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Abstract: Research on the effect of adverse weather conditions on the performance of vision-based
algorithms for automotive tasks has had significant interest. It is generally accepted that adverse
weather conditions reduce the quality of captured images and have a detrimental effect on the
performance of algorithms that rely on these images. Rain is a common and significant source of
image quality degradation. Adherent rain on a vehicle’s windshield in the camera’s field of view
causes distortion that affects a wide range of essential automotive perception tasks, such as object
recognition, traffic sign recognition, localization, mapping, and other advanced driver assist systems
(ADAS) and self-driving features. As rain is a common occurrence and as these systems are safety-
critical, algorithm reliability in the presence of rain and potential countermeasures must be well
understood. This survey paper describes the main techniques for detecting and removing adherent
raindrops from images that accumulate on the protective cover of cameras.

Keywords: raindrop; rain streak; rain detection; de-raining; deep learning

1. Introduction

Adverse weather conditions degrade the performance of many image and video-based
algorithms used in the automotive domain. Garg and Nayar [1] broadly classify adverse
weather conditions into steady (fog, mist, and haze) or dynamic (rain, snow, and hail).

Fog, as an example of adverse weather conditions, reduces the visible range of onboard
cameras and causes loss of contrast and fidelity in captured images [2,3]. Rain is a common
adverse weather condition and is the focus of this survey paper. In applications that use
LIDAR and radar, rain attenuates the strength of the transmitted signals and introduces
noise [1]. In image stitching applications, Chia et al. [4] observed that the number of feature
points extracted by Harris and SURF detectors was reduced by 48% and 68%, respectively
due to falling rain. Barnum et al. [5] used the technique of motion estimation using
point trajectories to evaluate the quality of their rain removal algorithm. A 15% to 30%
increase in the number of feature points tracked successfully was observed in the de-rained
image sequence vs. rainy sequence. Garg and Nayar [6] described a detailed model of
falling raindrops, both dynamically (speed, size, shape) and optically (reflection, refraction,
warping). More sophisticated models for rendering falling raindrops were later developed
(for example, Rousseau and Jolivet [7]) but Garg and Nayar’s model [6] remained the most
referenced and used in a good body of research work dealing with falling raindrops and
rain streaks detection and removal [8,9]. Tripathi and Mukhopadhyay [10], published a
short survey paper on the falling raindrop and rain streak detection and removal algorithms.
The focus of that survey was on the different approaches to the detection and removal of
falling rain streaks.

This survey paper describes another form of rain, adherent raindrops on the wind-
shield. Due to their irregular shapes, closeness to image sensors, and long temporal
presence in captured image frames, adherent raindrop detection and removal problem
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is relatively harder than that of rain streaks detection and removal [11,12]. Raindrops in
these two forms share some common characteristics, such as refraction properties of a
raindrop, higher intensity of the drop compared to the background, and average raindrop
size. Other characteristics such as raindrop shape and persistence in an image sequence
are quite different, which makes models developed for falling raindrops detection and
replacement not applicable for adherent raindrops on windshields.

The remainder of this survey paper is organized as follows. Section 2 describes
techniques for detecting adherent raindrops and estimating rain intensity. Section 3 de-
scribes raindrop models and rendering techniques. In Section 4, adherent raindrop removal
techniques for non-automotive applications are described. Section 5 focuses on classical
techniques for adherent rain detection and removal, and Section 6 describes detection and
removal techniques based on a deep-learning approach. A summary of all techniques
discussed can be found in Section 7, and the conclusion is provided in Section 8.

2. Raindrop Detection and Rain Intensity Estimation

Adherent raindrop detection algorithms are developed for different application do-
mains, including weather detection and automotive applications. The goal is to classify the
weather as either rainy or fair and estimate rain amount/intensity. Raindrop detection can
be achieved either by dedicated sensors or general-purpose cameras.

2.1. Near-Infrared Sensor Rain Detection

As described by Gormer et al. [13], near-infrared (NIR) transmitter and receiver,
coupled with optics to enhance performance are commonly used in vehicle rain detections
systems. The system measures the amount of light reflected off the windshield area and
detects the presence of rain accordingly. To enhance performance, reflective mirrors are
added to expand the detection region, as shown in Figure 1. The detection region is still
relatively small, and system performance degrades with induced infrared beams from the
outside environment.

Figure 1. Optical raindrop detection using NIR sensors [13].

2.2. Camera-Based Rain Detection

As an alternative approach to FIR rain sensors, dedicated camera systems are proposed
for rain detection and classification [13,14]. Camera-based rain-sensing provides benefits
over FIR-based ones, in terms of improved detection rate, glare reduction, and detection of
other particles like dust or salt on the windshield. Gormer et al. [13] have a patent on a
camera-based rain detection system, that is also capable of detecting dirt and glare caused
by outside light sources. As shown in Figure 2, the system employs an HDR camera with a
focusing lens and a light shield to block light outside the detection area. NIR LED is used
to provide illumination of the detection area during nighttime or reduced lighting. This
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system detects raindrops and dirt particles and distinguishes them from more permanent
distortions, such as chopped windshield class.

Figure 2. Raindrop detection system using a dedicated camera [13].

This system is dedicated to raindrop detection and cannot be used for any other
image-based applications, such as lane-keeping or traffic sign recognition.

2.3. HSV Camera-Based Rain Classifier

Yan et al. [14] used the histogram of HSV for their proposed weather classification
system. Color images are decomposed based on hue, saturation, and brightness, and the
histogram of each image is created using 2, 3, 5 bins, respectively. The road surface was
chosen as the region of interest and the AdaBoost [15] algorithm was used to combine
the weak learners into a strong classifier. Whether classes are distributed along the one-
dimensional manifold, as shown in Figure 3. A two-fold classification algorithm is then
employed, as described in the process below:

1. Train three different classifiers (Sunny-Rainy, Sunny-Cloudy, and Cloudy-Rainy).
2. Check if the test sample belongs to Sunny-Rainy class.
3. If the sample is classified as Sunny, test it with the Sunny-Cloudy classifier.
4. If the sample is classified as Rainy, pass it with the Cloudy-Rainy classifier, which

classifies it as either Cloudy or Rainy.
5. Else, test it with the Cloudy-Rainy classifier, which will classify it as either Cloudy or

Rainy, as the final classification result.

Figure 3. Different weather situations and classifiers [14].

For evaluation, Yan et al. tested the performance of their algorithm against other algo-
rithms, namely K-Nearest Neighbor (KNN), AdaBoost with one-vs-all, and AdaBoost.MH
classifiers. The algorithm performed better than KNN and AdaBoost.MH, but it was
slightly lower than AdaBoost with one-vs-all. In terms of speed, the algorithm was much
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faster than the others. This algorithm is good for classifying rainy conditions but it is less
appropriate for vehicle ADAS applications.

2.4. Feature Histogram Rain Classifier

Roser and Moosmann [16] proposed a weather classification system based on feature
histogram and Support vector machine (SVM), using a general-purpose vehicle camera.
The output of the system was a classification of the weather as “Clear”, “Light rain” or
“Heavy rain”. They selected a bag of features (BoF) that includes brightness, contrast,
sharpness, saturation, and hue. The image is defined as the first global Region Of Interest
(ROI). It is then divided into 12 sun regions, for a total of 13 ROI per image. Features
are measured in each ROI and the output is normalized to a value between 0 and 1, then
assigned to one of 10 bins in the feature histogram. The descriptor in this classifier is of
size 13 (ROI areas) × 5 (features) × 10 (bins per histogram) = 650 elements. An SVM is
added to reduce dimensionality, as shown in Figure 4. To train the system, images were
captured under different driving scenarios and labeled based on the weather condition they
represented. To test the classifier, three subsets of images were created, each represented
one driving scenario (Highway, Highway + Rural, Rural) with different weather conditions
equally represented in each subset. Results showed a good rate of classification for the
highway-only subset (2% error) but the classification rate got worse as the complexity
of the driving environment increased. In addition, for adjacent classes (e.g., “clear” and
“light rain” or “Heavy rain” and “light rain”), some misclassification errors were reported.
Some background objects were also mistakenly detected as raindrops, which skewed the
results of the classifier. Roser and Moosmann’s system does not detect individual rain-
drops on vehicle windshield which makes it less appropriate for ADAS and autonomous
driving applications.

Figure 4. Weather classification using BoF and SVM as described by Roser and Moosmann [16]. The
brightness, contrast, sharpness, saturation, and Hue features of an image ROI are used to construct a
BoF. And SVN is then used to classify the rainy condition as Clear, Light rain, or Heavy rain.

2.5. Intensity Gradient-Based Rain Classifier

Cord and Aubert [17] proposed a three-level raindrop classifier (no rain, light rain,
heavy rain). They observed that raindrops resemble lenses optically and are almost sta-
tionary on a windshield, for a short period. Furthermore, raindrops show high gradient
variation have opposite intensity levels (darker on a bright background and vice versa), as
compared to no-rain areas of an image. Their algorithm can be summarized as follows:

Six successive images are averaged, to enhance the raindrop signal-to-noise ratio.
The gradient is calculated in the x (Gx) and y (Gy) directions and total gradient

calculated. A Rank filter is applied to the gradient image to create a threshold image.
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1- Gradient and threshold images are compared and pixels’ strongest gradients are
selected to create a strong gradient image.

2- Regions from the previous step are tested for size range, height-to-width ratio, and
eccentricity. Regions that satisfy raindrop threshold ranges are picked as Potential
raindrops.

3- Potential raindrops are tracked in the image series and the ones that are detected at
least 6 times in 8 consecutive images are identified as raindrops.

4- The gradient amplitude image is calculated as a number between 0 (no rain) to 255
(very high density).

For testing, 2.5 hours’ worth of driving were captured under different rain conditions
and driving scenarios. The system showed good results detecting and classifying weather
conditions, with minimum misclassifications observed soon after the windshield wiper
wipe event. The major issue with the proposed process is that it requires focusing the
camera on the windshield to get clear raindrop representation in the captured image.

3. Adherent Raindrop Models

In classical image-processing algorithms, main features are identified to model the
elements of interest. This section describes some template models for adherent raindrops
on windshields and other protective surfaces.

3.1. Eigendrops Model

Kurihata et al. [18], observed that a raindrop could be characterized by the outlining
edges and refraction of light by the raindrop. They used Principal Component Analysis
(PCA) to model adherent raindrops as Eigendrops. The process can be summarized
as follows:

1- A total of K rectangular sections, each surrounding one raindrop are selected from a
windshield image.

2- Rescaling, reshaping, and normalizing processes are applied, to create a one-dimensional
unit vector with zero mean: xi = (x1, x2, . . . , xN)

T

3- A total of k randomly selected vectors is used to create the matrix
4- X = [x1, x2, . . . , xk] and its covariance matrix Q = XXT is calculated
5- Eigenvalues are calculated for the covariance matrix and the r largest ones are se-

lected and their corresponding eigenvectors calculated {e1, e2, .., er}, to create the
Eigendrops subspace.

6- For testing, the Eigenvectors of potential raindrops are calculated and the ones with
eigenvectors closest to the Eigendrops are identified as actual raindrops.

This model does account for all variations of raindrop shape and size, and the ef-
fect of image background on raindrop appearance. Furthermore, to achieve strong and
distinctive characteristics that are necessary to create the Eigendrops, the camera needs
to be focused on the windshield which means it cannot be used for other vision-based
automotive applications.

3.2. Declivity-Based Model

Fouad et al. [11] proposed using a declivity operator to model intensity variations
between the adherent raindrop and the background. As shown in Figure 5a,b, adherent
raindrop, consists of either two dark regions, separated by light one or two light regions
separated by a dark one. The declivity modeling process can be summarized as follows:

1- Gaussian filter is applied on the windshield image with rain, to eliminate noise.
2- Raindrops are selected from the image and declivity calculation is applied in the

horizontal, vertical, and two diagonal directions (Figure 5c).
3- The declivity descriptor matrix is constructed from the amplitude and width of each

raindrop (Figure 5d).
4- The descriptor is then used to check potential raindrops and identify real ones.
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Figure 5. Declivity Method for modeling adherent raindrops [11].

The main issue with this algorithm is that the assumption of the peak-valley appear-
ance of raindrops does not always hold.

3.3. Raindrop (RIGSEC) Model

Halimeh and Roser [12] developed a geometric-photometric model of raindrops on a
windshield, coined Raindrop Intelligent Geometric Scanner and Environment Constructor
(RIGSEC). Every raindrop on the windshield act as a convex lens that distorts the back-
ground image that surrounds this drop. With a priori knowledge of camera properties
and position, and approximation of raindrop shape on the windshield, the distorted im-
age of any section of the image can be modeled. For the geometric part of the RIGSEC
model, light beams from an arbitrary point E in Figure 6, through different routes; some
go through the raindrop and windshield glass (E-J-R-S-P), and others through the glass
alone (E-B-A-Q). Using Snell’s law [19], and given the refractors indices of air nair, water
nwater and glass nglass, and windshield thickness of T, the through-raindrop and through-
glass can be accurately calculated for any point in the camera range of view. A geometric
relationship can then be established between distorted P and non-distorted Q projections,
and a complete raindrop model can be created at any desired point on the windshield and
for any desired raindrop size. To complete the photometric part of the model, Fresnel’s
reflectivity equations [20] are then used to calculate the intensity of raindrops as seen by
the camera. In raindrop detection applications, many raindrop models are generated with
different sizes and positions on the windshield. This establishes a subspace of raindrop
templates, that is later used to evaluate potential raindrops.

The RIGSEC model is a cohesive, dynamic model, that considers the effect of back-
ground variations on raindrop appearance, at different areas of the captured image. It is,
however, relatively complex and computationally expensive.

To overcome these issues, Roser and Geiger [21] added some constraints on practical
usage of the RIGSEC model, in terms of limiting the number of templates generated and
restricting the ROI.
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Figure 6. Refraction model of a raindrop on windshield [12]. Each raindrop pixel O in the image
plane is traced to the environment point E using lows of light refraction (green line). Numerical
calcuations are used to identify the path of the light beam emmitted from point E through the
windshield glass only, to the same point O in the image plane (orange line). This ray-tracking method
identifies which environment points are captured through the adherent raindrop on a windshield.

3.4. Realistic Waterdrops CGI Model

Stuppacher and Supan [22], developed a model for realistic waterdrops, that can be
used in game development and CGI, the photometric part of the model was developed as
an implementation of the refractions method, described by Tiago Sousa [23]. The authors
observed that a certain mass is required for the water drop to move and that small drops
stay idle or get swept away by moving drops. In addition, moving drops tend to lose mass,
which slows down the drop motion. Waterdrop viscosity, speed, mass, and adhesion to the
surface all play a role in shaping the water drop. Water drops are assembled from many
small droplets. Waterdrop shape and mass are determined by the arrangement of these
droplets. Groups of droplets can split from or combine to moving water drops. Figure 7
shows how water content in each drop can be captured in a heightmap.

Figure 7. Generating a heightmap for rasterized water drop [22]. A two-dimensional view of the
water drop in (a) is shown in (b). A Rasterized water drop model is generated in (c), based on the
height map provided in (d). The center of the water drop has the largest height value, and the rest
take lower height values. No-water areas are reprewsented with height values of zero.

Gravitational vector is introduced to the simulation world space, to govern the di-
rection of water movement. Speed and acceleration of water drop on an inclined surface
(e.g., windshield) are related to its mass and acceleration. The latter can be expressed in



J. Imaging 2021, 7, 52 8 of 42

terms of the gravitational vector G and inclination angle α (between the surface and the
gravitational vector) as: (

G′x
G′y

)
=

(
Gx
Gy

)
· cos (α)

To simulate the combining and splitting of raindrops, the “remainder map” and “noise
map” were introduced, to control the amount of water lost and gained per water drop.

Figure 8 shows an example calculation of how the waterdrop mass changes while
moving down. Water mass at any level is calculated as a sum of excess mass at that level,
plus whatever water gained from the level above it.

Figure 8. Water mass gain and loss values for reminder and noise factors are set to 50% [22]. The
amount of water in a current frame (right-most column) is calcuated from the amount of water in
a specific level (left-most column), plus water added from higher levels (blue arrows). The water
residue level L=M*Reminder, and the noise level r are used to calcuate the amount of water added.

The model Stuppacher and Supanemploys can be used to generate synthesized
datasets in vision-based automotive applications, to augment real datasets.

3.5. Bézier Curves Raindrop Model

Roser et al. [24], proposed a model for adherent raindrops, using Bézier Curves. An
n-th order Bézier curve C is characterized by a control polygon of n + 1 Bézier points
(Pi)

n
i=0, P ∈ R2. It is defined in an interval t ∈ [0 . . . .1] as:

C(t) =
n

∑
i=1

Bi,nPi

where Bi,n(t) =

(
n
i

)
ti(1− t)n−i is the Bernstein polynomial i of degree n. As shown

in Figure 9, the Bézier curve can represent the curvature of a raindrop that was deformed
from the perfect sphere section, due to gravitational force and plane tilting. Bézier curve
parameters (points and weights) are related to the raindrop physical characteristics as fol-
lows:

α1 = ∠
(

P0P1, P0P3
)
, α2 = ∠

(
P2P3, P0P3

)
ω1 = P0P1, ω2 = P2P3, d = P0P3

where α1 and α2 are the contact angles of the raindrop, ω1 and ω2 are the Bézier weights,
which are related to the physical raindrop centroid shift due to gravity, and the diameter of
the raindrop d can be used to approximate the raindrop volume.
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Figure 9. Relating raindrop contact angles and diameter to points of Bézier curve fitted to it [24].

The authors used two orthogonal Bézier curves to model the raindrop. They used
a high-resolution camera, mounted horizontally on a plate that can be tilted, to capture
images of different size raindrops and different inclination angles. Canny detector and
RANSAC line fitter were used to capture the raindrop edge and mounting surface, as
shown in Figure 9b. Next, second-order polynomials were fitted to eliminate more outliers
(Figure 9c). Finally, Bézier curve fitting was performed on all inlier points (Figure 9d)
and points and weights were estimated. The mean Bézier curve was calculated for all M
experiments with different drop sizes and inclination angles. The average Bézier points

Pi are given by Pi = ∑M
k=1

Pk
i

M .
Experimental results showed that it was possible to estimate Bézier curve parameters

and model raindrops accurately, just by knowing the raindrop diameter (could be estimated
from the SURF algorithm) and the inclination angle of the plate (windshield). The accuracy
of the proposed raindrop model was compared to the state of the art, represented in a
two-dimensional cut of sphere section, and reductions of up to three orders of magnitude
were observed in the Bézier curve-based algorithm as compared to the spherical model.

Despite excellent representation of raindrop shape using this method, practical usage
in a real-time image-based application is limited by the accuracy of estimating raindrop
volume, which is related to raindrop diameter. This relation is not linear and, when the
inclination angle is considered, is not even monotonic.

4. Raindrop Removal Techniques for Surveillance Applications

Surveillance cameras are integral components in most security systems. Security in
the automotive domain has always been a major concern, the introduction of onboard
cameras and specifically 360 degrees camera systems in vehicles [25], 24-h surveillance
of vehicle perimeter is now possible. Surveillance cameras may also be mounted on
elevated structures, that oversee the surrounding environment, including moving vehicles.
Automatic Traffic Monitoring [26] and V2X communications [27] are two applications
that use such a setup. This section will describe different raindrop detection and removal
methods for camera-based surveillance systems.

4.1. Multiple Fixed-Camera Approach

Yamashita et al. [28], proposed using two or more cameras that are arranged close
to each other, to detect raindrops on the camera protective cover (or windshield). As
seen in Figure 10, adherent raindrops on images captured by three cameras for the same
environment would affect different areas on each image, depending on where raindrops
were positioned on each camera cover.
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Figure 10. Adherent raindrops are not likely to cover the same areas of an image using different
cameras [28].

For a two-camera system, the process can be summarized as follows:

1- Acquire two simultaneous images of the environment and use an algorithm to match
the two images.

2- Apply image restoration and chromatic registration on the transformed image, to
match the original image.

3- Take the absolute difference in intensity of the two images and assign the “potential
raindrops” label to noise patches with an intensity difference greater than a preset
threshold. Figure 11 shows the intensity variance for raindrop and background
patches, both in a simple and rich texture environment and Table 1 is a truth table that
explains the logic of determining raindrop and background regions.

4- Potential raindrops are analyzed to determine true raindrops according to the table be-
low.

Figure 11. Intensity variance can be used to distinguish raindrop regions from background noise [28].

Table 1. Truth Table to Distinguish True Raindrop from Background Noise.

Texture Complexity Intensity Variance (Edge) Intensity Variance (Inner) Type

Simple Large Small Raindrop
Small Large Background

Rich
Large Small Raindrop
Large Large Background
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To remove raindrop noise, areas of the “clean” image were used to replace raindrop-
occluded sections of the other image, after applying the proper restoration and color-
corrections.

The system performance was evaluated against other popular image restoration
techniques and found to be superior to both inpainting and simple majority approaches.
The main drawback of this system is that it assumes that the raindrop-occluded section
of an image would be clear in an image taken by another camera. This is not always true,
especially under medium-high rain intensities.

4.2. Pan-Tilt Camera Approach

In another research paper, Yamashita et al. [29], proposed using a pan-tilt camera
system, to detect and remove adherent raindrops. As shown in Figure 12, when the camera
is rotated, so does the adherent raindrops to its protective cover. This exposes the regions
originally covered by raindrops and provides an opportunity for image recovery. The
process starts with rectifying radical distortion from the transformed image. Projective
transformation and Chromic registration are then applied to match the two images. For
potential raindrop noise regions identified in both images, true raindrop must satisfy the
maximum distance constraint, as well as size similarity inequality, given by:

min(N1, N2)

max(N1, N2)
> U

where N1 and N2 are the size of the noise region in the original and rotated image, respec-
tively and U is the size similarity factor.

Figure 12. Using a pan-tilt camera for adherent raindrop detection [29].

The clean image is finally used to restore raindrop-covered regions of the rainy image.
Test results showed that 92.6% of noises in the original image can be removed. In

addition, the process proposed visually outperformed inpainting restoration done with
human supervision.

The main drawback of this system is that an accurate measure of rotation angle must
be available at all times. Otherwise, all rotational calculations and corrections will be
skewed and system performance degrades.
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4.3. Enhanced Pan-Tilt Camera Approach

Yamashita et al. [30], revisited the pan-tilt approach by using approximated, rather
than accurate, angle of rotation in their algorithms.

In addition, rather than using the total size of noise regions, the noise judgment in the
enhanced system is based on a pixel-by-pixel comparison. The existence rate is calculated
for the potential raindrop regions in the original and rotated images, as El =

nl
N , where N

is the total number of pixels in the noise region and nl is the existence number obtained
by incrementing a counter every time a pixel is detected in the same noise region in both
images. If the existing rates of the noise are within a given threshold, the region is identified
as a real raindrop, otherwise, it is identified as background noise.

Test results showed comparable raindrop detection to the original pan-tilt system that
required accurate rotation angle information.

This system still relies on a rotating camera which is acceptable if it is the type of
camera used in the surveillance system. If, however, camera rotation is required solely for
detection and removing raindrops, then the added cost and complexity may be prohibitive
for most automotive applications.

4.4. Stereo-Vision Cameras Approach

Yamashita et al. [31] proposed using a pair of stereo cameras to detect adherent rain-
drops. As shown in Figure 13, the cameras are set up such that objects in the environment
are captured by at least one camera and that the common field of view is large enough.

Figure 13. Attributes of a stereo camera system for adherent raindrops detection [31].

The process can be summarized as follows:

1- Use normalized cross-correlation (NCC) similarity measure to match the images from
both cameras. NCC value R is given by:

R =
∑N

j=1 ∑M
i=1(Il(i, j)− µl)(Ir(i, j)− µr)

MNσlσr

where Ilr(i, j) is the left/right pixel intensity at position (i, j) in the matching template
of size M × N, µlr and σlr are the average and standard deviation of the template pixel
intensities, respectively in the left/ right images. Any value R less than a threshold C
is discarded

2- Then, one-on-one matching is applied to the remaining pixels, and the distance
between best-matched pixels is used to calculate disparity map S.
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3- The disparity of the raindrop pixels on the windshield can be easily calculated by:

η = b f
l , where b is the baseline length, f is the camera focal length and l is the distance

between the cameras and the windshield.

4- A pixel at (u, v) is considered a raindrop pixel if |S(u, v)− η| < δ, where δ is a
threshold.

5- The image inpainting algorithm described by Bertalmio et al. [32] was then used to
recover rainy segments to form the two images.

Results of visual inspection showed that the algorithm successfully detected and
removed raindrops and other adherent noise, both from near and far objects.

4.5. Spatio-Temporal Trajectory Approach

Yamashita et al. [33] observed that adherent raindrops on the protective shield of a
pan-tilt camera have different trajectories than either static or fast-moving objects in the
background. This approach can be summarized as follows:

1- A sequence of images is captured using a pan-tilt camera rotating at a fixed speed.
2- Radial distortion rectification, followed by projective transformation, is applied to the

image set.
3- A shown in Figure 14, the captured images are stacked in chronological order, to form

the spatiotemporal image I(u, v, t).

Figure 14. Stacking images in chronological order to generate cross-section image S(u, t) [33].

1- Cross-sectional image S(u, t) = I(u, v1, t) is taken of the image stack at level v1. As
shown in Figure 15, trajectories of a stationary object in S(u, t) are straight lines
whereas those of adherent noise are curves.

2- Median image M(u, t) is then generated which causes adherent noise to disappear,
due to its small size compared to other image elements (Figure 15b).

3- Difference image D(u, t) is then calculated as: D(u, t) = |S(u, t) −M(u, t)|(Figure 15c)
4- Judgment image H(u, t) that shows candidate noise regions is given by:

H(u, t) =
{

0, D(u, t) < Tb
1, D(u, t) > Tb

,

where H(u, t) = 1 for a noise candidate region.

5- The trajectory of each noise candidate curve is tracked in u dimension (since v =
v1) and is deemed noise region if the total pixels with H(u, t) = 1 is greater than a
threshold Tn.
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6- Steps 4–9 are repeated with new levels vi until the whole image space is covered. Rainy
regions are generated from information gathered from all H(u, t) images generated.

Figure 15. Different images generated in the Spatio-temporal rain detection approach [33].

For rain recovery, Yamashita et al. decomposed the cross-section Spatio-temporal
image S(u, t) into structure image f(u, t) and texture image g(u, t). Inpainting algorithm
was applied to structure image, whereas the texture synthesis algorithm described by Efros
and Leung [34], was applied to the texture image. The two images were then merged to
produce a noise-free image.

Detection results with this algorithm were comparable to those conducted by a human
observer. This algorithm requires collecting and post-processing a sequence of image
frames over time which makes it not appropriate for real-time automotive applications.

5. Raindrop Removal Techniques in the Automotive Domain

In this section, we describe some of the most common algorithms for adherent raindrop
detection and raindrop removal (de-raining).

5.1. Saliency Maps Approach

Wu et al. [35], proposed an algorithm based on saliency maps of adherent raindrops’
visual features. Saliency maps were created for the raindrop texture, color, and shape
features and the AdaBoost algorithm was used to combine the three weak segmenting
maps into on strong raindrop detector. The process can be summarized as follows:

1- Color Saliency Map Generation

a. A five-level Gaussian pyramid is created for each color channel (X, Y, and Z) of
the image XYZ color map.

b. The center-surround method is implemented between different scales. This
produces six difference maps (0,2), (0,3) (0, 4), (1, 3), (1, 4) and (2, 4).

c. An across-scale sum of the six different maps and over all three color-channels
is then performed to create a color saliency map.

2- Texture Saliency Map Generation

This process is similar to the color saliency map creation process, with the added step
of convolving the image at different scales with the Laplacian of Gaussian (LoG) filter.

3- Shape Saliency Map Generation

Shape feature is extracted on the original image by circle Hough transform (CHT),
to generate five accumulator maps, each associated with one raindrop radius value. The
shape saliency map is calculated as the sum of the accumulator maps.

4- AdaBoost is used to create a raindrop saliency map, from the three different feature
saliency maps. Small noise regions are then removed with the help of morphological
operations, as shown in Figure 16.
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Figure 16. Proposed Raindrop Saliency Map Generation for Raindrop Detection [35].

Wu et al. used a digital inpainting technique to remove adherent raindrops from
images, by applying smooth propagation in the direction of the lines of equal intensity
values (isophones). Precision and Recall metrics were used to compare the performance of
this algorithm vs. Kurihata et al. [18] Eigendrops and Roser and Geiger [21] initial raindrop
detection stage, done with SURF. Results showed that the proposed algorithm performed
better than the other two, both in terms of Precision and Recall metrics. The Proposed
algorithm also successfully removed raindrops from images of the windshield at slow
driving speed but did not perform as well at higher speeds, due to increased raindrop
shape deviation from the assumed circular shape.

5.2. Scene Segmentation Approach

Liao et al. [36] divided the scene into the building area and roadway area and used
traffic lanes as an indication of the roadway area. Detection of water drops in the roadway
section was done using a Sobel edge operator, whereas the histogram equalization method
was used in the building section of the image. N successive frames were then intersected,
to increase raindrop pixel brightness compared to the background. Simple image statistics
and adaptive Binary binarization methods were then used to identify potential raindrops
and an “or” operator is applied to their results to capture pixels identified in either detection
method. Potential raindrops were then compared for shape against elliptical masks of the
same size. The remaining potential raindrops were finally checked for average brightness,
and the ones brighter than their surroundings were classified as real raindrops.

For rain recovery in the “buildings” zone, an eight-connected areas temple was created
around the patch of the water drop and compared with similar areas in the ROI. The region
with the highest similarity was used to replace the rain patch. For the road zone of the
image with lane marks, a series of dilation and erosion operations were applied to the
rain patch area, followed by an image inpainting operation. For non-road mark areas,
morphological operations were used for the removal of raindrops.

Test results showed acceptable Peak signal-to-noise ratio (PSNR) on frames with
light concentrations of raindrops showed acceptable PSNR (above 30 dB). The detection
rate was not affected by raindrop concentration but the removal phase time seemed to
increase rapidly with the increased raindrop concentration. The overall processing time
was between 732 and 972 ms which might be too long for real-time image-based automotive
applications. Another drawback of the proposed technique is that it relied on on-road
lane markings and complex building arrangements for image segmentation and raindrop
detection. It is not clear how the process would perform with the absence of road marks
or lack of buildings. In addition, the process assumed a straight driving scenario, and
Liao et al. observed that it was difficult to identify raindrop patches when the vehicle
was turning.
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5.3. Daytime Texture-Based and Nighttime Intensity-Thresholding Algorithms

Ishizuka and Onoguchi [37], proposed two algorithms for raindrop detection; one for
daytime and the other for night.

Daytime approach: the proposed algorithm can be summarized as follows:

1- An N ×M image is divided into grid blocks B(u, v) and Sobel edge detector is used to
calculate edge strength E(u, v) for each block.

2- B(u, v) is classified as a textured block if E(u, v) > TE, where TE is selected so that the
road surface is classified as a non-textured block.

3- Is applied in an image I with two variance values, σ1 and σ2 (σ2 > σ1), resulting in
two images, Is1 and Is2.

4- The degree of blur Db is given by:

Db = Ie1
Ie2

, where Ie1,2 is the edge strength for image Is1,2, calculated using a Sobel edge
detector.

5- A pixel (i, j) is chosen as a raindrop candidate as follows:

a. In a non-textured block, if there exist one or more pixels (k, l), such that Db(i, j)−
Db(k, l) > Tn, where Tn is a threshold, then (i, j) is a raindrop pixel candidate.

b. In textured block, if there exist one or more pixels (k, l), such that Db(k, l)−
Db(i, j) > Tt, where Tt is another threshold, then (i, j) is a raindrop pixel
candidate.

6- The histogram of optical flow is finally measured over 15 frames of the potential
raindrop pixels. If the histogram of optical flow is consistent, then it belongs to the
background. If it has various directions, then the pixel belongs to a real raindrop.

Figure 17 shows four different scenarios that clarify these classification criteria.

Figure 17. Raindrop candidate pixels are chosen based on the difference between their degree of blur
value and those of the neighboring pixels [37].
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Nighttime approach: the process for detecting adherent raindrops at night can be
described as follows:

1- Pixels representing light sources and neighboring areas can be estimated by simple
binarization and eliminated from the detection process.

2- Differential image FDt is generated from images in frames t and t − 1:

FDt(i, j) =

{
1 i f It > Tdark and |It(i, j)− It−1(i, j)| < Tdi f
0 otherwise

where Tdark and Tdi f are experimental thresholds. This step eliminates pixels that are
too dark and defines them as candidate raindrop pixels the ones whose intensity did
not change much (< Tdi f ).

3- Integration image SFDt is created by adding the last m frames. This image is then
and small regions are discarded since they are not likely to represent raindrops. The
remaining regions represent adherent raindrops.

At daytime, results showed that most raindrops were correctly detected, but some
ones in the sky region were missed. At night, most raindrops were also detected, except
the ones around light sources. Processing time was 10 and 30 frames/second for daytime
and nighttime raindrop detection, respectively.

5.4. Background Subtraction and Watershed Algorithms

Cord and Gimonet [38], proposed an adherent raindrop detection algorithm that uses
either background subtraction or a watershed approach for identifying raindrop candidates.

The process can be summarized as follows:

1- Segment the image into bright and dark regions and apply detection on the dark
regions only. This is done by applying erosion of the image, followed by morpholog-
ical reconstruction of the original image with the eroded one. and applying Ostu’s
method [39] to segment the image into dark and bright regions.

2- To identify raindrop candidates, one of the two approaches are used:

a. Background Subtraction: For each channel of the RGB image, a large Gaus-
sian filter is applied to eliminate (mask) raindrops. The difference between
filtered and original image is then taken which exposes the potential raindrop
regions. Morphological operations are then applied and the masks from the
three RGB channels are added to the mask in step 1 to produce the candidate
raindrop regions.

b. Watershed: Gaussian filtering is applied to the grayscale image then watershed
is used to segment the image and extract potential raindrop regions.

3- Raindrop candidates are then compared with an ellipsoid model of similar size, and
regions that do not match are eliminated.

4- Temporal information is used to eliminate regions that show up less than two times
in the last three successive frames.

Figure 18 shows the main stages of this Algorithm.
The performance was evaluated using three performance metrics. They are:
Correct Detection Rate CDR = TP

P .
False Positive Per Image FPPI = FP

n and Dice Coefficient Dice = 2TP
TP+FP+P′ , where

TP is the number of true positives, FP is the number of false positives, P is the total
number of raindrops, n is the number of images and dice is the size of the union of two
sets, raindrops and detection, divided by the average size of the two sets. In terms of
raindrop localization, the watershed-based approach was twice as slow as the background
subtraction one. Performance-wise, CDR values were similar for both approaches, but FPPI
and dice showed better performance of watershed compared to background subtraction.
In terms of raindrop prediction, FFPI (a measure of false detection) stayed high, which
was attributed to insufficient temporal filtering (3 consecutive frames). Cord and Gimonet
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predicted that increasing the temporal period to 1 s = 15 frames would improve FPPI.
Processing speed was the main drawback of this algorithm. It was, however, coded in
MATLAB and run on a relatively slow machine. It would be interesting to see how this
algorithm performs on dedicated image-processing hardware and embedded code.

Figure 18. Raindrop detection algorithm described by Cord and Gimonet [38].

5.5. Blurriness-Based Approach

Raindrop images captured with general-purpose cameras tend to be blurry, with very
weak boundaries that separate them from their background. Nashashibi et al. [40] used this
characteristic to detect adherent raindrops on windshields. The process can be summarized
as follows:

1- Image pixels that satisfy the following intensity inequality are chosen as potential rain
pixels are extracted through segmentation, using three constraints on pixels intensity
and noise region roundness:

p2 ≥ ∆I = In − In−1 ≥ p1, where p1 and p2 are chosen to pick the brightest pixels,
while reducing the intensity variations introduced by fast-moving objects in the
background.

2- Smaller regions are combined with larger ones, using an 8-connectivity extractor.
The resultant regions that pass the roundness test below are considered candidate

raindrops:
∣∣∣∣ CC2

Area
CCperimeter

∣∣∣∣ ≤ 4πp3, where CC represents the tested noise region.

3- Contours of candidate raindrops are summed on two consecutive frames and sub-
tracted from the candidate raindrop regions. The Canny filter is used to detect edges
of the resultant regions, which now are considered raindrop regions.

Figure 19 shows the algorithm stages.

Figure 19. Detection algorithm described in [40].
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Test results showed that the algorithm correctly detected rain situations as heavy,
medium, or no-rain.

Though promising, Nashashibi et al. did not present data to show how accurate
the system was in detecting individual raindrops. Rather, the algorithm was tested as
an enabler to the rain classifier system which is not as useful in ADAS and autonomous
driving applications.

5.6. Raindrop Detection Algorithm Using RIGSEC Model

Halimeh and Roser [12] used the RIGSEC model to detect adherent raindrops on
special tiltable planes, with artificial patterns and real traffic scenes. The correlation
coefficient similarity measure was used to evaluate the observed (real) and estimated (with
RIGSEC) pixel intensity. It is given by:

CC =
1

NσÎσI

N

∑
i=1

(
Îi − Î

)(
Ii − I

)
where N is the number of all estimates, I, σI are the average and standard deviation of pixel
intensities of observed values, Î, σÎ are average and standard deviation of pixel intensities
of estimated values. MaxCorr value was defined as the maximum CC in a small ROI
around the estimated raindrop. Results of artificial pattern and drive scene showed good
visual similarity between real and modeled raindrop. Maxcorr results were also good but
CC results were low. Halimeh and Roser attributed this to the raindrop lens effect and
blurriness of raindrop appearance, due to camera focus near infinity. In terms of raindrop
detection, the lower performance was attributed to inaccuracies in the initial localization
of candidate raindrops, using the SURF algorithm. Further experiments showed that
matching the constructed environment within a small ROI, raindrop positions converge to
the optimum, and CC values converge to MaxCorr values as well.

5.7. Raindrop Detection Using Enhanced RIGSEC (fastRIGSEC) Model

Roser and Geiger [21] created an enhanced version of the RIGSEC model named
fastRIGSEC. First, rather than considering the whole windshield image, the enhanced
algorithm runs only on a specific ROI that is required by most vision-based algorithms. In
addition, a limited number of raindrop templates are synthesized at an equal distance over
a grid that covers the ROI. During the detection phase, these templates are correlated to
potential raindrops that fall in their grid cell regions. This enhancement is introduced to
improve the performance speed of the algorithm.

Secondly, SURF for identifying potential raindrop was replaced by a more accurate
technique, that can be described as follows:

a. The original image is bandpass-filtered using the Difference of Gaussian algorithm
(DOG).

b. The resultant image was segmented and small segments were combined using a
connected component algorithm.

c. Eigenvalues are calculated and used to filter out non-raindrops, based on convexity
ratio, dominant orientation, and aspect ratios of the potential raindrop blobs.

d. To identify actual raindrops, the remaining candidates are compared to the artificially
created raindrop, using two similarity metrics; intensity Correlation coefficient
(CCintensity) and Correlation coefficient of their first derivative (CCgradient).

The third enhancement involves adding a level of blurriness to the generated raindrop.
As shown in Figure 20, point A that belongs to a far object is projected right on the
image plane of the camera. Point B that belongs to nearby objects, however, is projected
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somewhere behind the image plane. In that sense, Point B projection looks like a desk,
rather than a focused pixel on the image plane. The diameter of this disk kernel is given by:

ε =
∆g f 2

O(g− ∆g)(g− f )

where O is the camera aperture size, f is the focal length, g is the distance between the cam-
era lens and far objects, and ∆ g is the difference in distance between far and near objects.

Figure 20. Close objects to the camera are projected as a blurry disk on the image plane [21].

The introduction of a blurry disk improved the resemblance between modeled rain-
drop and raindrop projection captured by the camera. For rain recovery, Roser and Geiger
developed a reconstruction process, that can be summarized as follows:

1- Define Θi, a 6D vector that represents rotational and translational parameters between
frames i and i + 1:

Θi =
(
rx(i), ry(i), rz(i), tx(i), ty(i), tz(i)

)
The task is to solve for this vector and use it for recovering rainy pixels in one frame

from clear ones in another.

2- The road plane is initially wrapped from frame i to i + 1, using prior estimates of Θi
and bilinear interpolation.

3- Harris detector and NCC are then used to match features from the two frames. Direct
Linear Transformation (DLT) [41] and RANSAC [42] are then applied to eliminate
any outliers.

4- To refine the parameter set Θ = {Θi}N−1
i=1 , a MAP solution of the equation below is

required (N is the total number of frames):

P(Θ|Z1, . . . , ZN ) ∝ P(Z1, . . . , ZN |Θ)P(Θ).

This assumes independence of non-consecutive frames and normal distribution for
the observation probability P(Zi|Θi). Independence over translational and rotational
parameters is also assumed which leads to:

P(Θ) = P(rx)P
(
ry
)

P(rz)P(tx)P
(
ty
)

P(tz)

5- After Θ parameters are estimated, the multi-band blending process is used to recon-
struct raindrop-covered areas of the image.

Precision and recall measures are used to evaluate the performance fastRIGSEC al-
gorithm. The algorithm is compared to SURF, BLUR, and a combination of BLUR and
RIGSEC. FastRIGSEC performed better than SURF and BLUR but fall behind (BLUR +
RIGSEC) in terms of maximum precision achievable. FastRIGSEC still performed better
than the rest in terms of maximum recall rate achievable. In terms of image restoration,
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fastRIGSEC performed well but fall slightly behind (BLUR + RIGSEC), especially with an
increase in raindrop density.

5.8. Raindrop Detection Using Extended Maximally Stable External Regions

Sugimoto et al. [43] used Extended Maximally Stable External Region (eMSER) al-
gorithm to detect potential raindrop blobs. In this approach, raindrops 2D impression is
approximated with an ellipse and the 3D shape as a spheroid. Flattening of a spheroid is
defined as f = 1− as

al
, where as and al are the short and long axes of the ellipse, respectively.

The raindrop detection process can be summarized as follows:

1- Candidate raindrops are fitted to the nearest ellipse, using the least square method.
2- Ellipse orientation and long and short axes are measured and flattening values are

calculated.
3- Raindrop candidates are identified as real raindrops if their flattening value f satisfied:

0 < flower < f < fupper < 1, where flower and fupper are the lower and upper limits for
true raindrop ellipsoid, respectively.

Precision and recall measures were used to compare the detection performance of
eMSER against SURF and classical MSER approaches. Of the three evaluated, SURF
performed worse and eMSER showed the best results, with rates for (precision, recall)
ranging from (0.8, 0.38) to (0.68, 0.5), respectively.

The main drawback of this approach is that it does not describe any mechanism for
rainy image restoration. Anyone of many restoration techniques can indeed be used in
conjunction with eMSER but, as we described in other approaches, the restoration stage
usually is closely integrated with the detection stage, and the overall performance of the
system is not a simple multiplication of the performances of each stage.

6. Neural Networks and Deep-Learning Techniques

Deep learning and convolutional neural networks (CNN) showed great success in the
field of image processing. Unlike classical image processing techniques that operate on the
image, features are required lots of processing stages, CNN accepts an image as a whole
and “learns” features progressively through its many layers. Image denoising, of which
image de-raining is a special case, has been approached by many CNN- based systems,
including Gradient-Based learning and Generative Adversarial Network (GAN). Systems
based on conventional neural networks (NN) were also proposed for image denoising, such
as the Multi-layer perceptron (MLP) [44] and Block-matching and 3D filtering (BM3D) [45].
In this section, we summarize the main Neural Networks-based raindrop removal systems
that have been developed in the last few years.

6.1. Dirt and Rain Noise Removal
6.1.1. Overview

Eigen et al. [46] proposed a system to remove dirt and raindrop noise from a single
image, using the NN architecture originally developed by LeCun et al. [47]. The system
accepts a rainy image and generates a de-rained version of that image.

6.1.2. Network Architecture

LeCun et al. [47] CNN define a multilayer network y = F(x) which is composed of “L”
layers “F”, each applies a linear convolution to its inputs, followed by an element-wise
sigmoid. For an N ×M × 3 RGB input image,

F0(x) = x

Fl(x) = tanh(Wl ∗ Fl−1(x) + bl),

f or l = 1, .., L− 1



J. Imaging 2021, 7, 52 22 of 42

F(x) =
1
m
(WL ∗ FL−1(x) + bL)

where “Wl” and “bl” are the weigh and bias of network layers = 1, .., L− 1, respectively.
“m” is the overlapping mask that accounts for kernel overlap near image boundary. Eigen
et al. used two hidden layers, with 512 units in each layer and kernel size Pl = 1 (1 × 1) per
unit. The input and output layers have 512 units each, with kernels set to P1 = 16 (16 × 16)
and PL = (8 × 8), respectively. Stochastic Gradient Descent (SGD) is used to minimize the
loss function:

J(θ) =
1

2|D| ∑
i∈D
‖ F(xi)− y∗i ‖2

6.1.3. Baseline Methods and Training

Dataset D =
(

xi, y∗i
)
, composed of (64 × 64) pixel subregions of clean and noisy

images is used for training. For the rain dataset, pictures were taken of multiple scenes,
with and without rain, where rain was simulated by spraying water on a pane of anti-
reflective glass. For the dirt dataset, the opacity mask and additive component were
first extracted from real dirt-on-glass panes. “Dirty” images were then simulated using
the equation: I′ = pαD + (1− α)I, where “I” and “I′” are the original and noisy image,
respectively. “α” is a transparency mask and “D” being the additive component of dirt. “p”
is a random perturbation vector in RGB space.

The system developed by Eigen et al. was compared against a multi-layer perceptron
(MLP) system proposed by Burger et al. [44], a block-matching and 3D filtering (BM3D)
system proposed by Dabov et al. [48], and against the median and bilateral filtering
techniques.

For dirt noise, the system was trained using 5.8 million samples of (64 × 64) synthe-
sized dirt noise, paired with a ground truth clear patch. Burger et al. Network was trained
with 20 million (16 × 16) patches. For rain training, 6.5 million samples of size (64 × 64)
each of synthesized rain noise were used.

6.1.4. Experimental Results

a. Synthetic dirt results showed that the proposed system and the MLP system out-
performed the other three baseline methods. Testing with other types of sensitized
noise, namely snow, and scratches on the image surface resulted in the system de-
scribed by Eigen et al. producing near-zero PSNR (peak signal to noise ratio) which
demonstrates that the system learned to remove dirt noise only.

b. Real-life dirt results showed that the proposed system removed most dirt noise in the
images, while the MLP left many more unremoved. The other three methods caused
much degradation to non-dirt areas of the images. The proposed system failed to
recognize large dirt noises and the ones that are out of shape, as well as dirt over
areas that were not represented in the training set (e.g., bright orange cones).

c. Synthesized rain that the proposed system outperformed the MLP system, in terms
of removing more rain droplets and maintain non-rain areas of the image intact. The
median filter needed to blur the image substantially before it was able to reduce rain-
drops.

d. Real rain results showed that the proposed system successfully removed real rain-
drops from the captured images, but it started failing with the accumulation of water
on the glass plate.

6.2. Attention GAN Raindrop Removal Algorithm
6.2.1. Overview

Qian et al. [49] proposed a raindrop removal algorithm, based on an attentive Gen-
erative Adversarial Network (GAN). Their implementation of this algorithm is named
“DeRaindrop” and it can be accessed through Git repository [1] algorithm Their work
became the standard in GAN-based raindrop removal systems that researchers later try to
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improve upon. Their idea was to inject visual attention into the generative and discrimina-
tive networks during the training phase. This would push the generative network to pay
more attention to the raindrop regions, and enabling the discriminative network to assess
the local consistency of restored regions.

The generative adversarial loss of the system can be given by:

min
G

max
D

ER∼Pclean [log(D(R))] +ER∼Praindrop [log(1− D(G(I)))]

where “G” and “D” represent generative and discriminative networks, respectively, “I”
and “R” are the rain-degraded and clear images, respectively.

6.2.2. Network Architecture

1- Generative Network

As shown in Figure 21, the generative network consists of two sub-networks; attentive-
recurrent network and contextual autoencoder. The attentive-recurrent network uses a
recurrent network of deep residual networks (ResNets) [50] combined with a convolutional
LSTM [51], to generate an attention map of raindrops and surrounding structures. The
output at each time step is a 2D attention map which is a matrix of numbers between 0 and
1, representing increasing attention from non-raindrop regions to raindrop regions.

Figure 21. The architecture of Attentive GAN [49].

The loss function of the attentive-recurrent network is given by:

LG = 10−2LGAN(O) + LATT({A}, M) + LM({S}, {T}) + Lp(O, T)

where LGAN(O) = log(1− D(O)), LATT({A}, M) is the mean squared error (MSE) be-
tween the attention map A and binary mask M, LM({S}, {T}) is the multi-scale loss func-
tion, calculated as the MSE between the output {S} and ground truth {T} sets, Lp(O, T) is
the Perceptual loss, calculated as the MSE between output image O and ground truth T.
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2- Discriminative Network

The discriminative network contains 7 convolution layers with a kernel of (3, 3), a
fully connected layer of 1024 neurons, and a single-layer neuron with a sigmoid activation
function, as shown in Figure 21.

The loss function of the discriminator is given by:

LD(O, R, AN) = − log(D(R)) − log(1− D(O)) + γLmap(O, R, AN)

where Lmap is the loss between features extracted from discriminator interior layers and
the final attention map.

6.2.3. Baseline Methods and Training

For training and testing, a data set of 1119 image pairs (clear, rainy) using SLR cameras,
of outdoor scenes. Raindrops were synthesized by spraying a 3-mm-thick glass plate with
water. The camera was set at a distance between 2 to 5 cm from the plate.

The system is compared to Pix2Pix system, described by Isola et al. [52], Eigen et al.
system [46], and against three variants of the proposed system with lower content; contex-
tual autoencoder alone (A), autoencoder plus discriminator (A + D), and autoencoder plus
attentive discriminator (A + AD).

6.2.4. Experimental Results

Table 2 below shows the comparison of the results from the proposed system against
the two other CNN systems and the lower-content version of the system. The proposed
system outperformed the other systems, both in terms of PSNR and SSIM (Structure
SIMilarity index). Results also show the improvements in system performance with the
help of attention maps (A + AD vs. A + D and A), where

Table 2. Quantitative Evaluation Results of System Proposed by Qian et al. [49] Against other
Systems.

Method
Metric

PSNR SSIM

Eigen [46] 28.59 0.6726
Pix2Pix [52] 30.14 0.8299

A 29.25 0.7853
A + D 30.88 0.8670

A + AD 30.60 0.8710
AA + AD 31.57 0.9023

A: contextual autoencoder alone,
A + D: autoencoder plus discriminator,
A + AD: autoencoder plus attentive discriminator.

6.3. Joint Shape-Channel Attention GAN Raindrop Removal Algorithm
6.3.1. Overview

Quan et al. [53] realized that one issue with Qian et al. [49] approach is its dependence
on the availability of high-quality raindrop masks for supervised training. They proposed
an alternative approach that is unsupervised and makes use of a joint channel and shape-
driven attentions to improve performance. For channel attention, Quan et al. introduced
an attention/ recalibration mechanism in the CNN system, to enhance the contribution
of more relevant features in the de-raining process versus less relevant ones. For the
shape-driven attention, Quan et al. observed that the roundness of the raindrop shape
can be approximated with an ellipse of a set of ellipses. Based on that, they developed a
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method to generate two edge maps, B1 and B2, that identify raindrops in the input image.
Starting with the simple linear model of rained image optical model [54],

Ir = (1− A)� L + A� R

where Ir, L, R ∈ RC×M×N denote the rained image, latent raindrop-free layer, and the
raindrop layer, respectively. A ∈ [0, 1]C×M×N denotes the transparency matrix. The edge
maps are concatenated with the rained image to create a tensor in R(C+2)×M×N which is
later passed to the convolutional layer of the system. in this sense, the de-raining system
proposed by Quan et al. implements a mapping f : (Ir, B1, B2 )→ Ic , where Ic is the
resultant de-rained image [53].

6.3.2. Network Architecture

Figure 22 below shows the main components of the rain removal algorithm proposed
by Quan et al.

Figure 22. The Structure of the Joint Physical Shape/Channel Attention Raindrop Removal Algorithm
(Quan et al. [53]).

The system is based on the encoder-decoder topology and contains a convolution layer
(Conv) with a rectified linear unit (ReLU) at the input side and a convolutional layer at the
output. The encoder and decoder are arranged between the input and output layers, each
made of nine residual blocks (Figure 22a). The Conv2 layers are added as down-sampling
layers in the encoder and up-sampling layers in the decoder. Figure 22b,c show the inner
arrangements of the residual block, joint physical-attention/channel attention (JPCA)
module, physical-attention (PA) Module, and channel-attention (CA) module, respectively.
A long skip connection is added in each residual block that connects it to the next block in
the encoder/decoder setup. The loss function for training the network can be given by:

L =
1
N

N

∑
i=1
‖X̂i − Xi‖1

where N is the number of image pairs of de-rained “X̂” and clear “X” images, and ‖.‖1
denotes the `1 distance [53].
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6.3.3. Baseline Methods and Training

Quan et al. used the same data set developed and published by Qian et al. [55] for
training and testing their algorithm. For training, they used 861 image pairs that were
4x augmented, by applying horizontal flipping and resizing on the original images. For
testing, 58 well-aligned pairs were used. Quantitative evaluation was done using PSNR
and SSIM metrics and benchmarked against Qian et al. [55] and Eigen et al. [46] algorithms.

6.3.4. Experimental Results

Quantitative results showed that the algorithm proposed by Quan et al. outperformed
the other benchmarked algorithms in terms of PSNR and SSIM results, though it fell slightly
behind Qian et al. algorithm for PSNR measurement of luminance. The ablation study
showed that the JPCA module had the largest effect on improving system performance
and that channel attention contribution was more noticeable than the physical shape
attention module.

6.4. Improved Raindrop Removal with Synthetic Raindrop Supervised Learning
6.4.1. Overview

One of the main issues for developing a good CNN-based raindrop removal system
is the lack of training samples. It is generally quite hard to capture a large enough set of
clear/rained of the same scene, necessary to train the CNN-based system. Hoa et al. [56]
tried to solve this problem by developing a synthetic raindrop generator and using the
synthetically generated rainy scenes, along with real raindrop real rainy scenes to train
their GAN-based raindrop removal algorithm. Similar to the approach taken by Halimeh
and Roser [12], Hoa et al. [56] based their raindrop synthesizer on ray-tracking to identify
which points in the environment to use for rendering raindrops at specific locations on the
windshield. This was followed by blurring and blending operations, to give synthesized
raindrops more realistic optical perception.

6.4.2. Network Architecture

Hoa et al. proposed raindrop removal network was composed of three sub-networks;
a rain detection network, a reconstruction network and a refine network.

(a) Raindrop Detection Network

As shown in Figure 23a, the Detection network consists of 5 convolution layers and 6
residual blocks. All convolutional layers are followed by batch normalization (BN) and
ReLU. This setup was inspired by the I-CNN structure that was proposed by Fan et al. [57],
for general reflection removal and smoothing of images. The output of this network is a
binary mask of the raindrops in the image, which is then dilated to reduce the number of
raindrops in the mask and improve recall in later steps. Cross-entropy is used as the loss
function which could be given by:

Ldet
(

M, M̂
)
= − 1

n

n

∑
i

[
Mi log

(
M̂i
)
+ (1−Mi) log

(
1− M̂i

)]
where M, M̂ are the ground truth binary mask and the probability mask predicted by this
network, respectively [56].
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Figure 23. The Structure of the End-to-End Raindrop Removal CNN, proposed by Hoa et al. [56].

(b) Raindrop Region Reconstruction Network

As shown in Figure 23b, the reconstruction network is structured similarly to the
detection network, with the residual blocks number increased from 6 to 8. The input image
is combined with the edge image and used as 4-channel tensor input to the reconstruction
network. `1 distance is selected as the loss function for this network.

(c) Refine Network

The original rained image R, the binary mask M̂ from the detection network and the
output of the reconstruction, network are blended as:

B = M̂Î +
(
1− M̂

)
R

where B is the blended image. This image is then passed to the refine network which, as
shown in Figure 23, consists of two convolution layers and two residual blocks.

The loss function used in this network is a mix of SSIM loss and `1 distance, and is
given by:

Lre f

(
I, Ĩ
)
= α

(
1−LSSIM

(
I, Ĩ
))

+ (1− α)L`1

(
I, Ĩ
)

where Ĩ is the final output of the proposed algorithm [56].

6.4.3. Baseline Methods and Training

Hoa et al. used their proposed raindrop synthesizer to generate a set of training
and testing images, each image containing 50 to 70 raindrops. Images selected from the
Cityscape dataset [58] were used as background. Thirty thousand images were used
for testing and 1525 for testing the proposed algorithm. Further, online augmentation
was added by randomly cropping segments from the input image or its horizontally
flipped version. ADAM optimizer [59] was used for setting up the learning rate and
epoch size of the networks. Using PSNR and SSIM as metrics, Hoa et al. benchmarked
their proposed algorithm against the ones proposed by Eigen [46], Qian [49], as well as
Pix2Pix [52], and DID-MDN [60] algorithms that were not designed originally for adherent
raindrop removal. These different algorithms were trained using image pairs of clear and
synthetically generated raindrops.

6.4.4. Experimental Results

The quantitative results showed that Hoa et al. proposed algorithm performed better
than all other algorithms in terms of SSIM and PSNR scores. Qualitatively, the proposed
algorithm, as well as Qian’s and the DIID-MDN removed most raindrops successfully.
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The proposed algorithm as well generated de-rained images with the least artifacts, as
compared to other methods benchmarked. Additionally, the network was trained using
a dataset published by Qian et al. [49], with only a rough mask used for training, due to
the lack of a high-quality raindrop mask. Results showed that the proposed algorithm
produced results that were on-par with Qian [49] and better than all other methods.

6.5. Raindrop-Aware GAN for Coastal Video Enhancement
6.5.1. Overview

Nearshore wave process is an essential problem in coastal studies and CNN-based
systems can help in the process of learning coastal wave behavior. Adverse weather condi-
tions, especially rain, degrades the quality of captured images/videos which makes them
difficult to use as training data [61]. Kim et al. [61] proposed an algorithm for unsuper-
vised learning with (GAN)-based video generation (Raindrop-aware GAN) to enhance a
raindrop-contaminated coastal video. The algorithm was built on an encoder/decoder
architecture, dilated convolution blocks, and long skip connections. A new loss function
was also introduced to guide the adversarial.

6.5.2. Network Architecture

As shown in Figure 24, the CNN structure proposed by Kim et al. [61] consists of two
sub-networks, the scene generator network, and the discriminator network. The generator
network attentively restores the rained image background guided by the raindrop mask,
while the adversarial learning tries to restore the natural appearance of the coastal waves
in the background. The process continues until the discriminator is deceived to believe
restored rainy images belonged to the clear image set [61].

Figure 24. Structure Raindrop-Aware GAN raindrop removal network, as proposed by Kim et al. [61].

(a) Scene Generator

The encoder of scene generator, as shown in Figure 24a, is made of collections of
convolution layers, followed by ReLU units. The convolution layers are set to apply
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downsampling of the input image. The decoder structure is similar to that of the encoder
but with upsampling rather than downsampling. The bottleneck section is made of residual
blocks, and it improves the robustness of the detection of raindrop regions of different sizes.
The added skip-connections deliver early layer features of the encoder to the decoder [61].

Three loss functions are minimized in the scene generator network,Lgen, ,Lmask, andLreg.
Lgen, is used to train the scene generator to deceive the discriminator, and can be given by:

Lgen, = Eri∈Irain

[
‖D(ri)− 1‖2

2

]
where ri and ri and the original rained image and resorted image of sample i, respectively,
and D(ri) is the output of the discriminator of that image sample. Irain represents the
set of training instances of distorted images. Lmask is implemented as `1 distance loss
function and it helps the generator focus on rain regions while preventing the mask from
saturation [61]. Lreg represents the regularization loss of a randomly selected clean image
(cj) from the training set. It can be given by:

Lreg= Ecj∈Iclean

[
‖
(

1−mc
j

)
� oc

j − cj‖1
]

where mc
j is the mask, oc

j is the restored image and Iclean is the training set of clean images.
That total loss LG of the scene generator is given by:

LG = w1Lreg + w2Lmask + w31Lgen

where w1, w2, and w3 are hyperparameters to control the importance of each loss func-
tion [61].

(b) The Discriminator

The discriminator network was constructed in the PatchGAN architecture, originally
proposed by Isola et al. [52]. It is constructed from a series of convolution layers, each
followed by a ReLU activation function. The series of layers downsample the input to
the discriminator, resulting in an output size of w/32 X h/32 X 1. The loss function
implemented for the discriminator is given by:

LD, = Eri∈Irain

[
‖D(ri)‖2

2

]
+Ecj∈Iclean

[
‖D
(
cj
)
− 1‖2

2

]
6.5.3. Baseline Methods and Training

For training and testing, Kim et al. used the dataset published by Qian et al. [49],
as well as two datasets generated by capturing videos and still image pairs of Ankmok
Beach. The proposed network was initialized by He et al. initialization [62] and training by
ADAM optimizer [59]. PSNR, SSIM, and natural image quality evaluator (NIQE) [63] were
used to benchmark the performance of the proposed algorithm against Pix2Pix [52] and
Attentive GAN [49] algorithms.

6.5.4. Experimental Results

Using Qian et al. [49] dataset for training and testing showed that both attentive
GAN [49] and Kim et al. proposed algorithm improved quantitative score of PSNR and
SSIM of restored image versus distorted one. The three algorithms were then retrained and
tested using Anmok paired image dataset. Attentive GAN performed poorly and scoring
worse on the restored image versus distorted on for all three metrics. Pix2Pix performance
was even worse than Attentive GAN in a quantitative measure of performance. Kim
et al. proposed algorithm performed best, improving scores on all three metrics between
distorted and restored images. The proposed method again outperformed the two other
algorithms, when an unpaired image dataset was used for training and testing. Only the
NIQE metric was used since the images were not paired.
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6.6. Self-Supervised Attention Maps with Spatio-Temporal GAN
6.6.1. Overview

Alletto et al. [64] realized the limitation in the dataset created by Qian et al. [49] both
in terms of size and variety of raindrop images. They proposed a rainy image syntonizer
that superimposes photo-realistic raindrops on real images. Additionally, they proposed
a rain removal system that is done in two stages. The first stage is a single-image rain
removal network that removes raindrops from the first few frames of a sequence. The
second stage is a Spatio-temporal network with optical flow explicitly integrated into the
network. The raindrop synthesizer employed to commonly screen-space effects commonly
used in games, namely Refraction and depth-of-field. A refraction direction buffer is first
generated by ray-tracking and mapping each raindrop pixel to the environment points
involved in rendering the raindrop. A second buffer is then generated that contains the
background image from the first buffer. Finally, a disk of confusion is added to generated
raindrops through applying defocus blur and Bokeh effect [65]. A parameter is added to
the bokeh effect to allow it to be set anywhere from fully focused up to fully defocused.

6.6.2. Network Architecture

(a) Single-Image Removal

The proposed rain removal system begins with a single-image unsupervised CNN.
This network is made up of two parts; location map estimator and raindrop remover.
Encoder/decoder structure is selected to construct both parts of the single-image network.
In the first part, the system learns in an unsupervised manner the location of potential
raindrops in the rainy image. The system tries to minimize the loss function given by:

LA
(

R, R′
)
= ‖R− R′‖2

2

where R is the rainy image and R′ = C+GA(R)
2 is the reconstructed rainy image obtained by

averaging the clean image C with the additive location map outputted from the generator
network, GA(R). The location map (mask of raindrops) A is then fed to the next part of the
network, along with the rainy image R. the location map estimator and rain remover are
jointly trained to minimize the final objective function:

L
(

R, R′, C, C′
)
= αLA

(
R, R′

)
+ αLVGG

(
C, C′

)
+ βLAdv

(
R, R′

)
+ βLadv

(
C, C′

)
where LVGG is the VGG perceptual loss and Ladv is the adversarial loss. α and β are
hyperparameters that are selected empirically.

(b) Spatio-Temporal Raindrop Removal

Figure 25 shows the complete rain removal system as proposed by Alletto et al. the
network is structured as encoder/decoder architecture, where the encoder branches (upper
left two in Figure 25) extract features from rainy image Rt and the previous T-1 restored
images, C′t−1

t−T . The resulting feature maps are concatenated and fed to an additive map and
an optical flow map. The map estimated feature maps are concatenated with flow features
and then fed to the location estimator section (upper right section in Figure 25). For optical
flow, the optical flow estimator system aims to optimize the following objectives:

LW = ‖Ct −Wt‖2
2

LFAdv = E
[
logD f

(
F̃t

)]
+ E

[
log
(

1− D f (Ft)
)]

where Wt is the result of wrapping optical flow Ft with Ct−2 previously stored image
frames. D f is the discriminator part of the optical flow estimator.
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Figure 25. Structure of Spatio-Temporal GAN raindrop remover, as proposed by Alletto et al. [64].

6.6.3. Baseline Methods and Training

Attello et al. augmented videos from DR(eye)VE dataset [66] with synthetically gener-
ated raindrops. Sequences with cloudy backgrounds were selected since they provided
the most realistic rainy weather scenes. Qian et al. [49] dataset was also used for the
single-image performance assessment. PSNR and SSIM quality metrics were used to bench-
mark the proposed algorithm against Qian et al. [49], Eigen et al. [46], and Pix2Pix [52]
algorithms.

6.6.4. Experimental Results

Results showed that the proposed algorithm outperformed the benchmarked ones for
the single-image de-raining task. For the DR(eye)VE testing, Vid2Vid [67] and a rain-streak
removal [68] algorithms were used instead of the Pix2Pix and Eigen et al. algorithms.
Results again showed that the proposed algorithm overperformed the other algorithms,
both in the PSNR and SSIM metrics. For temporal consistency evaluation, two measures
were used. A Human Performance Score (HPS) was calculated from the feedback of
human participants on the visual quality of the outputs. Alletto et al. proposed algorithm
output was the preferred one among all evaluated ones. On the second test, Fréchet
Inception Distance (FID) [69] was used to measure the temporal consistency of de-rained
to clean videos. Results showed that the proposed algorithm performed best and Vid2Vid
performed worst.

6.7. Concurrent Channel-Spatial Attention and Long-Short Skip Connections
6.7.1. Overview

Peng et al. [70] proposed a CNN-based system for raindrop removal that employs
concurrent channel and spatial attention. While channel attention allows the system to
focus on more relevant features in the rain removal and image restoration process, spatial
attention allows for different treatments of regions of the image with different levels of
rain distortion. The proposed solution was built on the encoder/decoder architecture,
with added long skip-connections between the encoder and the decoder units, and short
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skip-connections to link layers inside the encoder and encoder blocks. Channel squeeze-
excitation (SE) attention blocks were added to the CNN to reweight feature channels by
exploiting interdependencies between the channels. Special attention SE blocks were added
to generate spatial attention masks that emphasized severely degraded image regions due
to rain versus lightly degraded ones (e.g., mist) [70]. The proposed approach in many
aspects is similar to the one proposed by Quan et al. [53] who also employed channel
and special attention mechanism and used short and long skip-connections. Peng et al.,
however, implemented their solution differently, which will be shown below.

6.7.2. Network Architecture

(a) Overview

As shown in Figure 26a, the encoder and decoder blocks have a similar structure. Each
encoder group connects a down-sampling layer with three convolution layers. The decoder
groups each have one up-sampling layer connected to three convolution layers. Long and
short skip-connections are shown to connect encoder/decoder blocks at different stages.

Figure 26. Raindrop removal system with concurrent spatial and channel attention, as proposed by
Peng et al. [70].

(b) Channel Attention

Figure 26b shows the structure of the channel attention block. Starting with a set of
feature maps {U1, U2, . . . , Uc} of C channels, a special squeeze is applied on this set by
computing a vector a = [a1, a2,.., ac], that represents the global average of the individual
feature channel maps, U1–c. channel excitation is done by passing the vector a to a two-
layer MLP which outputs an output vector p = [p1, p2, . . . , pc]. The values of elements in p
range from [0, 1], representing the importance of each feature channel. The recalibrated
feature map can now be calculated as:

ÛCSE
C = PCUC ∀C

(c) Spatial Attention

Figure 26c shows the structure of the spatial attention block. Starting with a feature
map U, a spatial squeeze is applied using a 1 × 1 convolution over U. The output of
convolution, B, is passed to a sigmoid excitation function which results in a normalized
version of B, where each element of the new map, Q(i, j) ∈ [0, 1] for any location (i, j) in
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the image. Q represents the spatial significance of the feature maps and can be used to
recalibrate the feature maps spatially as follows, [70]:

ÛSSE
C = B(i, j).Uc(i, j) ∀C

(d) Concurrent Attention

The concurrent channel and spatial attention can be given by:

ÛC = ÛCSE
C + ÛSSE

C ∀C

For system optimization, Peng et al. proposed to minimize the loss function given by:

min
Ω

∑
i=1
‖ f (Ri; Ω) − Ci‖2 + λ‖E( f (Ri; Ω)) − E(Ci)‖2

where f (Ri; Ω) represents the CNN function that maps rainy image R to clear output,
according to network parameters stored in Ω. E(.) represents the output of the encoder.
The first term optimizes the global approximation of the recovered image to the true clear
image. The second term guides the recovery of image features adaptively [70].

6.7.3. Baseline Methods and Training

Peng et al. used Qian et al. [49] dataset for training and testing their proposed
solution. For quantitative evaluation, they used PSNR and SSIM metrics to benchmark
the performance of their proposed system against Eigen [46], Pix2Pix [52], Qian [49],
PreNet [71], and DDN [72], algorithms.

6.7.4. Experimental Results

Experimental results showed that Peng et al. proposed solution outperformed Pix2Pix,
DNN, PreNet, and Eigen algorithms by a big margin. The proposed solution also slightly
outperformed Qian’s algorithm with the added value of smaller system size. An ablation
study to verify the contribution of each system block to the overall performance showed
that the concurrent attention module had a big contribution to improving recovered image
visual quality.

6.8. Separation-Restoration-Fusion Network for Image Raindrop Removal
6.8.1. Overview

Ren et al. [73] proposed a raindrop removal system that was based on the proven
“divide and concur” approach to solving complex problems. The process starts with
separating the rainy image into different segments based on the amount of image distortion
caused by raindrops. Each segment then is optimized individually to achieve the best
image restoration results. The restored segments finally are fused to construct the full
recovered image. The rainy image model per Ren et al. can then be given as:

I = Ir_l + Ir_h + I f , where Ir_l , Ir_h and I f represent lightly damaged, heavily damaged,
and free region of the rainy image.

6.8.2. Network Architecture

(a) Region Separation Module

As shown in Figure 27a, the separation stage starts with creating a raindrop map
that may contain elements other than raindrops. Then, pixel-level classification is applied
on the map to map each pixel to either the heavy or light distortion region, based on its
intensity. This is followed by a median filter to reduce noise and dilation to smooth the
edges. The separation process concludes by applying image binarization on the filtered
and diluted mask, to generate Highly damaged and lightly damaged regions [73].
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Figure 27. Structure of raindrop removal system with Separation-Restoration-Fusion approach, as proposed by Ren
et al. [73].

(b) Region Restoration Module

As shown in Figure 27b, the original rainy image is individually fused with both
highly damaged and lightly damaged regions from the previous separation network. A
multi-scale feature fusion GAN (MFGAN) network is used which is built on a five-scale
pyramid structure. A local spatial module that is based on squeeze-excitation block is
added, to avoid noisy information from shallow layers and guide the network to pay more
attention to damaged regions.

(c) Region Fusion Module

To fuse the individual regions back into one recovered image, Ren et al. developed
a new connection scheme, based on the DenseASPP module [74]. This connection is
called inside and outside dense connection network (IODNet). As shown in Figure 27c,
this network makes use of 16 DenseASPP modules, divided into 4 groups. IODNet
enhances the flow of information within each DenseASPP group first through a sequence
of concatenations of the outputs of each DenseASPP with its neighbors. the groups are
then densely concatenated together to provide the “out” part of the IODNet.

For loss function, Ren et al. used the smooth MAE [75] loss with low sensitivity to
outliers was used as a measure of closeness of output to the input image. The loss function
can be given by:

Lsmooth =
1
N

N

∑
x=1

3

∑
i=1

Fsmooth
(

Ĵi(x)− Ji(x)
)

where Ĵi(x) denotes the ith color channel of pixel x in the output image and N is the total
number of pixels. Fsmooth can be given by:

Fsmooth(e) =
{

0.5e2, i f |e| < 1
|e| − 0.5, otherwise

The objective function of the network is given by:
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L = λrLr + λoutLout

where Lr is the sum of smooth MAE between the restored image regions and target region
images, and Lout is `1 distance loss between regions-fused image and the target image.
λr and λout are determined experimentally [73].

6.8.3. Baseline Methods and Training

Ren et al. used the Qian et al. [49] dataset to train and test their network. ADAM
optimizer [59] was used to set batch size, learning rate, and decay rates. Randomly chopped
image segments were used as input/truth data. PSNR and SSIM quality metrics were used
to benchmark the proposed algorithm against Qian et al. [49], Eigen et al. [46], Li et al. [76],
Quan et al. [53], and Pix2Pix [52] algorithms.

6.8.4. Experimental Results

Experimental results showed that Ren et al. proposed system outperformed all other
methods that were benchmarked, including the newer approaches proposed by Quan
et al. [53] and Li et al. [76]. The improved performance was especially visible on an image
with complex backgrounds. Focusing on rain-free regions, Ren et al. observed that their
proposed system does not distort rain-free regions of the image. As a comparison, Quan
et al. [53] approach added noise and changes the color of some rain-free segments. Qian
et al. [49] made the rain-free region blurred. An ablation study showed that all components
of the system provide a valuable contribution to the performance of the system.

7. Summary

In this section, we summarize in tabular format, the most important aspects of the
adherent raindrop removal systems that were described in this survey paper. Table 3
lists the different raindrop models that were described in this paper. Table 4 summarizes
the common classical approaches for raindrop detection. A list of different de-raining
techniques is shown in Table 5. Table 6 shows a comparison of the Deep Learning and
CNN approach to image de-raining that were described in this survey paper.

Table 3. Raindrop Models.

ID Basic Idea Potential Limitations

Cord et al. [38]
Assume elliptical shape for raindrops and use axes
aspect ratio, size, and brightness constraints as a
model for raindrops.

It May not account for irregular raindrop shapes
and the effect of background texture on raindrop
appearance.

Kurihata et al. [18] Used a PCA algorithm to generate eigendrop
templates.

Does not account for the effect of texture on
raindrop appearance.

Fouad et al. [11] Use a declivity operator to describe raindrops as a
sequence of peaks and valleys.

Do not consider the background composition role
in the appearance of raindrops.

Halimeh et al. [12]
Developed a complex model (RIGSEC) for a
raindrop, based on its geometric and photometric
properties.

Assuming part of a sphere for a raindrop and
ignoring the blurring effect of a raindrop may limit
model accuracy.

Roser et al. [21]
Added blurriness effect to RIGSEC and limited the
rendering of raindrop models to certain regions of
the image to reduce rendering time.

Generating raindrop models at specific regions in
the image may lower the rate of matching with
real raindrops.

Sugimoto et al. [43]
Used MSER to improve the initial detection of
potential raindrops and spheroid for raindrop
approximation.

Added complexity may make the model less
appropriate for real-time applications.

Stuppacher et al. [22]
Modeled raindrops using height maps,
considering raindrop dynamics and water content
losses and gains for moving raindrops.

The model is more suitable for CGI applications to
generate realistic raindrop effects.

Roser et al. [24] Modeled raindrops using Bézier Curves.
Reliance on approximations of raindrop size from
correlations between 2D ratios and tilt angles
reduces model accuracy.
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Table 4. Raindrop Detection-Classical Approaches.

ID Application Approach Potential Limitations

Yan et al. [14] Weather classification in
the automotive domain

Use AdaBoost to combine two weak
classifiers, HGA and HSV. Classifies
weather as Rainy, Cloudy or Sunny

Applications of weather classifiers are
limited in the automotive domain to
ADAS warnings and windshield
wiper triggers.

Wu et al. [35] Raindrop detection in
the automotive domain

Use AdaBoost to combine color, shape,
and texture saliency maps. Create a
raindrop visual descriptor and use
SVM to classify the weather.

Assumes circular 2D shape of a
raindrop and fails under heavy rain
conditions

Liao et al. [36] Raindrop detection in
the automotive domain

Segment the scene into the roadway
and building areas. Identify raindrop
candidates through edge detection and
binarization and compare their
dimensions to the closest ellipse.

The detection algorithm might be
slow for real-time automotive
applications and it fails to handle
background noise and large
raindrops.

Ishizuka et al. [37] Raindrop detection in
the automotive domain

Daytime Detector uses Sobel for initial
identification, then texture information,
and optical flow to detect real raindrop
pixels.
Nighttime Detector eliminates light
source pixels, then uses a temporal
intensity change feature to identify
raindrop pixels.

The optical flow approach used
assumes straight-line driving and
may fail on winding roads. It may
also cause incorrect classification as
raindrops, objects that are moving at
the same speed as the test vehicle.
(e.g., other vehicles).

Kurihata et al. [18] Raindrop detection in
the automotive domain

Use similarity degree between potential
raindrops and eigendrop template to
identify raindrop regions

Does not account for the effect of
background variations on raindrop
characteristics (texture, brightness).

Yamashita
et al. [28]

Raindrop detection in
surveillance applications

Match images from different cameras,
then analyze intensity variance under
low and high texture image
background to detect raindrops.

Requires multiple cameras which
reduces the common FOV, and
assumes raindrops do not occlude the
same section of the restored image

Yamashita
et al. [29]

Raindrop detection in
surveillance applications

Capture successive image frames and
identify them as raindrop segments,
those that are detected near the
expected location and satisfy size ratio
constraint.

Requires precise knowledge of
rotation angle and assumes idle
raindrops between frames which is
true only under light rain conditions.

Yamashita
et al. [30]

Raindrop detection in
surveillance applications

Similar to [29] but rotation angle is
estimated and raindrop decision is
made on a pixel base, by measuring the
noise existence rates in the original and
rotated image.

Assumes idle raindrops between
frames which is true only under light
rain conditions.

Yamashita
et al. [31]

Raindrop detection in
surveillance applications

Match stereo image pixels using NCC
and apply one-on-one matching to
eliminate noise. Compare measured to
the expected disparity of raindrops to
determine true raindrops.

Raindrops are blurry and may not
result in good disparity
measurements. Additionally, the long
computational time is observed as a
result of pixel-based calculations.

Yamashita
et al. [33]

Raindrop detection in
surveillance applications

Create a compound image from the
temporal image sequence and select
raindrop pixels that show “often” in the
noise candidate trajectory curve.

Requires many frames and involves
many pixel projections.

Roser et al. [16] Weather classification in
the automotive domain

Use feature histogram to create a bag of
features, and use SVM to classify
weather as Clear, Light rain, or Heavy
rain.

Relatively slow, due to the large
descriptor. Error rate increases with
background complexity increase.
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Table 4. Cont.

ID Application Approach Potential Limitations

Cord et al. [17] Weather classification in
the automotive domain

Compare the intensity gradient image
to the threshold image and pick the
strongest candidates. Pick raindrop
regions based on dimensions and
eccentricity constraints and through
temporal analysis.

System Requires focused raindrops
(camera needs to be attached far away
from the windshield). Raindrop size
is relatively small (3–10 pixels) which
may cause reduced accuracy.

Cord et al. [38] Raindrop detection in
the automotive domain

Segment the image then uses either
watershed or background subtraction
to identify potential drops. Use size,
shape, and temporal constraints to
identify real raindrops.

The algorithm runs slow due to
implementation in MATLAB. Adding
more frames improves performance
but adds delay to the overall system
operation time.

Nashashibi
et al. [40]

Raindrop detection in
the automotive domain

Detect potential raindrops through
temporal intensity change and shape
roundness. Use a lack of clear contour
as a raindrop characteristic, then verify
selection by spatially matching
raindrop regions in consecutive frames.

Detection of unfocused is challenging
and the algorithm fails under bright
background conditions.

Table 5. Raindrop-Degraded Image Recovery.

ID Approach Potential Limitations

Liao et al. [36]

For buildings ROI, replace the raindrop area
with the closest non-rain area (using an
8-connected area template). For road ROI, use
inpainting or morphological operations.

Removal time is long (0.44 to 0.68 s per frame)
and it is proportional to rain density. The
restoration of the road mark sections of the
image is not perfect, due to the limitations of the
inpainting method.

Wu et al. [35] Use the inpainting technique through smooth
propagation in the equal intensity line direction.

Limited to low and medium rain intensity.
Inpainting based on intensity does not preserve
or recover the textural characteristics of the
recovered regions.

Yamashita et al. [29]

Create a composite image of the original and
rotated one, with a parameter that controls how
much each image is contributing to the final
composite one.

Chromatic variations between original and
rotated images may still exist, even with
correction. This affects the quality of the
recovered image. The algorithm fails if the
difference between original and rotated images is
large.

Yamashita et al. [33]
Decompose the image into structure and texture
images. Apply inpainting process on structure
image and texture synthesis process on the other.

The Spatio-temporal analysis may be needed to
improve texture recovery but this, in turn, may
add delay to the processing time.

Yamashita et al. [31]
Use disparity information to identify proper
regions from the complementary image in the
pair for raindrop pixel substitution.

Relies on imperfect disparity map data to select
substation pixels. Additionally, the approach
fails if raindrop noise is present in both images.

Roser et al. [21]
Estimate translational and rotational parameter
vector h probabilistically, then use multi-band
blending to recover rained regions.

While producing good results, this algorithm,
both in its detection and recovery section seems
to be too computationally expensive for
automotive applications.
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Table 6. Deep Learning and CNN Approach to Image De-Raining.

Raindrop
Removal System Network Architecture Datasets and Testing Potential Limitations

Dirt and Rain Noise Removal
(Eigen et al. [46])

multilayer convolutional network
with two hidden layers with 512
units each.

Pictures of a glass plate with dirt
and water drops were taken.
Patches of size 64 × 64 for dirt
and were paired with clear
patches and used to train and test
the rain and dirt remover system.

Restored images showed visible
artifacts and were blurred where
the raindrop/dirt particle was
removed.

Attention GAN Raindrop
Removal Algorithm (Qian
et al. [49])

1. Generative Network:

a. Attention Map (3
layers of ResNet + 1
LSTM)

b. Autoencoder (16
conv-ReLU with
skip connection).

2. Discriminative Network:

7 convolution layers with the
kernel size (3 × 3), a fully
connected layer of 1024 neurons,
and a single neuron with a
sigmoid activation function

1119 pairs of images (rainy and
clear), with various background
scenes and raindrops. Raindrops
are synthesized by spraying water
on a glass plate.

Limited dataset for training and
testing. Need for raindrop mask
for supervised learning

Joint Shape-Channel Attention
GAN Raindrop Removal
Algorithm (Quan et al. [53])

GAN-based on encoder-decoder
architecture with ResBlocks in
between and short and long skip
connections. Joint physical and
channel attention blocks

Used Qian et al. [49] dataset for
training and testing. Uses PSNR
and SSIM were used for
evaluation and benchmarking.

Dataset limitations for training
and testing. PSNR and SSIM
scores were only marginally better
than other algorithms evaluated.

Improved Raindrop Removal
with Synthetic Raindrop
Supervised Learning (Hoa
et al. [56])

The system consists of three
sub-networks
rain detection network, (I-CNNN
with 5 conv layers + BN and
ReLU activation, and 6 Resblocks
reconstruction network, same as
detection network with 8
ResBlocks
refine network, 2 conv layers, and
2 ResBlocks

Synthesized rainy images and
used them for training and testing.
Adam optimizer was used for
setting up training parameters.
PSNR and SSIM were used for
evaluation and benchmarking.

The quality of images generated
by the Rain Synthesized needs
more independent evaluation
against real rainy images.

Raindrop-Aware GAN for Coastal
Video Enhancement (Kim
et al. [61])

Encoder/decoder architecture
with short and long skip
connections.

Used Qian et al. [49] dataset as
well as Anmok beach videos and
paired image sets for training and
testing. PSNR, NIQE, and SSIM
were used for evaluation and
benchmarking.

Though outperforming other
methods in the coastal setup, for
urban setup no clear
improvement was observed over
Qian et al. [49].

Self-Supervised Attention Maps
with Spatio-Temporal GAN
(Alletto et al. [64])

The system is made of two-stages.
1. Single-Image Removal, with
location map estimator and
raindrop remover networks. both
constructed based on
encoder/decoder architecture.
2. Spatio-temporal Raindrop
Removal, flow estimator provides
optical flow is learned from
previous frames and concatenated
with rainy image and estimated
location map in a decoder/
encoder GAN architecture.

Used Qian et al. [49] dataset as
well as data set of augmented
videos from DR(eye)VE dataset
with synthetically generated
raindrops. PSNR and SSIM were
used for evaluation and
benchmarking.

The quality of images generated
by the Rain Synthesized needs
more independent evaluation
against real rainy images.

Concurrent channel-spatial
attention and long-short skip
connections (Peng et al. [70])

The system was built on the
encoder/ decoder architecture,
with channel and spatial attention
blocks added. Short and long
connections were also introduced.

Used Qian et al. [49] dataset for
training and testing. Uses PSNR
and SSIM were used for
evaluation and benchmarking.

Dataset limitations for training
and testing. The approach is
similar to Quan et al. [53] with
differences in network
architecture. Would be interesting
to compare the performance of
one against the other.
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Table 6. Cont.

Raindrop
Removal System Network Architecture Datasets and Testing Potential Limitations

Separation-Restoration-Fusion
Network for Image Raindrop
Removal (Ren et al. [73])

the system consists of three
modules.
1. Region separation module was
implemented as an image pipeline
with classical techniques
2. Region restoration module
MFGAN built on pyramid
topology was used.
3. region Fusion module IODNet
connection network using
DenseASPP was used to construct
fusing module

Used Qian et al. [49] dataset for
training and testing. Uses PSNR
and SSIM were used for
evaluation and benchmarking.

Images need preprocessing to
classify regions of the image
based on the severity of the
raindrop. The classification was
based on experimental results
from a limited dataset and may
not apply to other scenarios.

8. Conclusions

We described a range of research works in the field of adherent raindrop detection and
removal, with a focus on applications in the automotive domain. Based on the reviewed
research work in this paper, we conclude the following:

1- Adherent raindrop detection and removal is a more challenging problem than falling
rain detection and removal, due to the persistence of adherent raindrops over many
image frames and the irregularity of raindrop shapes and sizes.

2- Due to the closeness to the image plane, adherent raindrops look blurry and occlude
larger areas of the captured image.

3- Due to the above, most reviewed algorithms performed poorly under heavy rain
conditions or fast-changing scenes with many moving objects.

4- Simple detection algorithms were based on observed optical or physical characteristics
of adherent raindrops and performed well if the presumed conditions were met.
Performance is degraded quickly for any deviation from these conditions, including
change of background image texture or illumination and the introduction of moving
objects in the scene background.

5- Complex detection algorithms performed very well under low and medium rain
conditions. The added complexity, however, can introduce unacceptable latencies in
real-time applications for processing rained images and removing adherent rain.

6- Compromises were discussed to improve processing time that included limiting the
ROI, reducing the number of model templates, and dimension reduction, among
other things.

7- The application of Deep-learning and CNN seems to be a very promising approach
for solving the raindrop detection and rain removal problems.

8- The use of PSNR and SSIM metrics may not be the best choice for performance evalu-
ation and benchmarking among different CNN-based algorithms. Results reported by
different researchers showed marginal improvement in PSNR and SSIM scores which
may very much be within the statistical margin of error.
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