
Journal of

Imaging

Article

Investigating the Potential of Network Optimization for a
Constrained Object Detection Problem

Tanguy Ophoff * , Cédric Gullentops, Kristof Van Beeck and Toon Goedemé

����������
�������

Citation: Ophoff, T.; Gullentops, C.;

Van Beeck, K.; Goedemé, T.

Investigating the Potential of

Network Optimization for a

Constrained Object Detection

Problem. J. Imaging 2021, 7, 64.

https://doi.org/10.3390/

jimaging7040064

Academic Editor: Gonzalo Pajares

Martinsanz

Received: 29 January 2021

Accepted: 29 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

EAVISE, PSI, KU Leuven, Jan Pieter De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium;
cedricgullentops@hotmail.com (C.G.); kristof.vanbeeck@kuleuven.be (K.V.B.); toon.goedeme@kuleuven.be (T.G.)
* Correspondence: tanguy.ophoff@kuleuven.be; Tel.: +32-15-31-69-44

Abstract: Object detection models are usually trained and evaluated on highly complicated, challeng-
ing academic datasets, which results in deep networks requiring lots of computations. However, a lot
of operational use-cases consist of more constrained situations: they have a limited number of classes
to be detected, less intra-class variance, less lighting and background variance, constrained or even
fixed camera viewpoints, etc. In these cases, we hypothesize that smaller networks could be used
without deteriorating the accuracy. However, there are multiple reasons why this does not happen in
practice. Firstly, overparameterized networks tend to learn better, and secondly, transfer learning
is usually used to reduce the necessary amount of training data. In this paper, we investigate how
much we can reduce the computational complexity of a standard object detection network in such
constrained object detection problems. As a case study, we focus on a well-known single-shot object
detector, YoloV2, and combine three different techniques to reduce the computational complexity
of the model without reducing its accuracy on our target dataset. To investigate the influence of
the problem complexity, we compare two datasets: a prototypical academic (Pascal VOC) and a
real-life operational (LWIR person detection) dataset. The three optimization steps we exploited
are: swapping all the convolutions for depth-wise separable convolutions, perform pruning and use
weight quantization. The results of our case study indeed substantiate our hypothesis that the more
constrained a problem is, the more the network can be optimized. On the constrained operational
dataset, combining these optimization techniques allowed us to reduce the computational complexity
with a factor of 349, as compared to only a factor 9.8 on the academic dataset. When running a
benchmark on an Nvidia Jetson AGX Xavier, our fastest model runs more than 15 times faster than
the original YoloV2 model, whilst increasing the accuracy by 5% Average Precision (AP).

Keywords: object detection; single-shot; embedded devices; mobile convolutions; depth-wise
separable convolutions; pruning; quantization

1. Introduction

Deep learning has proven to be successful in a wide variety of applications, with
many computer vision tasks such as image classification [1], image segmentation [2], object
detection [3–5], etc., all adopting neural networks as the de facto standard for solving them.
In order to leverage these techniques in commercial systems, it is necessary to be able
to deploy deep neural networks on many different systems with limited computational
resources, whilst still ensuring (near) real-time performance. Deep learning is, however,
quite notorious for requiring lots of computational power. Especially with the general
trend of developing deeper and more complex networks to increase the accuracy on well-
established academic datasets [6–8]. These datasets are often challenging, in order to
compare many state-of-the-art techniques with each other and establish the most successful
ones. They include very diverse images in terms of composition, distance, viewpoint,
object variety, etc. This is in stark contrast with many real-life use-cases, which are almost
always somewhat constrained. They might contain specific scene constraints, such as a

J. Imaging 2021, 7, 64. https://doi.org/10.3390/jimaging7040064 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-8679-6828
https://orcid.org/0000-0002-3667-7406
https://orcid.org/0000-0002-7477-8961
https://doi.org/10.3390/jimaging7040064
https://doi.org/10.3390/jimaging7040064
https://doi.org/10.3390/jimaging7040064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7040064
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/7/4/64?type=check_update&version=2

J. Imaging 2021, 7, 64 2 of 21

fixed viewpoint or similar color scheme, or the problem on its own can be simple, e.g., a
one-class detection only. This very fact actually simplifies the task for the neural network
significantly, but in practice it is often not feasible to acquire enough data, in order to design
and train smaller, task-specific networks. A common methodology to cope with this lack of
data is to use transfer learning [4,9]. Here, we first train a model on a larger dataset, and
then use those weights as a starting point to train the same model on a different, usually
smaller, dataset. A downside of transfer learning is that the same model is used for both
datasets and thus the network might be over-engineered for the operational dataset.

Recently, the optimization of existing networks has been extensively researched. Such
techniques aim to reduce the computational complexity with (almost) negligible impact on
the accuracy. Examples of these techniques are depth-wise separable convolutions [10–12],
pruning [13,14], knowledge distillation [15], layer fusion [16], weight quantization [16,17],
etc. However, these techniques are often only tested in isolation and on classification
datasets. This last year, there has been more research interest into object detection optimiza-
tion studies for operational use cases. Wu et al. [18] looked at pruning single-shot object
detectors for the operational case of apple flower detection, but they only researched the
pruning optimization technique on a single dataset. Ayob et al. [19] investigated the combi-
nation of depth-wise separable convolutions and pruning for underwater object detection.

In this paper we propose a pipeline that combines depth-wise separable convolutions,
pruning and weight quantization. We validate our pipeline for the task of object detection
and evaluate our models on two completely different datasets, both situated at opposite
extrema of the problem constrainedness spectrum. First, we performed our tests on
the academic Pascal VOC dataset [7]. We investigated how much we can reduce the
computational complexity of our models without deteriorating the accuracy. These results
served as our baseline. Afterwards, we performed the same tests on the constrained
operational Long Wave Infrared (LWIR) dataset [20]. By comparing these results we
demonstrate that the complexity of existing networks can be reduced significantly.

There are two different approaches to deep learning based object detection: two-staged
and single-shot detectors. Two-staged approaches such as the Region based Convolutional
Neural Network detector (R-CNN) [3] first generate a number of bounding boxes around
potential objects. These so-called region proposals then go through a neural network,
in order to be validated as an actual object and classified into one of the categories of
the dataset. Since each potential cutout is evaluated separately, these types of detection
networks tend to be quite slow. Fast-RCNN [21] and Faster-RCNN [22] made significant
improvements to this approach in two manners. Firstly, the computations are shared
whilst classifying the different objects. Secondly, a deep learning based region proposal
method is used, which reduces the number of false positives. However, these networks still
remain orders of magnitude slower than single-stage approaches. Indeed, by re-framing
the object detection problem as a regression of coordinates, single-shot detectors are able
to simultaneously detect and classify multiple objects in an image using only a single
network. As we target devices with constrained resources in this work, we decide to
focus on these single-shot detectors, such as You Only Look Once (Yolo) [4,5], Single Shot
MultiBox Detector (SSD) [23], Cornernet [24], etc.

In this paper we use the lightweight YoloV2 detector as our baseline [4], as it pro-
vides an excellent speed-accuracy trade-off for embedded devices. We applied different
techniques to reduce the computational complexity and size of our model even further,
whilst still maintaining the original accuracy. We performed these tests on an established
academic dataset, Pascal VOC [7], as well as on a constrained operational dataset, the
LWIR Railway Surveillance Data [20]. These two sets allow us to evaluate and compare the
efficiency of our proposed techniques in more realistic scenarios. Finally, we benchmarked
our models in order to validate whether we can reach the required real-time performance
on an embedded device, an Nvidia Jetson AGX Xavier.

J. Imaging 2021, 7, 64 3 of 21

Our main contributions are:

• We provide a new backbone for YoloV2, by swapping out all convolutions for depth-
wise separable convolutions. All of our new models (YoloV2Upsample, MobileYoloV2,
MobileYoloV2Upsample; see Section 2.2) are available in our open-source library,
Lightnet [25].

• We combine the optimization techniques of hard pruning and weight quantization to
investigate the achievable amount of optimization for an object detector. Specifically,
we study the influence of the constrainedness of the dataset on this optimizability.
We conclude that for constrained operational object detection datasets, much larger
optimization factors can be achieved than for general benchmark datasets from aca-
demic challenges.

• We perform an ablation study, in order to compare the influence of each individual
optimization method.

2. Materials and Methods

In this section we discuss the chosen datasets (Section 2.1) and explain the imple-
mented techniques we employed to reduce the computational complexity of our baseline
network, YoloV2 (Sections 2.2–2.4).

2.1. Datasets

The main goal of this research is to investigate the potential of these network opti-
mization techniques, which are developed on academic datasets, when applied to opera-
tional datasets. For this, we apply our techniques on two typical use-cases: both an aca-
demic dataset, Pascal VOC [7], and an operational dataset, the LWIR Railway Surveillance
Data [20] and investigate in each of these two cases how much they can be slimmed down.

Pascal VOC is a dataset for object detection, which contains 21,503 images with 20
different classes. As seen in Figure 1a, the various different classes are completely unrelated
(e.g., “aeroplane”, “cow”, “person”, “tvmonitor”), which is often seen in an academic
dataset and makes detection on these data much more difficult. For our experiments, we
used the Pascal VOC 2007+2012 dataset and combined their “training 2007”, “training
2012” and “validation 2012” splits for training, whilst using the “validation 2007” split for
validation. Because the annotations for the VOC 2012 testing set are not released publicly,
we only use the ones from 2007 for testing purposes. The number of images per split are
shown in Table 1.

Table 1. Number of images per dataset.

Split VOC LWIR

Train 14,041 13,649
Validation 2510 3142

Test 4952 5061
Total 21,503 21,852

The publicly available LWIR Railway Surveillance Data (https://iiw.kuleuven.be/
onderzoek/eavise/viper/dataset, accessed on 31 March 2021) is a dataset for person detec-
tion in long wave infrared videos. The single class nature and fixed camera viewpoint are
two common scene constraints in real-life scenarios, which makes this a prime example of
this kind of operational dataset (see Figure 1b). Moreover, comparing the person cutouts in
Figure 2 shows that there is much less intra-class variance; i.e., the academic Pascal VOC
data contain images where persons are annotated from many different viewpoints and dis-
tances, compared to the LWIR data where all persons have a similar appearance, size and
viewpoint. The dataset consists of 21,852 frames split across 28 different video sequences.
Since the original paper for this dataset does not provide train, validation and test splits,
we need to create our own. Care must be taken when splitting video sequences to not put
frames of the same sequence in different splits, as the models could then overfit to the data

https://iiw.kuleuven.be/onderzoek/eavise/viper/dataset
https://iiw.kuleuven.be/onderzoek/eavise/viper/dataset

J. Imaging 2021, 7, 64 4 of 21

unnoticeably. We thus split the 28 different sequences into 3 subsets, trying to match the
65-10-25% split from VOC. The video sequences in each split are listed in Table 2 and the
number of images in each split are found in Table 1.

J. Imaging 2021, 1, 0 3 of 20

Our main contributions are:

• We provide a new backbone for YoloV2, by swapping out all convolutions for depth-
wise separable convolutions. All of our new models (YoloV2Upsample, MobileYoloV2,
MobileYoloV2Upsample; see Section 2.2) are available in our open-source library,
Lightnet [25].

• We combine the optimization techniques of hard pruning and weight quantization to
investigate the achievable amount of optimization for an object detector. Specifically,
we study the influence of the constrainedness of the dataset on this optimizability.
We conclude that for constrained operational object detection datasets, much larger
optimization factors can be achieved than for general benchmark datasets from aca-
demic challenges.

• We perform an ablation study, in order to compare the influence of each individual
optimization method.

2. Materials and Methods

In this section we will discuss the chosen datasets (Section 2.1) and explain the imple-
mented techniques we employed to reduce the computational complexity of our baseline
network, YoloV2 (Sections 2.2–2.4).

2.1. Datasets

The main goal of this research is to investigate the potential of these network optimiza-
tion techniques - which are developed on academic datasets-when applied to operational
datasets. For this, we will apply our techniques on two typical use-cases: both an aca-
demic dataset, Pascal VOC [7], and an operational dataset, the LWIR Railway Surveillance
Data [20] and investigate in each of these two cases how much they can be slimmed down.

Table 1. Number of images per dataset.

Split VOC LWIR

Train 14,041 13,649
Validation 2510 3142

Test 4952 5061
Total 21,503 21,852

(a) Pascal VOC

(b) LWIR Trainstation Surveillance Data
Figure 1. Example images from both datasets.

Pascal VOC is a dataset for object detection, which contains 21503 images with 20
different classes. As seen in figure 1a, the various different classes are completely unrelated
(e.g. "aeroplane", "cow", "person", "tvmonitor"), which is often seen in an academic dataset

Figure 1. Example images from both datasets.

J. Imaging 2021, 1, 0 4 of 20

(a) Pascal VOC

(b) LWIR Trainstation Surveillance Data
Figure 2. Bounding box cutouts of the "person" class for both datasets. Pascal VOC
contains a lot of intra-class variance, whilst persons in the LWIR dataset have a similar
look.

and makes detection on this data much more difficult. For our experiments, we used the
Pascal VOC 2007+2012 dataset and combined their "training 2007", "training 2012" and
"validation 2012" splits for training, whilst using the "validation 2007" split for validation.
Because the annotations for the VOC 2012 testing set are not released publicly, we only
use the ones from 2007 for testing purposes. The number of images per split are shown in
table 1.

The publicly available LWIR Railway Surveillance Data1 is a dataset for person detec-
tion in long wave infrared videos. The single class nature and fixed camera viewpoint are
two common scene constraints in real-life scenarios, which makes this a prime example of
this kind of operational dataset (see figure 1b). Moreover, comparing the person cutouts
in figure 2 shows that there is much less intra-class variance; i.e. the academic Pascal
VOC data contains images where persons are annotated from many different viewpoints
and distances, compared to the LWIR data where all persons have a similar appearance,
size and viewpoint. The dataset consists of 21852 frames split across 28 different video
sequences. Since the original paper for this dataset does not provide train, validation and
test splits, we need to create our own. Care must be taken when splitting video sequences
to not put frames of the same sequence in different splits, as the models could then overfit
to the data unnoticeable. We thus split the 28 different sequences in 3 subsets, trying to
match the 65-10-25% split from VOC. The video sequences in each split are listed in table 1
and the number of images in each split are found in table 1.

Our operational dataset contains many scene constraints and is much less challenging
than the Pascal VOC data. This is done on purpose as it allows us to cover two completely
different kinds of dataset of various complexity. By validating our techniques on these
distinctive datasets, we make a strong case for the generalizability of our optimization
pipeline.

Table 2. LWIR video sequence in each split. Note that there is no sequence 2 available in the dataset.

Train 0, 4, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
Validation 1, 5, 8
Test 3, 6, 9, 11, 13, 15

2.2. Depthwise Separable Convolutions

A first technique that can be used in order to reduce the number of computations, is
to replace all regular convolutions in the network with depthwise separable convolutions.

1 https://iiw.kuleuven.be/onderzoek/eavise/viper/dataset

Figure 2. Bounding box cutouts of the “person” class for both datasets. Pascal VOC contains a lot of
intra-class variance, whilst persons in the Long Wave Infrared (LWIR) dataset have a similar look.

Table 2. LWIR video sequence in each split. Note that there is no sequence 2 available in the dataset.

Train 0, 4, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

Validation 1, 5, 8

Test 3, 6, 9, 11, 13, 15

J. Imaging 2021, 7, 64 5 of 21

Our operational dataset contains many scene constraints and is much less challenging
than the Pascal VOC data. This is done on purpose as it allows us to cover two com-
pletely different kinds of dataset of various complexity. By validating our techniques on
these distinctive datasets, we make a strong case for the generalizability of our optimiza-
tion pipeline.

2.2. Depth-Wise Separable Convolutions

A first technique that can be used in order to reduce the number of computations, is
to replace all regular convolutions in the network with depth-wise separable convolutions.
Initially introduced by Sifre and Mallat [10] and later popularized by Howard et al. [11]
in their MobileNet paper, depth-wise separable convolutions are a form of factorized
convolution that split a regular convolution into a depth-wise and point-wise convolution
(see Figure 3). A standard convolution both filters and combines information from multiple
previous feature maps in a single step, resulting in the following computational cost:

Dk · D f ·Mi ·Mo (1)

where Dk and D f are the dimension (width × height) of the kernel and feature map,
respectively, and Mi and Mo are the depth of the input and output feature maps.

Regular
Convolution

Depthwise
Convolution

Pointwise
Convolution

Figure 3. A regular convolution compared to a depth-wise and point-wise convolution. A regular convolution can be seen
as a volumetric operation, whilst the depth-wise separable convolution can be considered as a sum of two 2D operations.

Depth-wise separable convolutions split this into two distinct operations, the depth-
wise convolution for applying a filter and a point-wise convolution for combining informa-
tion of multiple filters. This results in a total computational cost:

Dk · D f ·Mi + D f ·Mi ·Mo (2)

Notice that both regular and depth-wise separable convolutions combine the same
information and generate an output with the same shape. However, the computational
cost of depth-wise separable convolutions is clearly lower:

Dk · D f ·Mi + D f ·Mi ·Mo

Dk · D f ·Mi ·Mo
=

1
Mo

+
1

Dk
< 1 (3)

Our baseline network, YoloV2, is a fully convolutional network, where each convo-
lution uses a kernel size of 3 × 3 (Dk = 9). As the number of output feature maps in that
network are always orders of magnitude bigger than nine, we can thus expect our net-
work to have around nine times less computations, when swapping regular convolutions
by depth-wise separable convolutions. However, as seen in Section 3, replacing regular
convolutions with depth-wise separable convolutions results in a significant drop of Av-

J. Imaging 2021, 7, 64 6 of 21

erage Precision (AP). Indeed, depth-wise separable convolutions have a more restricted
modeling capability compared to regular convolutions and thus a drop in accuracy might
be expected.

We determined experimentally that both the first and last convolutions work best
with these extra modeling capabilities. We thus decided to keep regular convolutions
for the first convolution of the network, as well as the second to last convolution. The
latter combines information from 2 feature maps from different parts of the network (see
Figure 4). We coined this optimized architecture MobileYoloV2. Whilst significantly
faster, this architecture still presents a notable reduction in accuracy compared to the
original network.

One of the easiest ways to improve the performance of single-shot detectors is to
increase the input resolution of the images going into the network. However, this also
increases the amount of computations by a significant amount (see Table 3). Instead, we
reduce the amount of downsampling that the model performs. This ensures that the output
resolution of the model is bigger and thus the model is able to perform better. To limit
the impact on the computational performance, we modify the network as close to the
end as possible. We therefore choose to increase the output resolution, by removing the
“reorg” operation introduced before concatenation of 2 feature maps of different dimen-
sions. Instead we upsample the smallest feature map (see Figure 5). Our modification
does not change the aim of the concatenation operation, which is to combine shallow,
but spatially fine-grained features with higher level, more downsampled features (see
Figure 4). Instead of chopping down the spatially bigger feature map, we upscale the
smaller one. This results in spatially bigger feature maps with more fine-grained details,
allowing for potentially better detection results and/or localization. As the concatenation
happens at the end of the network, with only two convolutions remaining, the influence on
the computational complexity remains rather limited (see Table 3). In fact, as both YoloV2
and MobileYoloV2 have the same last 2 layers—a regular convolution followed by a last
point-wise convolution—the computational overhead of upsampling is exactly 6.11 Giga
Multiply-Accumulate operations (GMAC) for both networks. We named these models
with upsampling YoloV2 Upsample and MobileYoloV2 Upsample, respectively.

Figure 4. YoloV2 (left) and YoloV2 Upsample (right).

J. Imaging 2021, 7, 64 7 of 21

Reorg
Concatentation

Upsample
Concatentation

Figure 5. YoloV2 reorg technique vs our upsample technique for concatenation. The reorg technique splits the bigger feature
map, whilst the upsample technique increases the resolution of the smaller feature map.

Table 3. Complexity of YoloV2 and our proposed variants on Pascal VOC.

Model Input Resolution Output Resolution FLOPs (GMAC)

YoloV2 416 × 416 13 × 13 14.74
YoloV2 832 × 832 26 × 26 58.96

YoloV2 Upsample 416 × 416 26 × 26 20.85

MobileYoloV2 416 × 416 13 × 13 3.80
MobileYoloV2 832 × 832 26 × 26 15.18

MobileYoloV2 Upsample 416 × 416 26 × 26 9.91

2.3. Channel-Wise Pruning

A second method to reduce the computational complexity of a neural network is
to reduce the number of channels of the intermediate convolutions and feature maps.
This method is called pruning and it relies on the fact that networks tend to be highly
overparameterized [26,27]. However, contemporary experience seems to indicate that it
is easier to train overparameterized networks [15,27,28]. Pruning exploits this fact, by
removing redundant and low importance filters from a trained network. When training
models on small operational datasets, we use transfer learning in order to adapt a pretrained
network to our specific use-case. When retraining, we want to keep the complex modeling
capabilities that the original network contains. Afterwards pruning allows us to remove
the redundancy in the network, which is much more present in the case of constrained
operational datasets.

Since our network is fully convolutional and we aim to run the network on a Graphics
Processing Unit (GPU), we focus on the channel-wise pruning of convolutional filters.
Many pruning implementations emulate pruning by masking or replacing kernel weights
with zeroes [29–31]. While this is a completely valid approach which can help to reduce the
size of the weight files, it does not reduce the number of computations when implemented
on GPUs. Our framework effectively removes the channels from the convolutions during
the pruning step, reducing the computational complexity of the network. As shown in
Figure 6, when you remove a channel from a convolution, this modifies the dimension
of the output feature map. This in turn influences the next operation that the network
will perform with that feature map. This is trivial for the simple case of a linear sequence,
depicted in Figure 6, but requires careful dependency tracking when working with more
complex networks. Hence, we implemented a generic convolutional pruning framework in

J. Imaging 2021, 7, 64 8 of 21

our open source Lightnet library [25] for PyTorch [29], which generates a dependency tree
of the operations after each convolution and then takes care of adapting these operations.
Most network architecture add a batch normalization layer and a non-linear activation after
each convolution. The normalization layer contains parameters specific for the different
channels of the feature map and thus needs to be adapted. However, this is not the
case for the activation layers, nor is this necessary for pooling operations. Finally, our
framework is also capable of tracking the feature map channels when concatenating or
stacking multiple feature maps together, and thus allows to prune these convolutions
as well. One limitation of our framework is that we cannot prune convolutions whose
feature maps are used in element-wise operations with other feature maps, such as residual
connections. Indeed, pruning these convolutions would require to prune the same channels
from both convolutions and is not currently implemented in our framework.

32 x 3 x 3 x 3
303 x 416 x 416

32 x 416 x 416
30

64 x 32 x 3 x 3
30

64 x 416 x 416

Figure 6. Dependency tracking when pruning convolutions. When reducing the number of channels of the first convolu-
tional kernel (green), the number of output features (blue) changes as well. This means that we need to adapt any module
that uses that feature map (i.c. the next convolution).

Once the dependency tree has been built, the actually pruning starts. Our iterative
pruning pipeline is described in pseudo code in Algorithm 1. We iteratively prune X% of
our model, and then retrain it for a maximum number of epochs E, in order to reach the
same accuracy as the original model. Note that the absolute number of pruned channels
at each step diminishes over time, because the network itself becomes smaller. In order
to limit the total runtime of the algorithm, we set a hard limit to the minimal number of
channels to prune. Once the algorithm prunes less than 5 channels of the network per step,
the pruning stops. If the new model reaches an accuracy during retraining that is α higher
than the original accuracy, training is stopped prematurely. This prevents overfitting on the
validation set and allows to set a higher value for the number of epochs E, without having
unnecessary long retraining times for the first few iterations of the pruning algorithm.
Finally, if we cannot reach APoriginal + α after retraining for E epochs, we still continue our
pruning pipeline if the accuracy is only β below the original accuracy. The rationale behind
this is that usually our validation set is small, and thus a minor drop in accuracy on this
dataset might not be representative for the entire data. We therefore set the lower bound
slightly below the original validation accuracy. Note that we use a separate validation
set with this pruning algorithm, to prevent overfitting on our test set. Only the final
models after pruning are tested on the test set and compared with the original models
for verification.

J. Imaging 2021, 7, 64 9 of 21

Algorithm 1: Pruning pipeline.
input : Trained model M0
output : Pruned model MP
parameter : Pruning step size X
parameter : Maximum number of epochs E
parameter : Early exit accuracy delta α
parameter : Accepted accuracy delta β

1 AM0 = validation_accuracy(M0);
2 repeat
3 MN = prune(MN−1, X);
4 if number_channels (MN) - number_channels (MN−1) <= 5 then
5 break;
6 end
7 for E in range(max_epoch) do
8 MN = train(MN);
9 AMN = validation_accuracy(MN);

10 if AMN ≥ AM0 + α then
11 break;
12 end
13 end
14 until AMN < AM0 − β;
15 MP = MN−1;

Since pruning is a very active research topic, there are a wide range of techniques
which select the appropriate channels to be removed [31]. In this paper, we aim to study
how relatively simple approaches translate to operational use-cases. We thus only imple-
mented and compared two different pruning techniques, based on the L2-norm [13] and
the Geometric Median (GM) [14]. The L2-norm based pruning technique is straightforward:
we compute the L2-norm of the weights of each prunable convolutional channel in the
network. The channels with the lowest L2-norm are considered to be the least important
and are thus pruned. However, the scale of the L2-norm can vary significantly depending
on the depth of the convolution in the network. Inspired by Molchanov et al. [13], we
further normalize the L2-norm of each channel in a convolution:

Importance(wi) =
||wi||2√

∑wj∈W ||wj||22
(4)

where wi and wj are the weights of a single channel in a convolution W. This allows us to
compare the importance of channels in different convolutions and thus allows us to prune
a certain percentage of the channels of all convolutions in the network.

In 2019, He et al. [14] discussed two issues related to norm-based pruning:

• Small Norm Deviation: The different norms might be concentrated in a small interval,
which makes it hard to select an optimal threshold for pruning channels.

• Large Minimum Norm: The channels with minimum norm may not be arbitrarily
small. In this case, channels which we consider least important might still contain
relevant information and pruning them might have negative consequences.

In order to solve these problems, they propose a method to prune channels that are
closest to the geometric median of all channels in a convolution. After optimization, the
final formula for the importance of a channel in a convolution is given as:

Importance(wi) = ∑
wj∈W

||wi − wj||2 (5)

J. Imaging 2021, 7, 64 10 of 21

A potential disadvantage of this technique is that it becomes impossible to compare
channels of different convolutions, as they have vastly different importance values. As
such, the geometric median can only be used on a per-layer basis and thus we can only
prune all the layers in our network uniformly. In order to mitigate this, in this paper we
propose to combine both L2-based pruning and GM-based pruning (e.g., pruning 5% with
L2 and 5% with GM).

2.4. Post-Training Quantization

The final step in our optimization pipeline is post-training quantization. Changing
the weights of the model from 32-bit floating point (FP32) to 16-bit floating point (FP16)
indeed drastically reduces the memory usage and computation time on embedded devices.
Methods exist to transform weights even further to 8-bit integers. However, as we speak
they are not yet available for our targeted platform (CUDA) in PyTorch v.1.7.0.

We ran our final benchmark on the Nvidia Jetson AGX Xavier, by re-implementing
our entire inference pipeline in C++ with LibTorch, the underlying library for PyTorch [29].
Since this entire pipeline is implemented with LibTorch tensors, it allows us to run the
pre-processing, model and post-processing on either CPU or GPU in FP32 or FP16.

3. Results

In this section we discuss the results of our experiments. We optimized the YoloV2
network as detailed in Section 2 for an academic dataset (see Section 3.1) and an operational
dataset (see Section 3.2).

3.1. Academic Dataset: Pascal VOC

This section covers the experiments conducted on the Pascal VOC dataset. As the
original YoloV2 network was specifically designed for this dataset, we do not expect a
reduction in computational cost by a significant margin, without affecting the accuracy.
However, it is worth trying to optimize it further.

3.1.1. Training on Pascal VOC

We train our models on the training dataset of Pascal VOC, using the same hyper-
parameters discussed by Redmon and Farhadi [4] for all of our models. As discussed in
the original paper, we transfer learn our models from ImageNet [6] and train them for a
total of 80,200 batches of 64 images each, again referring to the original implementation [4].
However, since we will be needing the validation dataset whilst pruning, we can only use
the training data to actually train our model, as opposed to the original implementation,
which combined both training and validation data together for training purposes. This
results in slightly lower accuracies overall, but is paramount for ensuring we do not overfit
our model on the test data whilst pruning.

Figure 7 shows the accuracy in mean Average Precision (mAP) and the model com-
plexity in number of Multiply Accumulate operations (MAC). Our MobileYoloV2 network,
which uses depth-wise separable convolutions, requires almost four times fewer com-
putations compared to the original YoloV2. However, it only reaches an mAP of 55.9%
on the validation set, which is almost 7% lower. Using our Upsample methodology, we
manage to increase the validation mAP to 58.2%, at an extra computational cost of 6.1
GMAC. MobileYoloV2 Upsample thus requires around 1.5 times less computations than the
original YoloV2 network. Using the same Upsample methodology on the regular YoloV2
network also increases the accuracy and results of our best model, reaching 65.4% AP.

J. Imaging 2021, 7, 64 11 of 21

Figure 7. Accuracy (mean Average Precision (mAP)) and complexity (Multiply-Accumulate (MAC)) of our models on the
Pascal VOC validation dataset.

3.1.2. Pruning on Pascal VOC

We iteratively prune X% of the channels of our model, as explained in Algorithm 1,
with parameters α = 3 and β = 2. During the training stage, we train for a maximum
number of 10,000 batches with a fixed learning rate of 0.0001. For each of the methods, we
use three different step sizes: 5%, 10% and 15%. Finally, we also combine both methods,
pruning 5% with the combination of both L2 and GM, pruning 5% with L2 and 10% with
GM and pruning 10% with L2 and 5% with GM. The results of these experiments are
shown in Figure 8. We select the best method for each network by looking at the number
of MAC-operations in the network. These are shown in Table 4.

Figure 8. Accuracy (mAP) vs computational complexity (MAC) of the pruned models on the Pascal VOC validation data.
Note the red horizontal and vertical lines, which indicate the values of the unpruned models. The Y-axis does not start at
zero, in order to more clearly show the small differences in accuracy.

Table 4. Accuracy (mAP) and complexity (GMAC) of the regular models, compared with the best pruned version of each
model. Accuracy is computed on the Pascal VOC validation dataset

Model
Regular Pruned

mAPval (%) GMAC Method Step (%) mAPval (%) GMAC Reduction

YoloV2 62.9 14.7 L2 10 61.1 6.3 ÷ 2.3
YoloV2 Upsample 65.4 20.9 L2 5 63.9 8.0 ÷ 2.6

MobileYoloV2 55.9 3.8 L2 5 54.2 1.5 ÷ 2.5
MobileYoloV2 Upsample 58.2 9.9 L2 5 56.7 3.3 ÷ 3

J. Imaging 2021, 7, 64 12 of 21

Even though YoloV2 was designed for this academic dataset, we still manage to
prune over 50% of the computations, without dropping accuracy on the validation data.
By pruning MobileYoloV2, we manage to reduce the computations with a factor of 2.5,
requiring only 1.5 GMAC. Compared to the original YoloV2 network, this is a reduction
in computational complexity of a factor of 9.8. Pruning on this dataset works best with
smaller step sizes, which results in long pruning times, since we remove fewer channels on
each iteration.

An important thing to note is that all networks are pruned more with the L2 method.
Figure 9 shows the number of pruned channels per layer for YoloV2. With the L2 method,
we pruned up to 60% of the middle and late layers, whilst only pruning 10–20% of the
early layers. This results in a higher total pruning rate than the GM method, which is only
able to prune all layers uniformly.

Figure 9. Number of discarded channels per layer after pruning YoloV2 with L2 (left) and GM (right). The best pruned
version of each are shown. These plots show the disadvantage of GM pruning, which can only prune all layers uniformly
and thus gets a lower overall pruning percentage.

3.1.3. Quantization on Pascal VOC

Once we selected our different pruned networks, we can perform a final benchmark
on our test set. As explained in Section 2.4, we run our benchmark on an NVidia Jetson
AGX Xavier, using Libtorch, the C++ interface of PyTorch. When computing the average
precision, we set the confidence threshold of our models to 1%, in order to capture the full
range of detections our models return. However, when performing timing benchmarks,
selecting a proper confidence threshold has an influence on the post-processing time. We
therefore select the confidence of the best F1 point of our Precision-Recall (PR) curve. As
Pascal VOC is a multi-class dataset, we need to compute a micro-averaged PR curve in
order to compute a single F1 point and confidence value, which are shown in Figure 10.

The results of this benchmark are given in Table 5. YoloV2 Upsample reaches the
highest accuracy, with 65.2% AP, but is also the slowest network with an inference time
of 52 ms per image. MobileYoloV2 is the fastest model with an inference time of 15 ms,
but only reaches an accuracy of 56%. MobileYoloV2 Upsample is 8 ms slower, with an
inference time of 23 ms. This is still almost two times faster than regular YoloV2, but it
does not reach the same accuracy and is still 5% below the original, with an accuracy of
58%. We can also see that the post-processing is quite stable and takes around 6 ms for all
the networks.

Pruning the models results in a major speedup of almost a factor of 2, except for the
MobileYoloV2 network, which barely got any speedup at all. However, it still remains the
fastest FP32 network with an inference latency of 13 ms.

Finally, we also ran our models in FP16 mode. The first thing to note is that switching
to FP16 does not seem to influence the accuracy at all, whilst decreasing the latency by a

J. Imaging 2021, 7, 64 13 of 21

significant margin for most networks. In this benchmark, it seems that the faster mobile
networks do not have as big of a speedup as compared to the two other models. Still, our
fastest network overall is Regular MobileYoloV2 Upsample in FP16 mode, which has an
inference time of 17 ms (with post-processing) and can thus process an image stream of up
to 60 Frames per Second (FPS).

Table 5 shows that pruning results in only a minor decrease of AP compared to the
regular networks. The micro-averaged PR curve of Figure 10 further shows that this
decrease in AP comes from a faster decline in recall more specifically.

Table 5. Model accuracy and inference times measured on the NVidia Jetson Xavier and averaged over the Pascal VOC test
set. Average Precision (AP) is measured with a threshold of 1% and timing results are measured with a threshold set at the
best F1 score. The best values are shown in bold.

YoloV2 YoloV2 Upsample MobileYoloV2 MobileYoloV2 Upsample

Regular Pruned Regular Pruned Regular Pruned Regular Pruned

Best F1 (%) 67.1 64.9 68.9 67.8 59.8 58.8 61.5 60.4
Threshold (%) 45.8 45.3 47.7 46.9 39.8 39.8 36.1 39.5

GPU FP32

APtest (%) 63.0 60.6 65.2 64.2 55.6 54.0 58.1 56.3
Model (ms) 43.83 22.42 52.06 25.64 15.37 13.22 23.66 13.34
Post (ms) 6.77 6.40 6.71 6.45 5.94 6.13 6.49 5.80

GPU FP16

APtest (%) 63.0 60.6 65.2 64.2 55.7 54.0 58.1 56.3
Model (ms) 16.92 12.54 17.92 13.17 11.94 11.37 11.24 12.53
Post (ms) 6.19 5.86 6.25 5.80 5.97 6.16 5.50 6.03

Figure 10. Micro-averaged Precision-Recall (PR) curve and AP of our models on the Pascal VOC test set. The best F1 point
is marked for each curve, which is used as a confidence threshold when performing the timing benchmarks.

J. Imaging 2021, 7, 64 14 of 21

3.2. Operational Dataset: LWIR Railway Surveillance Data
3.2.1. Training on LWIR

Gaus et al. [9] proved that it is beneficial to use a pretrained model on RGB data, and
subsequently apply transfer learning in order to fine-tune the model on a smaller IR dataset.
We thus follow the same paradigm and start from the same pretrained ImageNet weights
as before. We manually fine-tune some of the hyperparameters in order to reach a better
accuracy with YoloV2 on the validation data. We then proceed to train the other networks
with these fine-tuned hyperparameters (found in Table 6).

Table 6. Modified hyperparameters for LWIR training. Any parameter that is not listed here is the same as for the
VOC training.

Hyperparameter VOC LWIR

Input Dimension 416 × 416 640 × 512
Max Batches 80,200 25,000
Object Scale 5.0 5.0

No-object Scale 1.0 1.0
Coord Scale 1.0 2.0

Learning Rate 0.001 0.001
[×0.1 after batch 40,000 and 60,000] [×0.1 after batch 10,000 and 17,000]

Figure 11 shows the PR curves and AP accuracy of the trained models, as well as their
computational complexity in number of MAC-operations. Similarly to the VOC training,
MobileYoloV2 requires almost four times less computations. However, as this is a less
complex dataset, MobileYoloV2 reaches an accuracy of 81.35% AP, which is only −1.35%
lower than the original. Using the Upsample approach, we can again increase the accuracy.
Hence MobileYoloV2 Upsample reaches an accuracy of 84.95% AP, beating the original
YoloV2 by a margin of +2.25%, whilst only requiring 2

3 of the computations.

Figure 11. Accuracy (AP) and complexity (MAC) of our models on the LWIR Railway Surveillance validation dataset.

3.2.2. Pruning on LWIR

We iteratively prune in the same manner as explained above, but only allow a max-
imum number of 5000 batches of retraining. Because this dataset is less challenging, we
also increase the different step sizes to 10%, 15% and 20% for both methods individually.
When combining the methods together, we try pruning with step sizes of 5 + 5%, 5 + 10%,
10 + 5% and 10 + 10%. The results of these experiments are shown in Figure 12 and the best
pruned versions of each network are found in Table 7.

J. Imaging 2021, 7, 64 15 of 21

Figure 12. Accuracy (AP) vs computational complexity (MAC) of the pruned models on the LWIR Railway Surveillance
validation data. Note the red horizontal and vertical lines, which indicate the values of the unpruned models. The Y-axis
does not start at zero, in order to more clearly show the small differences in accuracy and the X-axis is on a logarithmic scale.

Table 7. Accuracy (AP) and complexity (GMAC) of the regular models, compared with the best pruned version of each
model. Accuracy is computed on the LWIR Railway Surveillance validation dataset.

Model
Regular Pruned

APval (%) GMAC Method Step (%) APval (%) GMAC Reduction

YoloV2 82.7 27.9 GM 15 82.6 0.28 ÷ 99.6
YoloV2 Upsample 89.2 39.4 L2_GM 5 5 88.1 0.33 ÷ 119.4

MobileYoloV2 81.3 7.2 L2_GM 5 5 81.0 0.18 ÷ 40.0
MobileYoloV2 Upsample 85.0 18.6 L2_GM 5 5 83.1 0.08 ÷ 232.5

Amazingly, we see that on this LWIR dataset, we manage to prune more than 95% of
the computations. Our smallest model, MobileYoloV2 Upsample requires 233 times fewer
computations after pruning and 349 times fewer computations than the original YoloV2,
whilst achieving the same AP on the validation dataset. This clearly proves our hypothesis
that these neural networks are vastly oversized for simpler, constrained computer vision
problems as often found in real-life and industrial applications.

A current limitation of our pruning pipeline implementation is that we cannot track
the feature map dependencies after the “reorg” layer. This can be seen in Figure 13, where
layers 25 and 26 are not pruned at all. By swapping this layer for an “upsample” layer, we
effectively allow to prune these two layers as well, resulting in an even higher pruning rate
on this dataset.

Looking at Figure 12, we note that combining both the L2 and GM pruning meth-
ods yields the best results overall, followed by GM. L2 gives the worst pruning results.
Figure 13 shows that we prune all layers more evenly on this dataset and thus the downside
of using GM, which can only prune all layers uniformly, is not an issue here. In fact, the GM
pruning method seems to be a more powerful pruning technique than L2 for this dataset.

3.2.3. Quantization on LWIR

Finally, we select the best pruned networks for each model and run a benchmark on
the NVidia Jetson AGX Xavier in C++. The results of this benchmark can be found in
Table 8. Just as for the Pascal VOC benchmark, we set the confidence threshold to 1% when
measuring the AP and we select the best F1 working point for measuring inference runtime.

YoloV2 Upsample is the best, yet slowest model, reaching an AP of 68.2%, for a latency
of 80 ms per image on this dataset. MobileYoloV2 is the fastest regular network at 24 ms
latency, but drops 6.7% AP compared to the original YoloV2. In comparison, MobileYoloV2
Upsample, with a latency of 37 ms, is still 1.8 times faster than the original YoloV2 whilst
reaching a similar accuracy as well.

J. Imaging 2021, 7, 64 16 of 21

Figure 13. Number of pruned channels per layer after pruning YoloV2 on LWIR with L2 (left) and GM (right). The best
pruned version of each are shown. Compared to Figure 9, the disadvantage of uniform pruning is less of an issue on this
dataset, and thus GM pruning manages to outperform L2 pruning.

When looking at the pruned networks, we can see that the fastest network is YoloV2
Upsample, with a latency of 4.4 ms, even though Table 7 shows it has more computations
than MobileYoloV2 Upsample. Splitting a convolution in a depth-wise and point-wise
part results in two times more layers in the network, but each layer is computationally
less expensive. However, as we pruned up to 99% of all channels in the network, the
computational advantage becomes much smaller and the overhead of having more layers
becomes much more noticeable, which is why YoloV2 and YoloV2 Upsample are faster on
this dataset when pruned.

Finally, switching to FP16 for our computations results in a speedup of all networks,
without affecting the accuracy. Pruned YoloV2 seems to be the fastest network in this
setting, but not by much compared to pruned YoloV2 Upsample. Furthermore, YoloV2
Upsample has a 5% better accuracy and would thus most likely be the preferred network.
With a combined latency of 7.8 ms, this network can handle image streams of up to 128 FPS.

Looking at the PR curves in Figure 14, we can again conclude that the major difference
between the regular and pruned models is that the recall of the pruned models declines
faster. Even MobileYoloV2 Upsample, which starts at a higher recall level, finally has a big
drop in recall and shoots below the original model.

Table 8. Model accuracy and inference times measured on the NVidia Jetson Xavier and averaged over the LWIR test set.
AP is measured with a threshold of 1% and timing results are measured with a threshold set at the best F1 score. The best
values are shown in bold.

YoloV2 YoloV2 Upsample MobileYoloV2 MobileYoloV2 Upsample

Regular Pruned Regular Pruned Regular Pruned Regular Pruned

Best F1 (%) 67.1 62.5 73.8 71.8 63.1 61.5 64.2 65.7
Threshold (%) 39.6 37.5 49.6 40.7 36.5 33.8 41.2 43.1

GPU FP32

APtest (%) 58.9 53.5 68.2 64.0 52.7 52.2 59.3 60.3
Model (ms) 65.93 6.63 79.34 4.37 24.04 7.20 36.94 5.86
Post (ms) 3.51 3.63 3.71 3.61 3.68 3.55 3.53 3.52

GPU FP16

APtest (%) 58.9 53.5 68.2 63.8 52.8 51.8 59.5 60.2
Model (ms) 21.58 4.25 25.86 4.37 9.87 5.50 14.13 6.49
Post (ms) 3.48 3.45 3.66 3.43 3.71 3.50 3.57 3.37

J. Imaging 2021, 7, 64 17 of 21

Figure 14. PR curve and AP of our models on the LWIR test set. The best F1 point is marked for each curve, which is used
as a confidence threshold when performing the timing benchmarks.

4. Discussion

Table 9 shows a summary of our experimental results in the form of an ablation
study. Our experiments showed that swapping out regular convolutions for depth-wise
and point-wise convolutions is a good technique for reducing the computational complex-
ity and thus inference latency of a model. Contrary to the results shown by Howard et al.
[11], this modification unfortunately harms the accuracy of our models by a significant
margin. Indeed, Table 9 shows that this optimization requires 3.9 times less computations
than YoloV2, but also shows a decrease of 7.4% AP on the Pascal VOC test dataset and
6.2% on the LWIR test dataset. Using the Upsample trick that we propose in this paper, we
manage to reduce this difference in AP to only 4.9% for Pascal VOC. On the LWIR dataset,
we manage to completely eliminate this difference and beat the original model by a margin
of 0.4% on the test data (“+DW+UP” in Table 9). These results also demonstrate that the
constrained setting of our operational dataset allows us to use lighter models with less
modeling capabilities. While we did manage to use this technique successfully, one might
argue that this technique is not automatic and is in fact a model engineering trick. Still, as
we did not redesign a network from scratch, but simply swapped out all convolutions, we
believe this technique to be justified in this article.

Pruning models allows for a completely automatic modification of a network and
gives good results on both datasets, as we are able to prune away more than 50% of the
computations of our models for Pascal VOC and over 95% for the LWIR dataset. The
lesser results on Pascal VOC were to be expected, as the original networks were specifically
designed to work on such a challenging dataset. We still managed to prune a significant
amount of computations for this dataset, resulting in an inference speedup factor of two
for the YoloV2 model. These results might point towards the fact that the models need
complex modeling capabilities for training, but can be reduced significantly afterwards.
Combined with depth-wise separable convolutions, our fastest network is MobileYoloV2,
which contains 9.8 times fewer computations and is 3.3 times faster than the original
YoloV2. For the case of the LWIR dataset, we managed to prune over 95% of the networks,
demonstrating that these network designs are indeed usually oversized because they are
not targeted at these more constrained operational scenarios. Our fastest pruned network,

J. Imaging 2021, 7, 64 18 of 21

Yolov2 Upsample, is 85 times less computationally expensive and more than 15 times faster
than the original YoloV2. Surprisingly, this was not the network with the least amount of
computations. Indeed, MobileYoloV2 Upsample requires even less computations and is
349 times less computationally expensive than YoloV2. However, the overhead of having
more layers makes this network slower on a GPU, but we expect this network to have a
bigger speedup factor when using only CPU or when implemented on custom hardware.
Even though geometric median pruning yields better results than L2-based pruning on our
operational dataset, the results on Pascal VOC seem to indicate that it might be beneficial
to introduce some form of normalization, which would allow to prune across layers with
this technique.

Table 9. Ablation study of the different optimization methods, evaluated on both the Pascal VOC and LWIR test dataset.
Note that the inference time is not including the post-processing. The best values are shown in bold.

Model
Pascal VOC LWIR

mAP (%) GMAC Inference (ms) AP (%) GMAC Inference (ms)

YoloV2 63.0 14.7 43.8 58.9 27.9 65.9

+DW 55.6 (−7.4) 3.8 (÷3.9) 15.4 (÷2.8) 52.7 (−6.2) 7.2 (÷3.9) 24.0 (÷2.7)
+UP 65.2 (+2.2) 20.9 (×1.4) 52.1 (×1.2) 68.2 (+9.3) 39.4 (×1.4) 79.3 (×1.2)

+PRUNE 60.6 (−2.4) 6.3 (÷2.3) 22.4 (÷2.0) 53.5 (−5.4) 0.28 (÷99.6) 6.6 (÷10)
+QUANT 63.0 (−0.0) 14.7 (÷1.0) 16.9 (÷2.6) 58.9 (−0.0) 27.9 (÷1.0) 21.6 (÷3.1)

+DW +UP 58.1 (−4.9) 9.9 (÷1.5) 23.7 (÷1.8) 59.3 (+0.4) 18.6 (÷1.5) 36.9 (÷1.8)
+DW +PRUNE 54.0 (−9.0) 1.5 (÷9.8) 13.2 (÷3.3) 52.2 (−6.7) 0.18 (÷155) 7.2 (÷9.2)
+DW +QUANT 55.7 (−7.3) 3.8 (÷3.9) 11.9 (÷3.7) 52.8 (−6.1) 7.2 (÷3.9) 9.9 (÷6.7)
+UP +PRUNE 64.2 (+1.2) 8.0 (÷1.8) 25.6 (÷1.7) 64.0 (+5.1) 0.33 (÷84.5) 4.4 (÷15.0)
+UP +QUANT 65.2 (+2.2) 20.9 (×1.4) 17.9 (÷2.4) 68.2 (+9.3) 39.4 (×1.4) 25.9 (÷2.5)

+PRUNE +QUANT 60.6 (−2.4) 6.3 (÷2.3) 12.5 (÷3.5) 53.5 (−5.4) 0.28 (÷99.6) 4.3 (÷15.3)

+DW +UP +PRUNE 56.3 (−6.7) 3.3 (÷4.5) 13.3 (÷3.3) 60.3 (+1.4) 0.08 (÷348.8) 5.9 (÷11.2)
+DW +UP +QUANT 58.1 (−4.9) 9.9 (÷1.5) 11.2 (÷3.9) 59.5 (+0.6) 18.6 (÷1.5) 14.1 (÷4.7)

+DW +PRUNE +QUANT 54.0 (−9.0) 1.5 (÷9.8) 11.4 (÷3.8) 51.8 (−7.1) 0.18 (÷155) 5.5 (÷12.0)
+UP +PRUNE +QUANT 64.2 (+1.2) 8.0 (÷1.8) 13.2 (÷3.3) 63.8 (+4.9) 0.33 (÷84.5) 4.4 (÷15.0)

+DW +UP +PRUNE +QUANT 56.3 (−6.7) 3.3 (÷4.5) 12.5 (÷3.5) 60.2 (+1.3) 0.08 (÷348.8) 6.5 (÷10.1)

Finally, we observe that post-training quantization really is a must when deploying
models on devices with limited computational resources. Overall, it results in an average
speedup factor of two, without any noticeable difference in accuracy. The speedup factor does
seem to be less for our faster mobile networks, as they contain less computations overall.

While simply combining all optimization techniques together does indeed yield faster
results than the individual techniques, our ablation study in Table 9 demonstrates that
this is not always the optimal solution. When deploying this optimization pipeline on an
operational use-case, it might thus be beneficial to carefully try the different techniques,
when you need the best possible trade-off. Doing so on our operational dataset, we created
a pipeline that is able to handle a 640x512 image stream at a framerate of up to 128 FPS on
an NVidia Jetson AGX Xavier. Moreover, it increased the accuracy by a margin of 5% AP
compared to the original YoloV2 network, which can only process images up to 14 FPS.
All the code used for training, pruning and finally benchmarking our models has been
released in our open source library, Lightnet [25].

For the hypothesis we presented earlier in this paper, “The more constrained a problem
is, the more the network can be optimized”, our experimental results in Table 9 show clear
evidence. The achieved factors, both in compute reduction and speed-up, are orders of
magnitude larger on our constrained LWIR problem as compared to the challenging Pascal
VOC problem. Other recent publications substantiate this claim, although they do not
explicitly compare problems with different constrainedness. The single-shot object detector
pruning experiments reported in Wu et al. [18] indeed resulted in a large optimization

J. Imaging 2021, 7, 64 19 of 21

factor as well (32× reduction in number of parameters, 20× smaller model size). This
coincides with their problem, which is similarly greatly constrained: apple flowers have
a very limited amount of intra-class variance, and the background is very similar in all
dataset images. Another example is the work of Ayob et al. [19], combining depth-wise
separable convolutions and pruning for underwater object detection from a static aquarium
camera, which resulted in a reduction with a factor of 161 in model size and a speed-up
with a factor of 4.7. Although the exact numbers are not comparable with our results,
where we even combine more optimization techniques, these studies show indeed that
for constrained problems great optimization factors can be achieved. Actually, our results
put the findings of such studies in perspective, as from our experiments we know that the
nature of the dataset itself greatly influences the optimization factors that can be achieved.
It would have been more honest if such papers, presenting results on network optimization,
would also report their achieved optimization factor on a standard academic dataset, and
not only on their own operational use case.

5. Conclusions

In this paper, we investigated the achievable amount of optimization for object de-
tection neural networks trained on different datasets. We observe that many real-life and
industrial application scenarios of object detection are somehow constrained, in the sense
that they e.g. have less object and background variation, less object classes to be detected
or are limited to restricted or even fixed viewpoints and color schemes. This is in sharp
contrast to the academic datasets designed for object detection challenges, such as Pascal
VOC and MS COCO, which are very challenging and unconstrained. The hypothesis in
this paper is that the resulting best scoring neural network architectures for these aca-
demic datasets, for instance Faster-RCNN, Yolo and SSD, are actually largely oversized
for industrial applications and hence have plenty of room for optimization. However,
gathering enough data in order to train completely new models for operationally use-cases
is often unfeasible and thus transfer learning provides a great mechanism to reduce the
required amount of data. This does mean that the same models are used and thus there is
a need to be able to adapt networks to different scenarios. We therefore build a pipeline
in order to combine multiple optimization techniques together and test it, as a case study,
on two distinct datasets (on opposites of the dataset complexity spectrum). In terms of
computational complexity, we observed that we can safely reduce the model trained on the
academic dataset by a factor of 9.8, while the model trained on the constrained operational
dataset can be reduced by a factor of 348.8. In terms of model inference speed on a typical
embedded GPU, we reached speed-up factors of 3.9 and 15.3, respectively. This indeed
demonstrates that the potential of network optimization is much larger for a constrained
object detection problem. Finally, our ablation study shows that simply combining all
optimization techniques together does not necessarily yield the best results. While the full
combination provides a better speed-accuracy trade-off than the individual optimization
methods for both our test cases, we managed to get even better results by selecting only a
subset of the techniques.

In the future, we want to look at more advanced pruning techniques and validate
them on various different operational use-cases. Additionally, the runtime speed of our
models could be reduced even further by using tools such as TensorRT, which generate
highly optimized inference code by analyzing a model. It might thus be interesting to
run our optimized and pruned models with TensorRT, as the reduced memory footprint
of our models might allow the tool to select faster kernels and thus yield even more
impressive results.

Author Contributions: Conceptualization, T.O. and T.G.; formal analysis, T.O. and C.G.; funding
acquisition, T.G.; investigation, T.O. and C.G.; methodology, T.O., K.V.B. and T.G.; project administra-
tion, T.G.; software, T.O. and C.G.; supervision, K.V.B. and T.G.; validation, T.O.; visualization, T.O.;
writing—original draft, T.O.; writing—review and editing, K.V.B. and T.G. All authors have read and
agreed to the published version of the manuscript.

J. Imaging 2021, 7, 64 20 of 21

Funding: This work is funded by the FWO (SBO Project Omnidrone).

Data Availability Statement: Publicly available datasets were analyzed in this study. The Pas-
cal VOC data can be found here: http://host.robots.ox.ac.uk/pascal/VOC. The LWIR Railway
Surveillance data can be found here: https://iiw.kuleuven.be/onderzoek/eavise/viper/dataset. The
code used in this study can be found at https://gitlab.com/eavise/lightnet and https://gitlab.com/
EAVISE/top/voc (accessed on 31 March 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
CNN Convolutional Neural Network
FPS Frames per Second
FP16 16-bit floating point
FP32 32-bit floating point
GM Geometric Median
GPU Graphics Processing Unit
IoU Intersection over Union
LWIR Long Wave Infrared
MAC Multiply Accumulate operations
mAP mean Average Precision
PR Precision-Recall curve

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
Springer: New York, NY, USA, 2015; pp. 234–241.

3. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

4. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

5. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
6. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of

the Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009.
7. Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes

Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
8. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in

context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 7 March 2014; Springer: New
York, NY, USA, 2014; pp. 740–755.

9. Gaus, Y.F.A.; Bhowmik, N.; Isaac-Medina, B.K.; Breckon, T.P. Visible to infrared transfer learning as a paradigm for accessible real-
time object detection and classification in infrared imagery. In Proceedings of the Counterterrorism, Crime Fighting, Forensics,
and Surveillance Technologies IV. International Society for Optics and Photonics, Bellingham, WA, USA, 21–25 September 2020.

10. Sifre, L.; Mallat, S. Rigid-Motion Scattering for Image Classification. arXiv 2014, arXiv:1403.1687.
11. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
12. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

13. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.
In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

http://host.robots.ox.ac.uk/pascal/VOC
https://iiw.kuleuven.be/onderzoek/eavise/viper/dataset
https://gitlab.com/eavise/lightnet
https://gitlab.com/EAVISE/top/voc
https://gitlab.com/EAVISE/top/voc
http://doi.org/10.1007/s11263-014-0733-5

J. Imaging 2021, 7, 64 21 of 21

14. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter Pruning via Geometric Median for Deep Convolutional Neural Networks
Acceleration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019.

15. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
16. Vanholder, H. Efficient Inference with Tensorrt. 2016. Available online: https://on-demand.gputechconf.com/gtc-eu/2017

/presentation/23425-han-vanholder-efficient-inference-with-tensorrt.pdf (accessed on 31 March 2021).
17. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless cnns with low-precision weights.

In Proceedings of the 5th International Conference on Learning Representations (ILCR), Toulon, France, 24–26 April 2017.
18. Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate

detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [CrossRef]
19. Ayob, A.F.; Khairuddin, K.; Mustafah, Y.M.; Salisa, A.R.; Kadir, K. Analysis of Pruned Neural Networks (MobileNetV2-YOLO

v2) for Underwater Object Detection. In Proceedings of the 11th National Technical Seminar on Unmanned System Technolog,
Kuantan, Malaysia, 2–3 December 2019; Md Zain, Z., Ahmad, H., Pebrianti, D., Mustafa, M., Abdullah, N.R.H., Samad, R.,
Mat Noh, M., Eds.; Springer: Singapore, 2021; pp. 87–98.

20. Van Beeck, K.; Van Engeland, K.; Vennekens, J.; Goedemé, T. Abnormal behavior detection in LWIR surveillance of railway
platforms. In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6.

21. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

22. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Pro-
ceedings of the 28th International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12
December 2015; pp. 91–99.

23. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: New York, NY, USA, 2016,
pp. 21–37.

24. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

25. Ophoff, T. Lightnet: Building Blocks to Recreate Darknet Networks in Pytorch. Available online: https://gitlab.com/EAVISE/
lightnet (accessed on 31 March 2021).

26. LeCun, Y.; Denker, J.S.; Solla, S.A.; Howard, R.E.; Jackel, L.D. Optimal brain damage. In Proceedings of the 2nd International
Conference on Neural Information Processing Systems (NIPs), Denver, CO, USA, 27–30 November 1989; pp. 598–605.

27. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.
28. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv

2016, arXiv:1611.03530.
29. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Nice, France, 2019;
pp. 8024–8035.

30. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 31 March 2021).

31. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. arXiv 2018, arXiv:1810.05270.

https://on-demand.gputechconf.com/gtc-eu/2017/presentation/23425-han-vanholder-efficient-inference-with-tensorrt.pdf
https://on-demand.gputechconf.com/gtc-eu/2017/presentation/23425-han-vanholder-efficient-inference-with-tensorrt.pdf
http://dx.doi.org/10.1016/j.compag.2020.105742
https://gitlab.com/EAVISE/lightnet
https://gitlab.com/EAVISE/lightnet
tensorflow.org

	Introduction
	Materials and Methods
	Datasets
	Depth-Wise Separable Convolutions
	Channel-Wise Pruning
	Post-Training Quantization

	Results
	Academic Dataset: Pascal VOC
	Training on Pascal VOC
	Pruning on Pascal VOC
	Quantization on Pascal VOC

	Operational Dataset: LWIR Railway Surveillance Data
	Training on LWIR
	Pruning on LWIR
	Quantization on LWIR

	Discussion
	Conclusions
	References

