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Abstract: As a crucial task in surveillance and security, person re-identification (re-ID) aims to
identify the targeted pedestrians across multiple images captured by non-overlapping cameras. How-
ever, existing person re-ID solutions have two main challenges: the lack of pedestrian identification
labels in the captured images, and domain shift issue between different domains. A generative
adversarial networks (GAN)-based self-training framework with progressive augmentation (SPA) is
proposed to obtain the robust features of the unlabeled data from the target domain, according to
the preknowledge of the labeled data from the source domain. Specifically, the proposed framework
consists of two stages: the style transfer stage (STrans), and self-training stage (STrain). First, the
targeted data is complemented by a camera style transfer algorithm in the STrans stage, in which
CycleGAN and Siamese Network are integrated to preserve the unsupervised self-similarity (the
similarity of the same image between before and after transformation) and domain dissimilarity (the
dissimilarity between a transferred source image and the targeted image). Second, clustering and
classification are alternately applied to enhance the model performance progressively in the STrain
stage, in which both global and local features of the target-domain images are obtained. Compared
with the state-of-the-art methods, the proposed method achieves the competitive accuracy on two
existing datasets.

Keywords: person re-ID; domain shift; style transfer; self-training

1. Introduction

Person re-identification (re-ID) as a crucial task in surveillance and security strives
to retrieve the same people across multiple images captured by non-overlapping cameras
or across multi-scene images captured by the same camera. Despite the great success in
person re-ID, some limitations still exist in practical applications, such as the acquisition of
high-quality feature representation, the domain shift between training and testing data,
and the difficulty of model migration from source domain to target domain.

Although existing person re-ID methods achieve high recognition rates on different
types of single dataset, the great disparity exists between these person re-ID methods
and practical applications, which is usually caused by the difference between the training
and testing datasets [1–9]. As shown in Figure 1, different camera parameters, shoot-
ing conditions, and other factors cause the differences in exposure, image size, clarity,
and other aspects. Therefore, if a model is trained on a single dataset according to the
manually labeled data, the trained model often has poor recognition performance on
real-world datasets.
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The domain adaptive person re-ID was proposed to alleviate the domain shift issue
between the labeled source domain and target domain. Some existing domain adaptive
solutions achieve good performance in person re-ID. Existing domain adaptive person
re-ID solutions can be roughly categorized into cross domain person re-ID [10] and shared
domain learning person re-ID [11,12]. Specifically, cross domain solutions usually first
conduct supervised learning on the labeled source domain, and then apply the learned
model to the unlabeled target domain by migration learning. However, cross domain
solutions ignore the global and local feature distribution of target-domain data, which is
crucial for high-quality prediction. To compensate this deficiency, shared domain learning
person re-ID solutions attempt to transfer the features in both source and target domains
to a shared feature domain. Actually, due to the lack of supervisory signals during the
transformation, it is difficult to guarantee the quality of visual feature information without
enough constraints.

This paper proposes a GAN-based self-training framework with progressive augmen-
tation (SPA) to solve the aforementioned two main challenges: the lack of labeled data and
domain shift. This proposal expands the target-domain dataset by analyzing the consis-
tency of each person identity in the labeled data and gains the pedestrian scale features
in different learning strategies. Specifically, clustering and classification are applied to
obtain the global and local features of each person respectively. The proposed SPA consists
of style transfer stage and self-training stage, which act on the expanding and training
processes respectively.

Style transfer stage (STrans): As a widely used style transfer solution in image pro-
cessing, the proposed solution uses CycleGAN to achieve the transformation of the labeled
image from source domain to target domain. Therefore, the generated training samples re-
tain the style of target domain, such as resolution and light conditions. Specifically, Siamese
network is applied to preserve the identities of pedestrians in the transformed images
by using adversarial loss and contrastive loss. Besides, circle loss is used to mitigate the
inflexibility and sensitivity of the proposed solution to image quality.

Figure 1. The sample images of person re-ID. The corresponding activation maps (AM) of the same
pedestrians from two different domains as shown in the left- and right-hand sides, respectively.

Self-training stage (STrain): Clustering and classification are integrated to learn the
robust features of the unlabeled target domain. Therefore, the learned global and local
features are semantically complementary. As the progressive augmentation learning, both
global and local features of the target-domain data are gradually enhanced by alternate
clustering and classification. Since clustering and classification can promote and supervise
each other, the self-training process can be completed without external intervention.

The proposed solution applies a two-stage (STrans and STrain) method to data ex-
panding and training. Source images are first transformed without distorting semantic
contents, and then credible pseudo labels are generated. Therefore, the proposed solution
can achieve good prediction performance. According to the comparative results, the pro-
posed solution outperforms other state-of-the-art unsupervised domain adaptive person
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re-ID solutions on two benchmark datasets Market-1501 [13] and Duke-MTMC [14]. This
paper has two main contributions as follows.

• A two-stage (STrans and STrain) framework is proposed for unsupervised domain
adaptive person re-ID, which can achieve good performance on both image style
transformation and self-training.

• A progressive augmentation learning strategy integrates clustering and classification
to obtain both global and local features of the target-domain data, and generates
credible pseudo labels without any interventions.

The rest of this paper is organized as follows. Section 2 introduces the related work;
Section 3 presents the proposed image dehazing framework in detail; Section 4 discusses
and compares the comparative experimental results; and Section 5 concludes this paper.

2. Related Work

As a critical task in intelligent monitoring, person re-ID that was first proposed
by Gandhi in 2006 [15] has attracted considerable attention. Gray et al. [16] published a
standard dataset called person re-ID VIPeR to test the performance of person re-ID solutions.
Subsequently, the related person re-ID research boomed after the solutions of Zheng [17]
and Farenzena [18] were published. Following the development of deep learning, person
re-ID has achieved a significant breakthrough in both theories and applications. Existing
solutions can achieve high recognition performance. Some recently published supervised
person re-ID solutions have achieved more than 90% recognition rate on the relevant testing
datasets, which greatly promote the development of the related applications.

Supervised person re-ID: Supervised person re-ID methods conduct supervised train-
ing and testing on the same datasets [1–9,13]. As shown in Figure 2, the identity labels
of pedestrian images are required. The features of the whole dataset are extracted by
training the feature extraction network with the guidance of labels, which can be used to
calculate the similarity between different images. According to the obtained similarity,
the pedestrian images are sorted. A top ranked image contains highly similar features.
Zheng et al. [19] explored how to use the generated data in training. Pedestrians are
encoded as appearance and structure codes. Therefore, both self-identity and cross-identity
people are generated, which make the dataset expansion become realistic. Considering
both posture changes and unconstrained detection errors, a new joint learning method
proposed by Li [20] integrates multi-scale attention selection and feature representation to
maximize the relevant supplementary information of pedestrians.

Figure 2. The general process of supervised person re-ID.

Although existing supervised person re-ID methods can achieve good performance
in the source domain, the lack of labeled samples and domain shift as two main issues
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still exist. Due to the difference of feature distribution between source and target domains,
their recognition performance is often unsatisfactory in the target domain. Therefore,
unsupervised domain adaptive (UDA) learning was proposed and applied to person re-ID
to address the domain shift issue, which can be roughly categorized into cross domain
learning and shared domain learning.

Cross domain person re-ID: Cross domain models can improve the object recognition
accuracy, which are usually based on the supervised learning in the labeled source domain
and applied to the unlabeled target domain by migration learning [21–25]. Peng et al. [24]
proposed an unsupervised multi-task dictionary learning model, which represented the
transferred visual features in unchanged visual angles from the source domain to the target
domain. With the emergence and improvement of autoencoder, Potapov et al. [25] decom-
posed the interference variables of pedestrian images by potential coding, and a triple loss
was used in the person feature extraction network. In addition, McLaughlin et al. [26]
proposed a new data augmentation scheme based on the change of image background to
alleviate the difference of data distribution caused by domain shift, which improved the
cross-domain recognition ability.

Shared domain person re-ID: Shared domain-based person re-ID methods mainly
focus on migrating the images in both source and target domains to a shared feature
space [27–30]. In the shared domain, the consistency of visual feature information is
preserved to solve the domain shift issue. To alleviate the dependence of existing methods
on the labeled data, Li et al. [29] constructed a depth structure to project the features of
different domains into the shared feature space by considering the labeled auxiliary dataset
and the dataset of interest (without any label). In the process of shared domain person
re-ID, the features from different domains are migrated to the shared feature space, and the
similarity measurement of different images is realized in the shared feature space [30].

GAN-based person re-ID: The acquisition and learning of valid datasets are two main
steps of recognition. GAN [31] adopts the adversarial learning. Generator and discrimina-
tor can interact with each other in the process of adversarial learning, which are conducive
to improving the recognition performance of person re-ID. Therefore, GAN-based per-
son re-ID methods are booming. A similarity preserving generative adversarial network
(SPGAN) proposed by Deng et al. [10] maintains the self-similarity and inter-domain
differences to eliminate the domain shift by transforming the labeled samples from the
source domain (called cycle-consistent generative adversarial networks (CycleGAN) [32])
to target domain. Inspired by CycleGAN, the Camstyle network proposed Zhong et al. [12]
achieves the data augmentation by transferring the camera style of each image to different
ones. Wei et al. [33] introduced the semantic segmentation of images to person re-ID and
proposed the person transfer generative adversarial networks (PTGAN) to alleviate the
domain shift issue between different domains. Figure 3 shows the transformed images
obtained by different GAN-based person re-ID methods.

Figure 3. Transformed images obtained by different GAN-based person re-ID solutions.
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The robustness of UDA person re-ID methods is determined by the differentiated
information from different domains. Due to the varying degrees of domain shift, the over-
all recognition performance of cross- and shared-domain person re-ID methods is not
stable. Therefore, this paper explores how the labels, feature representation, and metric
learning affect the performance of person re-ID and proposes an effective GAN-based
self-training framework.

3. The Proposed Solution

As shown in Figure 4, the proposed SPA consists of STrans and STrain.

Figure 4. The framework of the proposed SPA.

In Strans, both CycleGAN and Siamese Network are integrated to ensure the self-
similarity (the same identity in an image is remained) and inter-domain difference (the
original style is remained across different domains) before and after transformation. When
any part of STrans is changed, the corresponding parameters of CycleGAN and Siamese
Network are updated accordingly.

In Strans, the global and local structures of target-domain data are obtained in the
two-stage self-training process of the progressive augmentation framework. In particular,
the global and local features of each person are obtained by clustering and classification,
respectively. Two stages process alternately in the self-training process until reaching
the goal. Similarly, the corresponding parameters are updated according to any change
of STrain.

3.1. Style Transfer Stage

Similar to SPGAN [10], CycleGAN [32] is used to realize the basic style transformation,
and Siamese Network [34] is applied to maintain the consistency of pedestrian identity.
Figure 5 illustrates the structure of Strans (Style transfer stage). As shown in the upper
part of Figure 5, Euclidean distance is used to measure the similarity between two different
images. The images with high similarity are clustered.
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Figure 5. The structure of Strans (Style transfer stage).

As shown in the lower part of Figure 5, CycleGAN learns generators G and F by
capturing the fine information of the labeled source-domain dataset S={xi}Mi=1 and unla-
beled target-domain dataset T={yj}Nj=1, respectively, which are used in the image style
transformation from source domain to target domain. Adversarial loss and cycle-consistent
loss are used to ensure the antagonism and consistency of image contents between G and
D. CycleGAN is formalized as follows.

Lcyc(G, F, DT , DS) = Ladv(G, DT) + Ladv(F, DS)

+ αLrec(G, F) (1)

where DT(DS) represents the discriminator corresponding to the generator G(F), Ladv and
Lrec denote adversarial loss and cycle-consistency loss respectively, and α controls the
relative importance of the cycle-consistent loss.

In addition to adversarial losses and cycle-consistency loss, style retain function is
designed to ensure that the color composition between the input and output is preserved
and the generator is prevented from outputting unreal results. In particular, when the
generator transfers an image, it needs to preserve the identity information of source images.
Therefore, a unit matrix is formed to ensure the identity mapping as follows.

Lide(G, F) = Exsvpdata(S)[‖F(xs)− xs‖1]

+ Extvpdata(T)[
∥∥G(xt)− xt∥∥

1] (2)

It is necessary to ensure the identity consistency and domain dissimilarity of pedes-
trian after transformation. During the training process, Siamese network is optimized by
minimizing the sum of contrastive loss and circle loss [35] on the designed input pair.

Lcon(w, x1, x2) =
1

2N

N

∑
n=1

(1− w)[max(0, m− d)]2 + w · d2 (3)

where (x1, x2) is an input matching pair, d is the Euclidean distance between the pair,
w = 0 (w = 1) denotes the input pair is negative (positive), and the parameter m controls
the margin of decision boundary.

Lcircle = log[1 +
L

∑
i=1

exp(ηαi
p(d

i
p − ∆p))×

K

∑
j=1

exp(−ηα
j
n(d

j
n − ∆n))]LK (4)
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where L and K represent the number of Euclidean distances corresponding to positive and
negative input pairs respectively, L + K = N, and di

p and dj
n denote the Euclidean distance

between each matching pair. Due to the asymmetry of positive and negative pairs, ∆p and
∆n are the margin corresponding to them, respectively. η is used as an extended factor to
realize the gradient control. To realize the self-paced weighting, αi

p and α
j
n can be defined

as follows.

αi
p = [Op − di

p]+

α
j
n = [dj

n −On]+ (5)

In Equations (3) and (4), loss functions use the binary labels of input image pairs.
As shown in Figure 6, positive input pair (xid,i

S , G(xS,id,j)) and negative pair (G(xS), xt)
are designed to ensure the identity consistency and domain dissimilarity of pedestrians.
Specifically, the i-th sample in source domain can be directly used to form a positive pair
with any transformed image which has the same identity but not necessarily converted
from the same sample. As the a priori knowledge that pedestrian images from two datasets
do not cross and contain the same person, the pedestrians in the transformed images must
be different from anyone from target domain. A negative pair is constructed as (G(xS), xt)
or (F(xT), xs).

Figure 6. The image pair construction.

The overall objective function of style transfer stage can be formalized as follows.

L(G, F, DT , DS, M) = Lcyc(G, F, DT , DS) + λ1Lide(G, F)

+ λ2Lcon + λ3Lcircle (6)

The extended target domain dataset T′ is obtained for further learning.

3.2. Self-Training Stage

Due to the dramatic appearance changes and identity dissimilarity between different
domains, it is expensive and impractical to label data in the unsupervised and domain
adaptation settings. To alleviate the above limitations, a two-step self-training process is
proposed, which takes advantage of classification and clustering.

3.2.1. Semi-Supervised Learning

Since the extended target domain dataset T′ : {t1, t2, · · ·, tN′} contains both true
unlabeled samples (original target-domain images) and untrue labeled samples (converted
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from labeled source-domain images) after style transformation, semi-supervised learning
is used to extract the embedding features from the pre-training part-based convolutional
baseline (PCB) [36]. Subsequently, the pairwise constrained K-Means [37,38] (PCK-Means)
is applied to semi-supervise sample clustering to obtain the reliable pseudo labels of untrue
labeled samples. The semi-supervised learning structure is shown in Figure 7.

Figure 7. The semi-supervised learning structure. In semi-supervised learning, PCB first extracts the
related features. Then k-reciprocal encoding is used to describe the fine difference between any two
images, which yields a ranking score matrix DR for the next clustering operation. With the help of
partially labeled images in the extended dataset T′, semi-supervised clustering PCK-Means is used
to mark pseudo-labels for the related data. The whole stage is trained by RTL and CTL.

In practice, features F : { f (t1), f (t2), . . . , f (tN′)} are extracted from the current PCB
to construct the feature embedding space, and k-reciprocal encoding [39] is adopted to
describe the fine difference between any two images. By calculating the Euclidean distance
dm(ti, tj) between the features of each pair, the neighbour set N corresponding to the
k-closest distances of the probe is calculated. N that contains both positive and negative
samples is defined as: N(probe, k) = {t0

1, t0
2, . . . , t0

k}, where t0
1, t0

2, t0
k represent the 1st, 2nd,

and k-th closest samples to the probe, respectively. At the same time, each t0
i of N also has

its own neighbour set N′. If a probe is included, probe and t0
i are adjacent to each other.

Otherwise, they are not adjacent to each other. Thus, the k-reciprocal set R of the probe can
be obtained, and all the elements in R are close to the probe. A ranking score matrix DR is
obtained to describe the distance as follows.

DR = [DR(t1)DR(t2) . . . DR(tN)]
T,

DR(ti) = [dJ(ti, t̃1)dJ(ti, t̃2) . . . dJ(ti, t̃N)]

∀i ∈ {1, 2, ..., N} (7)

where DR(ti) represents the ascending order of the distance between the probe ti and other
samples in the gallery.

Given a large gallery, it is difficult to distinguish the samples with high similarity.
PCK-Means is applied to mark pseudo labels for the extended target-domain dataset T′,
and the associated relationship in a mini-batch is explored to improve the operation speed
of the proposed model in practical applications. In the end, P clusters and K instances are
sampled randomly, and the cluster-based triplet Loss (CTL) is formulated as Equation (9).
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LCTL =
PK

∑
a=1

[m + || f (ta)− f (tp)||2 − || f (ta)− f (tn)||2]+

=
P

∑
i=1

K

∑
a=1

[m + max
p=1...K

|| f (ta)− f (tp)||2

− min
n=1...K
j=1...P

i 6=j

|| f (ta)− f (tn)||2]+ (8)

where (ta, tp, tn) is a triplet, m is the margin between positive and negative pairs as same as
Equation (3), and for the anchor ta, i represents a certain class in P clusters, and j represents
an instance under this class. Subsequently, benefiting from the PCK-Means, some samples
could be added into TU , which is the new image training set with pseudo labels to optimize
PCB. However, it is clear that the effectiveness of CTL is highly subjected to the correctness
of the clustering result. Hence, ranking-based triple loss (RTL) is proposed as follows,
which does not depend on any pseudo labels, but is only related to the sorting matrix DR.

LRTL =
PK

∑
a=1

[
Pp − Pn

η
m + || f (ta)− f (tp)||2

− || f (ta)− f (tn)||2]+ (9)

where the triplet and parameter m are constructed in the same way as CTL, and for each
anchor ta, Pp and Pn represent the number of positive and negative pairs respectively.
The combination of CTL and RTL can optimize the feature extraction network and capture
the local information of data distribution effectively. Therefore, the final triple loss function
in the semi-supervised learning can be defined as follows.

LC = LRTL + λLCTL (10)

where the parameter λ controls the relative importance of feature learning constraints.

3.2.2. Classification Learning

Conventionally, according to the difference of objective loss function, person re-ID
consists of representation learning and metric learning corresponding to classification
and clustering respectively. Most existing methods use one way to train the network
and the two learning methods are applied to further improve the network performance.
Theoretically, due to PCK-Means clustering, the network focuses on the local structure
of data distribution and may ignore the global information in semi-supervised learning.
Therefore, the model is easy to fall into a sub-optimal local minimum.

As an optimization way, clustering and classification are used alternately. In this
way, a fully connected layer is added to the end of the model as a classification layer,
which is initialized by the current TU . The objective function can be calculated by Softmax
cross-entropy loss as follows.

Ls =
PK

∑
i=1

log
eWT

ŷi
xi

∑C
c=1 eWT

c xi
(11)

where ŷi is the pseudo label of xi, C denotes the cluster number of the updated training set
TU after PCK-Means clustering, and W is the initialized classifier weight.

4. Comparative Experiments
4.1. Datasets and Objective Evaluation Indicators

Two large-scale person re-ID datasets as shown in Table 1, Market-1501 and Duke, are
used to test the performance of the proposed model.
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Table 1. The details of person Re-ID datasets (Market-1501 and DukeMTMC-ReID).

Dataset Publication
Time

Number
of IDs

Number
of Cameras

Number
of Images

Labeling
Method Image Size

Market-1501 [13] 2015 1501 6 32,688 Manual + DPM 128 × 64

DukeMTMC-ReID [14] 2017 1812 8 36,411 Manual Random

Market-1501 [13] is a dataset collected and published by Tsinghua University in
2015. 32,688 images were captured by six cameras including a low-definition camera,
which involved 1501 pedestrians. Each pedestrian appeared in at least two camera views.
Market-1501 is divided into training and testing sets, which have 12,936 images with 751
pedestrians and 19,732 images (including 3,368 manually drawn images) with 750 pedestri-
ans, respectively.

DukeMTMC-ReID [14] is a large-scale multi-pedestrian dataset collected by Duke
University, which contains a large number of labels. Eight high-definition cameras collected
85-min video, involving 36,411 images and 1812 pedestrians. 1404 pedestrians appeared in
at least two camera views. Zheng et al. [14] divided the dataset into the training set con-
taining 1622 images with 702 people, testing query set containing 2228 images, and testing
gallery set with 17,661 images. For convenience, Duke is short for DukeMTMC-ReID in the
following paragraphs.

Cumulative matching feature (CMC) is the most widely used in person re-ID, which
can be regarded as the accuracy rate in the related papers. For each pedestrian in the
query set, it calculates the distance to n gallery samples in turn, and then sorts the obtained
distances to check whether the same identity samples are located in the top-k, and finally
the CMC curve is obtained by statistics. Specifically, it is a floating-point number in
an interval. In convenience, it usually takes the form of percentage and only compares
three-digits accuracy rates.

As an index widely used in reflecting the recall rate of the model, mean average
precision (mAP) is the mean value of average accuracy (AP) of all query samples [40–43].
For the query sample probe, the calculation of its AP is mainly determined by the accuracy
of recall rate. Specifically, AP of a query sample can be calculated as the area of precision-
recall (PR) curve and horizontal axis.

4.2. Implementation

CycleGAN and Siamese network are adopted in the style transfer stage. Adam
optimizer [44] is also used. The batch size is 1 and the initial learning rate is set to 0.0002.
The training stops after the network has passes 6 epochs. Siamese network contains
3 convolutional layers (Con.), 3 maximum pooling layers (Max pooling), and 2 fully
connected layers (FC). The specific network structure is shown in Table 2.

Table 2. The design details of the STrans network structure.

Layer Property Parameter

1 Conv.1 4 × 4, stride = 2, fmap = 64
2 Max pooling 1 2 × 2, stride = 2,
3 Conv.2 4 × 4, stride = 2, fmap = 128
4 Max pooling 2 2 × 2, stride = 2,
5 Conv.3 4 × 4, stride = 2, fmap = 256
6 Max pooling 3 2 × 2, stride = 2,
7 Max pooling 4 2 × 2, stride = 2,
8 FC Out: 256

Similar to the EANet, PCB [36] is used as the feature extractor in the self-training
stage. The feature tensor is horizontally divided into six parts to ensure the retention of
local information. Deriving from numerous experiments and previous experiences, m in
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Equations (3) and (8), and α in Equation (1) are empirically set to 2 and 10, respectively. All
input images are resized to 384 × 128 × 3. The dimension of each embedding layer is set
to 256, the batch size is set to 64, and the number of iterations is set to 4.

The two-step learning rate can improve the learning performance of the progressive
self-monitoring learning framework, rather than using the same learning rate directly in
both self-monitoring stage and classification stage. Therefore, the false label guidance can
be avoided. Specifically, in the semi-supervised learning, the learning rate of the backbone
network is initialized to 1× 10−4, and the learning rate of the embedded layer is 2× 10−4.
In the classification learning, the classification layer is 1× 10−3, while all other layers are
set to 5× 10−5. After three iterations, all learning rates are multiplied by 0.1. The super
parameter m is set to 2 which is consistent with Equations (3) and (8).

4.3. Comparisons with the State-of-the-Art Solutions

SPA proposed in this paper is compared with the state-of-the-art style transfer learning
and UDA learning solutions on Market1501 [13] and DukeMTMC-reID [14]. Tables 3 and 4
show the comparisons, in which M and D represent Market-1501 and Duke respectively.
In each column, the highest result is marked in bold.

Table 3. Person re-ID performance comparison with the state-of-the-art solutions of style transfer on
Market-1501 and DukeMTMC-reID.

Method D−→M M−→D
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

Camstyle [12]
PTGAN [33] 38.6 - 66.1 - 27.4 - 50.7 -
SPGAN [10] 51.5 70.1 76.8 22.8 41.1 56.6 63 22.3
IPGAN [45] 56.4 75.6 82.5 25.6 46.8 62 67.9 25.7
MMFA [46] 56.7 75 81.8 27.4 45.3 59.6 65 23
UCDA [47] 64.3 - - 34.5 55.4 - - 36.7

Ours 65.4 80.6 85.7 35.2 59.2 72.8 76.7 37.6

Table 4. Person re-ID performance comparison with the state-of-the-art solutions of unsupervised on
Market-1501 and DukeMTMC-reID.

Method Market-1501 Duke
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

LOMO [48] 27.2 41.6 49.1 8 12.3 21.3 26.6 4.8
BOW [21] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3
PUL [49] 45.5 60.7 66.7 20.5 30 43.4 48.5 16.4
PCB [36] 57.7 - - 29.01 42.73 - - 25.7
BUC [50] 66.2 76.6 84.5 38.3 47.4 62.6 68.4 27.5
DBC [51] 69.2 83 87.8 41.3 51.5 64.6 70.1 30
MAR [52] 67.7 81.9 - 40 67.1 79.8 - 48

Ours 73.93 82.8 91.5 53.35 65.18 81.3 87.2 52.43

As shown in Table 3, transfer learning-based methods include Camstyle [12], PT-
GAN [33], SPGAN [10], IPGAN [45], MMFA [46], and UCDA [47]. PTGAN uses the
semantic segmentation to constrain local images and retain the pedestrian information,
but the direct conversion causes the loss of identity information easily. Camstyle, SPGAN,
and IPGAN are all based on CycleGAN, which realize the unity of image styles between
source and target domains. SPGAN and IPGAN use the identity retention to eliminate
domain offsets, but they are limited by the matching pair construction methods. UCDA
uses the transfer learning to minimize the invariance in target domain. STrans obtains
65.4 and 59.3 on Market and Duke of Rank-1, respectively, which benefit from the novel
effective method to construct the matching pairs and optimize the model through circle
loss with the target convergence.

As shown in Table 4, unsupervised methods include LOMO [48], BOW [21], PUL [49],
BUC [50], DBC [51], PCB [36], and MAR [52]. LOMO and BOW use the hand-crafted
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features, which show low performance. MAR adopts the idea of multi-soft labeling. PCB is
a baseline commonly used in recent research, which uses the horizontal division of high-
dimensional tensors to retain the detailed information. TFsuion uses the spatio-temporal
information to estimate the matching probability through Bayesian inference. However,
the framework proposed in this paper is much more concisely and effective than existing
methods. As shown in Table 4, mAP reaches 53.35% and 52.43% and rank-1 reaches 73.93%
and 65.18% in D−→M and M−→D, respectively.

It is useful to use the expanded labeled data to train the model in the last two rows
of Table 4. Specifically, compared with the style transfer stage alone, the incremental
self-monitoring learning framework in rank-1 and mAP can improve by 3.86% and 3.07%
in D−→M, respectively.

4.4. Ablation Study

The impact of the each component of the proposed algorithm. As mentioned in
introduction, the accuracy of person re-ID in UDA setting replies on the generation quality
and identity recognition accuracy. Four components of the proposed GAN-based self-
training network are evaluated as follows.

• GAN-based transformation network: According to the SPGAN model, the perfor-
mance of the proposed GAN-based transformation network is significantly improved,
which benefits from the adoption of both novel training data construction and circle
loss methods.

• Progressive self-training framework: The semi-supervised clustering and classifi-
cation learning are combined to learn the robust features of the unlabeled target
domain effectively.

• Semi-supervised learning: k-reciprocal encoding and PCK-Means are used when a
ranking score matrix is constructed and the initial images are clustered.

• Classification: It is identical to general softmax classification but needs to initialize the
classification layer.

As show in Table 5, when the network only contains STrans, the rank-1 accuracy on
M−→D and D−→M increases by 18.43% and 12.48%, respectively. The rank-1 and map of
M−→D increase by 20.53% and 12.47% respectively, while the rank-1 and map of D−→M
increase by 12.75% and 5.50% respectively. The improvement of efficiency shows that
both triple losses can be used to enhance the performance of the proposed model, but the
performance of STrans is slightly lower than that of STrain. STrans and STrain are combined
to jointly optimize the model at the self-monitoring stage, and they achieve good results in
M−→D and D−→M. Compared with STrans only, 1.71% and 3.40% improvements on rank-
1 and map are achieved on D−→M. Therefore, it confirms that a powerful target-domain
feature extraction model is learned by the proposed SPA.

Table 5. Ablation study on different components of the proposed method.

Method Training Market-1501 DUKEMTMC-reID
Rank-1 mAP Rank-1 mAP

PCB - 59.74 41.93 39.38 49.69
PCB+Style transform Unsupervised 70.09 50.28 62.09 49.59

PCB+Self-training Semi-supervised 71.22 51.85 63.49 48.43
PCB+SPA Semi-supervised 73.93 53.35 65.18 52.43

The impact of the hyperparameters. The generalization properties of a loss function
are governed by a small number of hyper-parameters. The hyperparameter values are
determined in the process of model selection. In Equation (10), λ is used to control the
weight between RTL and CTL. Values are selected from the set of 0.1, 0.2, 0.5, 1.0, and 2.0
to test the impact on the D−→M task. When λ is low, RLT plays a major role, which
tends to cause the overall network relying on the ranking score matrix DR. Particularly,
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when the feature representations are in poor quality, the network performance is really
low. When λ is high, the pseudo-label quality is low in the early stage of clustering process,
and the network emphasizes the clustering results. As shown in the top left of Figure 8,
the best result is obtained, when λ set to 0.5. However, the change in the size limits the
performance improvement.

Subsequently, three hyperparameters in Equation (6) of STrans are tested, and the
results are shown in the top right, bottom left, and bottom right of Figure 8. λ1, λ2, and λ3
control the degree of style retain loss, contrastive loss, and circle loss respectively, which
balance the impact of the losses and change from 0.2 to 1.0. When λ1, λ2, and λ3 are set to
0.4, 0.6, 0.4, the best performance is achieved. When λ1, λ2, and λ3 continually increase,
a obvious drop occurs.
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5. Conclusions

This paper proposes a GAN-based self-training framework for UDA person Re-ID,
which focuses on solving the lack of pedestrian identification labels in the captured images
and domain shift issue between different domains.

In the proposed SPA, the a priori knowledge from the labeled source domain is used
to obtain the robust features of target domain. In style transfer stage, CycleGAN and
Siamese Network are combined to ensure the self-similarity and inter-domain difference
of person identification. Besides the widely used adversarial loss and contrastive loss,
which are inflexible and sensitive to the quality of pair, circle loss is used to optimize the
model with a targeted convergence. The self-training stage captures the global and local
structure of target-domain data in the progressive augmentation framework, which takes
advantage of clustering and classification on person re-ID. The comparative experimental
results confirm the proposed solution achieves better performance than the state-of-the-art
unsupervised cross-domain re-ID solutions in person re-ID. In future, the proposed method
will be extended to other unsupervised cross-domain applications.
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