is provided by Dr. Sanjay Kumar. Department of Bio-
engineering University of California at Berkeley. Berkeley CA (USA). on Glioblastoma-
astrocytoma U373 cells on a polyacrylimide substrate recorded by phase contrast
microscopy. For our segmentation experiments we used 14 classes.

4. Warwick gland segmentation in colon histology images dataset [33]. This dataset
consists of images of Hematoxylin and Eosin (H&E) stained slides, consisting of a
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variety of histologic grades (Figure 2). The dataset is provided together with ground
truth annotations by expert pathologists and the task is to build an algorithm that
segments the glands within the image. For our experiment we discretized each pixel
into 50 classes.

(a) (b) (c) (d)

Figure 2. (top) Images used in the experiments and (bottom) their corresponding segmentation
masks: (a) membrane dataset (2 classes), (b) differential interference contrast (DIC)-C2DH-Hela
dataset (20 classes), (c) PhC-C2DH-U373 dataset (14 classes), (d) Qu-Warwick dataset (50 classes).

We augmented (rotated, shifted, scaled and sheared) each dataset to improve gener-
alization. We ran each experiment—a permutation of plain, standard dropout, max-pool
dropout and both, for a total of 10 times each at 200 epochs. Training dice coefficient, vali-
dation dice coefficient, training loss, validation loss, Markov Chain Monte Carlo (MCMC)
validation dice coefficient and Markov Chain Monte Carlo (MCMC) validation loss results
were averaged, plotted and the following were observed:

1. By using batch normalization and max-pool dropout, we achieved better generaliza-
tion and uncertainty quantification on all datasets; in contrast to batch normalization
+ standard dropout only, or batch normalization + standard dropout + max-pool
dropout. Using only Batch normalization, exhibited similar model confidence when
compared with batch normalization and max-pool dropout but it resulted to a slightly
lower dice coefficient values across various sizes of training dataset.

2. Better uncertainty (We define better uncertainty as the confidence of the model when
it has seen more data) with more data: this is observed via the low variance in the
plots shown in Figure 3—for the PhC-C2DH-U373 dataset, but the training behaviour
for other datasets is similar. We see that our Bayesian model trained with either batch
normalization + max-pool dropout or batch normalization only exhibit better confi-
dence as the size of the training set increases—a clear contrast with the other setups.
In particular, model confidence is better exhibited when using batch normalization
and max-pool dropout.

3. Average generalization begins below 60 epochs-An observation that we later exploited
in active learning retraining (see Section 4.4). We believe that the fast generalization is
a result of the batch normalization of input features. This is because batch normaliza-
tion has been shown to reduce internal covariant shift, resulting to faster training and
convergence [19].
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Figure 3. Validation DICE coefficients and their uncertainty for the PhC-C2DH-U373 dataset using
different Bayesian approximations, where shading indicates the predictive variance. Figures are
arranged based on the different type of experiments carried across different training set sizes: 1, 32, 63.

4. Active Learning—A More Data-Efficient Method

Active learning is a sub-field of machine learning that holds the hypothesis that a
learning algorithm can achieve greater accuracy with fewer labelled samples if it is allowed
to interactively select its own training data points and request their corresponding labels
from an oracle. Classical active learning can be categorized into pool-based (Pool-based
active learning assumes a pre-defined and available unlabelled data, usually of fixed size)
active learning, stream-based (In stream-based active learning we assume that data arrives
in streams—online setting—and the model decides whether or not to query its label) active
learning, and membership query synthesis (In membership query synthesis we assume
that unlabelled data is synthesized from labelled ones) see [34] for a detailed description.

An essential part of active learning is the acquisition function that determines which
item from the unlabelled data points is selected for in-depth labelling. Depending on
the model, the acquisition function exploits the uncertainty in models (for probabilis-
tic models) or the distance between data points and a separating hyperplane (for non-
probabilistic models).

In AB-UNet, choosing informative images is peculiar since for each predicted pixel
there is a distribution, therefore, we are faced with the problem of measuring the uncertainty
of not just the pixel prediction but the entire input image. We denote the informativeness of
an image as I(Xj) and propose two categorizes of acquisition functions: (1) entropy-based
techniques, (2) divergence based techniques-committee based techniques.

4.1. Acquisition Functions for Active Learning

1. Entropy based techniques compute the informativeness of an image as the sum of
pixel entropies within the image. We define the following cases:

(a) Maximum entropy [35]: measures the informativeness of pixel predictions
within the image. The entropy of a pixel xi is }e(xi) = Hxi∈Xj [y|xi]. Therefore,
I(Xj) = ∑xi∈Xj

}e(xi)

(b) BALD (Bayesian Active learning by disagreement) [27]: chooses the image
that maximizes the mutual information between the standard prediction and
posterior prediction of each pixel. The BALD of a pixel xi is thus defined as
}b(xi) = H[y|xi]−Ep(Θ|D)[y|xi]. Therefore, I(Xj) = ∑xi∈Xj

}b(xi)



J. Imaging 2021, 7, 37 8 of 13

2. Divergence based techniques: Computes the divergence between standard model
prediction and MCMC prediction, therefore taking into account the disagreements of
predictions in weight space while also considering noise in data space. We consider
the following variants:

(a) Committee posterior KL-divergence: computes the divergence between stan-
dard predictions and posterior predictions: given p(Y|X, Θ), the prediction
from our AB-UNet model, and EΘ(Y|X, Θ) our MCMC prediction, we define
the DKL(p(Y|X, Θ)||EΘ(Y|X, Θ)) as the information gained if we approximate
p(Y|X, Θ) with our MCMC prediction EΘ(Y|X, Θ). Using this acquisition
function, we select samples with the highest KL divergence.

(b) Committee posterior Jensen divergence is similar to the KL divergence, but
here we quantize the symmetric bi-directional divergence between the stan-
dard prediction and the MCMC predictions. The Jensen divergence is de-
fined as JSD(p||Q) = 1

2Dkl(p||M) + 1
2Dkl(Q||M) where M = 1

2 (p + Q),
p = p(Y|X, Θ)–standard prediction, and Q = EΘ(Y|X, Θ)–MCMC predic-
tion.

4.2. The AB-UNet Algorithm

Our AB-UNet algorithm extends standard active learning algorithm by introducing
acquisition functions suitable for our Bayesian UNet. The algorithm starts with a small
set of labelled examples (with 2 labelled items). Subsequently we retrain our model with
additional samples selected using the acquisition functions defined in Section 4.1, where a
simulated oracle provides the labels—we simulate the oracle providing labels by holding
out labels for the unlabelled dataset and providing it when requested by our algorithm.
At each interaction step(model and oracle), we refine the trained weights from previous
iterations, as opposed to the re-initialization of the weights at each iteration. All training is
done using Adam [28] optimizer with a learning rate of 0.001. In Section 3.3.3 we established
that generalization occurs below 60 epochs so we employ early stopping technique with
validation dice coefficient metric as stopping criteria—this generally speeds-up retraining.
The algorithm is given in Algorithm 1. We emphasise that this is an inter-active training
technique hence we expect the oracle to be present during training. Therefore, our focus is
on avoiding to label the entire dataset. In practice, the oracle only needs to provide labels
for the test set and the initial small training set; subsequent labels are only provided by the
oracle on request by the algorithm.
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Algorithm 1 The Active Convolutional Network Segmentation (Bayesian UNet) Algorithm

1: procedure TRAINING(Xu)
2: Select Xinit; Xu ← Xu \Xinit . Set of images from unlabelled set Xu

3: Yinit ← oracle(Xinit) . acquire label from Oracle
4: D`,1 ← (Xinit,Yinit)

5: t← 1
6: ft ← Bayesian UNet(D`,1) . initial training
7: repeat
8: Xsub ⊂ Xu

9: Ssub ← unlabeledSet( ft,Xsub) . Computing score of Xsub

10: Xk ← arg maxXj∈Xu
I(Xj) . acquisition function I(Xj) from Section 4.1

11: Yk ← oracle(Xk) . request labels
12: D`,t → D` ∪ (Xk,Yk)

13: Xu → Xu \Xk

14: ft+1 ← Bayesian UNet(D`,t) . re-train until early stopping
15: t← t + 1
16: until stopCondition∨Xu = ∅
17: return trainedModel
18: end procedure

4.3. Active Bayesian UNet Experiments

In our setup, we assume pool-based active learning with fixed size dataset and we
select the unlabelled data points (images) from this set. We run our experiments on the
four datasets, comparing all acquisition functions on each dataset. A total of 5 runs per
experiment was done and the results of each MCMC validation DICE were averaged.

4.4. AB-UNet Algorithm Results

Our experiments show both marginal and significant improvements using AB-UNet
in all datasets. Visual evidence is seen after 15 active learning iterations (using committee
Jensen acquisition) with 2 most informative active batch samples added to training dataset
at each iteration (see Figure 4). Overall, we observed the following:

• Our AB-Net shows significant early peak using entropy. However, a robust per-
formance in terms of dice coefficient is observed for Jensen divergence acquisition
function—a divergence based approach (Figure 5).

• Our technique is more effective for problems involving higher number of pixel classes.
This is clearly seen in Figure 5: the Qu-warwick datasets has 50 classes, DIC C2DH
Hela dataset has 20, PhC-C2DH-U373 dataset has 14 and Membrane dataset is binary.
Comparing the performance of all datasets, we observe that the sample complexity
for models trained using active learning is a function of the dimension of the classes.

• Finally we compared our AB-UNet technique with other related techniques in litera-
ture (see Section 2), using Qu-warwick dataset and the result is presented Figure 6.
Observe that our AB-UNet outperforms these other techniques by a good margin
and the committee-Jensen acquisition is comparatively better than entropy and KL
divergence, as more labels are acquired. In general our technique performed better
due to the following;
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Figure 4. Predictions after 15 active learning iterations.

1. Our AB-UNet assumes that all layers are equality informative in calculating the
uncertainty in prediction, this is in contrast to [24] that only samples the last
layer for MCMC prediction. Results from our comparative analysis in Figure 6.
justifies this assumption.

2. The max-pool dropout and batch normalization act as regularizers in our model
compared to the work by Mahapatra et al. [23].

3. Our AB-UNet algorithm-with committee Jensen, better models differences in
predictive distributions induced by weight-space as well as noisy data. This is in
contrast to standard entropy used in [23], hence the stability of our method.

4. The averaging term M = 1
2 (P + Q) in the Jensen divergence, makes the resulting

measure smooth, more robust and well defined, implying that its range is well
quantized and suitable when used to quantify the informativeness of an image
among other images.
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(datasets below images).
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Figure 6. Comparative MCMC DICE coefficient results for Active Bayesian (AB)-UNet (label: AB-
Unet-type) versus cost-effective active learning (label: Last layers) of Gorriz et al. [24], and Sample
Selection and conditional generative adversarial networks (GANs) from Mahapatra et al. [23].

5. Conclusions and Future Work

We presented AB-UNet: a sample-efficient segmentation method using active learning
model. AB-UNet is a convolutional neural network whose Bayesian treatment is via batch
normalization and max-pool dropout–a choice of which was motivated by empirical model
comparison results. The uncertainty quantification experiments showed that AB-UNet
trained with batch normalization and max-pool uncertainty achieves better dice coefficient
on validation set and are more confident as the dataset size increases. This is a property
we desired and exploited in algorithm design to improve label complexity and reduce
annotation effort.

In the active learning experiments, we showed that by using committee Jensen diver-
gence acquisition function, we achieve better performance in terms of dice coefficient. This
function penalizes the divergence between standard prediction and the MCMC prediction
of our model via active retraining. Therefore, by using committee Jensen divergence ac-
quisition function, we achieve training with fewer request for labels while maintaining
better generalization. Also, each predictive mask comes with uncertainty information, so
in practice annotators can only focus on regions within the image that are most uncertain
and provide the labels for those regions only.

In general, our technique is easy to implement, tractable and achieves faster general-
ization compared to other techniques in literature; with tractability achieved through early
stopping technique, iterative weight tuning, effectively leading to a quickly trained model
at each active learning iteration. We also note the slight overhead in MCMC predictions
since we need to average T forward passes for each MCMC prediction, however, the
prediction tasks can easily be parallelized.

Lastly we showed, empirically, that sample complexity of our active learning technique
is a function of the number of pixel classes. Intuitively, higher number of classes, translates
to higher uncertainty in the system, hence better information gain can be achieved via
active learning.

In the future, we plan to exploit ratios of combination of informative and less infor-
mative samples so as to prevent a possibility of getting stuck in a local minima. As a step
to further improving annotation cost, we shall be exploring the game theoretic approach
of exploring/exploiting predictions from AB-UNet instead of directly requesting labels
from oracle.
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