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Abstract: Utilization of the Bidirectional Reflectance Distribution Function (BRDF) model param-
eters obtained from the multi-angular remote sensing is one of the approaches for the retrieval
of vegetation structural information. In this research, the potential of multi-angular vegetation
indices, formulated by the combination of multi-spectral reflectance from different view angles, for
the retrieval of forest above-ground biomass was assessed in the New England region. The multi-
angular vegetation indices were generated by the simulation of the Moderate Resolution Imaging
Spectroradiometer (MODIS) BRDF/Albedo Model Parameters Product (MCD43A1 Version 6)-based
BRDF parameters. The effects of the seasonal (spring, summer, autumn, and winter) composites of
the multi-angular vegetation indices on the above-ground biomass, the angular relationship of the
spectral reflectance with above-ground biomass, and the interrelationships between the multi-angular
vegetation indices were analyzed. Among the existing multi-angular vegetation indices, only the
Nadir BRDF-adjusted NDVI and Hot-spot incorporated NDVI showed significant relationship (more
than 50%) with the above-ground biomass. The Vegetation Structure Index (VSI), newly proposed in
the research, performed in the most efficient way and explained 64% variation of the above-ground
biomass, suggesting that the right choice of the spectral channel and observation geometry should be
considered for improving the estimates of the above-ground biomass. In addition, the right choice of
seasonal data (summer) was found to be important for estimating the forest biomass, while other
seasonal data were either insensitive or pointless. The promising results shown by the VSI suggest
that it could be an appropriate candidate for monitoring vegetation structure from the multi-angular
satellite remote sensing.

Keywords: forests; structure; biomass; BRDF; MODIS; multi-angular; NDVI (fore-back); vegetation
structure index

1. Introduction

Forests have experienced dramatic changes in terms of cover, density, and biomass
worldwide. Monitoring of forest biomass and carbon stock changes is vital to comprehend
deforestation and degradation conditions that have implications for the climate system. At
local scales, forest structural parameters such as diameter at breast height, canopy height,
etc., can be obtained from the measurement of individual trees. Then, the forest biomass
can be estimated with allometric functions, which provides a functional relationship with
easily measured variables such as standing tree height and diameter at breast height [1,2].
However, satellite remote sensing is an expected technology for upscaling the in situ
estimates of forest biomass into broad scales.

Multi-angular remote sensing refers to the observation of surface reflectance from
multiple view angles beyond nadir alone with the account of solar position as well. It
provides a technique of measuring anisotropic surface reflectance of the land surface.
The anisotropic reflectance, the directional dependency of the reflectance with sun-sensor
geometry, is a unique characteristic of the land surface [3–6]. Researchers have developed
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some Bidirectional Reflectance Distribution Function (BRDF) models such as computer
simulation [7], empirical [8], physical radiative transfer [9], physical geometric optical [10,
11], and semi-emperical [12,13] to describe the anisotropic characteristics of the land surface.
Since the bidirectional reflectance is sensitive to vegetation structure (canopy cover, height,
volume, etc.) [14,15], it can be one of the approaches for the retrieval of above-ground
biomass. The multi-angular remote sensing has also been utilized for characterization of
biomes [16], forests [17], agricultural landscape [18], vegetation physiognomic types [19],
and chemical attributes of the canopy [20,21]. On the other hand, the angular variation adds
noise and uncertainty on the study of land surface biophysical parameters such as land
cover and vegetation classification and phenology [22–24]. The BRDF models have many
applications such as normalizing the BRDF effects of images taken at multiple sun-sensor
geometry, estimation of albedo by integration of multi-angular reflectance, and retrieval
of land surface attributes by the interpretation of BRDF shapes [25–27]. Therefore, more
observations and research in the field of BRDF are necessary for better understanding the
land-surface anisotropic characteristics and accurate retrieval of structural information.

For the retrieval of vegetation biophysical parameters from the multi-angular remote
sensing, different approaches such as radiative transfer modeling [7], geometric-optical
modeling [10], spectral invariant [28,29] and BRDF model parameters [30,31] have been
attempted by the researchers. The Ross-Thick/Li-Sparse-Reciprocal (RTLSR) is one of the
semi-empirical BRDF models. In this model, the bi-directional reflectance (R) is described
for a given sun zenith angle (SZA), view zenith angle (VZA), and relative azimuth angle
(RAA) with isotropic, volumetric and geometric scattering coefficients and the kernels for
volumetric scattering and geometric scattering [32]. Radiative transfer models are effective
to estimate the biophysical and biochemical properties of the forest canopy. However,
utilization of multi-angular indices as the combination of spectral reflectance measured
from multiple view angles can be an uncomplicated and straightforward technique to
derive vegetation structure information. An overview of the multi-angular indices available
in the literature has been presented in Table 1.

Table 1. Overview of the multi-angular vegetation indices available in the literature. The iso, H, N, and D refers to the
configuration of the sun-sensor geometries at Nadir-sun Nadir-view, Hot-spot, Nadir, and Dark-spot, respectively.

Multi-Angular Vegetation Indices Formula Reference Target Areas

Nadir BRDF-adjusted NDVI (NDVIiso) Niriso−Rediso
Niriso+Rediso

Schaaf et al. [33] Vegetation parameters
Anisotropy index (ANIXRed) Hred

Dred
Sandmeier et al. [34] Land cover types

Anisotropy index (ANIXNir) Hnir
Dnir

Sandmeier et al. [34] Land cover types
Hot-spot dark-spot index (HDSred)

Hred−Dred
Dred

Lacaze et al. [35] Vegetation clumping
Normalized difference between hot-spot

and dark-spot index (NDHDnir)
Hnir− Dnir
Hnir+Dnir

Chen et al. [36] Vegetation clumping

Hot-spot dark-spot NDVI (NDVIHD) Hnir−Dred
Hnir+Dred

Pocewicz et al. [37] Leaf area index
Hot-spot-incorporated NDVI (NDVIHS) NNDVI × (1 − Hred) Pocewicz et al. [37] Leaf area index

Derivation of more sensitive vegetation indices from multi-angular remote sensing
data is important for better retrieval of the vegetation structural information. The major
objectives of this research are to assess the potential of multi-angular vegetation indices for
the retrieval of forest above-ground biomass, and to propose a more sensitive vegetation
index for the estimation of above-ground biomass. The effects of seasonal composites of
the multi-angular vegetation indices on above-ground biomass, angular relationship of the
spectral reflectance with above-ground biomass, and the interrelationships between the
multi-angular vegetation indices have also been discussed.
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2. Materials and Methods
2.1. Study Areas and In Situ Data

This research was implemented in the New England region where a high-quality
forest inventory database is available [38]. The database constitutes the field measurements
conducted in five forests in 2009. It includes forest inventory data from five forests: Harvard
Forest (moist temperate), Howland Research Forest (mature evergreen), Hubbard Brook
Experimental Forest (deciduous hardwoods), Bartlett Experimental Forest (deciduous
hardwoods), and Penobscot Experimental Forest (mixed conifers and hardwoods). The
above-ground biomass was calculated with diameter at breast height greater than 10 cm
using the allometric function [1]. The heterogeneous sample plots mixed with other land
cover types, such as built-up areas, water ponds, etc., were discarded from the analysis.
Among 59 sample plots (1 ha size) available, 55 sample plots were selected for this analysis.
Location map of the study sites and distribution of sample plots have been shown in
Figure 1.
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2.2. Proposal of New Multi-Angular Indices

A typical forest canopy is composed of green canopy cover (sunlit crown and shad-
owed crown) and canopy shadow fraction (shadowed ground and shadowed crown). The
fractional area of the canopy components vary significantly in the principal plane with
respect to the view zenith angles [39]. The geometric configuration of (sun zenith angle,
view zenith angle, and relative azimuth angle) has been used to define the concerned sun-
sensor geometries, such as Nadir-sun and Nadir-view (0◦, 0◦, 0◦), Hot-spot (45◦, 45◦, 0◦),
Nadir (45◦, 0◦, 0◦), and Dark-spot (45◦, 45◦, 180◦). While the scene viewed from the back-
scattering direction is mostly composed of sunlit ground and sunlit crown, the shadowed
crown and shadowed ground dominate the scene viewed from the fore-scattering direction.
Red reflectance at the Back-scattering direction is sensitive to hiding of the ground which
should be faster in tall and dense (high-biomass) canopy [40]. The larger the ground surface
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hidden by canopies, the lower the red reflectance at the Back-scattering direction. For
tall and dense canopy, near infrared reflectance at the Fore-scattering direction should be
higher due to the effect of leaf area index changes. In this research assumed hot-spot (45◦,
45◦, 0◦) and dark-spot (45◦, 45◦, 180◦) were used as the Back-scattering and Fore-scattering
directions, respectively. Fore-scattering (Fore) and Back-scattering (Back) Normalized
Difference Vegetation Index (NDVIFore−back) can be calculated as the normalized difference
between the Near Infrared (Nir) reflectance observed at Fore-scattering (Fore) direction
and the Red reflectance (Red) observed at Back-scattering (Back) direction (Equation (1))
to be sensitive to the volumetric structure of the forest canopy. Then, by integrating the
non-linear interaction of the vegetation coverage ratio, indicated by the term (1 − NirFore),
the Vegetation Structure Index (VSI) has been proposed in the research (Equation (1)).

VSI =
NDVIFore−back

1 − NirFore
(1)

2.3. Processing of Satellite Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model
Parameters Product (MCD43A1) has been providing BRDF model parameters based on
the RTLSR model [33]. The BRDF model parameters (isotropic, volumetric and geometric
coefficients) were obtained from the MODIS BRDF/Albedo product (MCD43A1 Version
6) of 2009. This dataset is produced daily using 16 days of Terra and Aqua MODIS
data at a 500-m (m) resolution. Using the central geolocation point of each plot, the
BRDF model parameters were extracted for a single MODIS pixel. Then, the bidirectional
reflectance for the assumed Hot-spot (45◦, 45◦, 0◦), Nadir (45◦, 0◦, 0◦), and Dark-spot (45◦,
45◦, 180◦) were calculated by using the BRDF model parameters (isotropic, volumetric
and geometric scattering coefficients) and look-up values for the kernels of volumetric
scattering and geometric scattering. The Back-scattering and Fore-scattering reflectance
were obtained from the assumed Hot-spot (45◦, 45◦, 0◦) and Dark-spot (45◦, 45◦, 180◦)
geometries, respectively. Seasonal median composites, spring (March–May), summer
(June–August), autumn (September–November), and winter (December–February), were
generated from the daily calculations of the multi-angular vegetation indices.

3. Results
3.1. Performance of Existing Multi-Angular Indices

The performance of the multi-angular vegetation indices was assessed using linear
regression analysis with the in situ above-ground biomass data in terms of Coefficient
of determination (R2) and Root Mean Square Error (RMSE). The relationships between
existing multi-angular spectral indices and above-ground biomass have been shown in
Figure 2, and the results have also been summarized in Table 2.

As shown in Table 3, only the Nadir BRDF-adjusted NDVI (NDVIiso) and Hot-spot-
incorporated NDVI (NDVIHS) showed a significant relationship (more than 50%) with
the above-ground biomass. Other multi-angular vegetation indices, Anisotropy index
(ANIXRed), Anisotropy index (ANIXNir), Hot-spot dark spot index (HDSred), Normalized
difference between hot-spot and dark-spot index (NDHDnir), and Hot-spot dark-spot
NDVI (NDVIHD) did not show sensitivity towards the above-ground biomass.

The correlation matrix of the extant multi-angular indices has been shown in Figure 3.
Among the seven extant multi-angular indices, the highly correlated pairs were (i) ANIXNir
and NDHDnir (ii) ANIXRed and HDSred (iii) NDVIiso and NDVIHS. This analysis confirms
that only a few extant multi-angular indices are important for the estimation of above-
ground biomass.
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Table 2. Performance of existing multi-angular vegetation indices.

Multi-Angular Vegetation Indices R2 RMSE

Anisotropy index (ANIXRed) 0.25 73.07
Anisotropy index (ANIXNir) 0.14 78.32

Hot-spot dark spot index (HDSred) 0.25 73.07
Normalized difference between hot-spot

and dark-spot index (NDHDnir) 0.17 77.34

Hot-spot dark-spot NDVI (NDVIHD) 0.23 74.24
Hot-spot incorporated NDVI (NDVIHS) 0.57 55.52
Nadir BRDF-adjusted NDVI (NDVIiso) 0.54 57.42

Table 3. Calculation of nonparametric rank correlation p-values.

Multi-Angular Indices and
Reflectances

Spearman’s Rank
Correlation

p -Value

Kendall’s Rank
Correlation

p -Value

Anisotropy index (ANIXRed) 0.005527 0.008450

Anisotropy index (ANIXNir) 0.015114 0.014109

Hot-spot dark spot index (HDSred) 0.005527 0.008450

Normalized difference between hot-spot
and dark-spot index (NDHDnir) 0.009190 0.008829

Hot-spot dark-spot NDVI (NDVIHD) 0.000148 0.001236

Hot-spot incorporated NDVI (NDVIHS) 0.000000 0.000000

Nadir BRDF-adjusted NDVI (NDVIiso) 0.000000 0.000000

Near infrared (Back-scattering) 0.000000 0.000001

Near infrared (Nadir) 0.000000 0.000000

Near infrared (Fore-scattering) 0.000000 0.000000

Red (Back-scattering) 0.000001 0.000006

Red (Nadir) 0.000317 0.000333

Red (Fore-scattering) 0.564852 0.692547

Fore-scattering Back-scattering NDVI
(NDVIFore−back) 0.000000 0.000000

Vegetation Structure Index (VSI) 0.000000 0.000000

3.2. Performance of New Multi-Angular Indices

The NDVIFore−back showed higher sensitivity (R2 = 0.62, RMSE = 52.46) towards the
above-ground biomass than existing multi-angular vegetation indices (Table 2). Further-
more, the Vegetation Structure Index (VSI) proposed in the research performed in the most
efficient way explaining 64% variation (R2 = 0.64, RMSE = 51.14) of the above-ground
biomass (Figure 4).

3.3. Effects of View Angles on Biomass

The effects of the view angles (Fore-scattering versus Back-scattering) on the above-
ground biomass have been shown in Figure 5.

For the Red reflectance: the Back-scattering direction was found to be more sensitive
(R2 = 0.47, RMSE = 61.72) to the above-ground biomass than the nadir direction, whereas
the Fore-scattering direction was quite insensitive. Both the Back-scattering and Nadir
reflectance were inversely proportional to the above-ground biomass. In contrast, for the
Near Infrared reflectance, the Fore-scattering direction was found to be more sensitive
(R2 = 0.59, RMSE = 54.19) to the above-ground biomass than the Back-scattering and Nadir
directions. All three directions (Fore-scattering, Back-scattering, and Nadir) were directly
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proportional to the above-ground biomass. Therefore, the right choice of the spectral
channel and observation geometry should be considered for improving the estimates
of above-ground biomass. It should be noted that the NDVIFore−back has been built by
integrating the most sensitive spectral channel and observation geometry.

The correlation matrix of the red and near infrared reflectance measured at different
angular configurations (Back-scattering, Nadir, and Fore-scattering) has been shown in
Figure 6. The correlation matrix showed that near infrared reflectance was highly correlated
across different angular configurations (Back-scattering, Nadir, and Fore-scattering) in the
principle plane than the red reflectance.
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3.4. Interrelationships between Structural Indices

Figure 7 shows the interrelationships between multi-angular structural indices.
NDVIFore−back was more related to the NDVIiso than the NDVIHD. Nevertheless,
NDVIFore−back and NDVIHD were quite distinct with lower coefficient of determina-
tion (R2 = 0.27). The relationship between VSI and NDVIiso was lower (R2 = 0.88) than
that of NDVIFore−back and NDVIiso. Still, the newly proposed index in the research was
quite distinct from the existing indices while being more sensitive towards the above-
ground biomass.
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3.5. Effects of Seasonal Data on Biomass

The analysis on above (Sections 3.1–3.4) were based on median composites of the
reflectance in the summer season. Figures 8 and 9 show the seasonal effects of multi-angular
vegetation indices (NDVIiso and VSI) on the above-ground biomass. Both the NDVIiso and
VSI in summer were most sensitive to the above-ground biomass, whereas other seasons
were either insensitive (winter season) or pointless (spring and autumn seasons with a
decreasing trend). Therefore, the right choice of seasonal data was found to be important
for estimating the forest biomass.
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3.6. Statistical Significance Results

The D’Agostino and Pearson’s normality test and Shapiro–Wilk test were performed
to confirm if the distribution of the available data is normal or not. The p-values for the
D’Agostino and Pearson’s normality test and Shapiro–Wilk test were 0.019513 and 0.002633,
respectively. Since the p-values of both tests were less than 0.05 (95% confidence), data
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were not distributed normally. Therefore, nonparametric statistical tests (Spearman’s rank
correlation, Kendall’s rank correlation, and Kruskal–Wallis H-test) that do not assume
a specific distribution to the data were performed to confirm significance of the linear
regression coefficients reported. Associated p-values of the Spearman’s rank correlation
and Kendall’s rank correlation have been shown in Table 3 for all independent variables
concerned. Regardless of the low coefficient of determination (R2) values of the extant
multi-angular indices (Table 2) and multi-angular reflectances (Figure 5) and the associated
regression model, which could not explain much of the variation of data, all of them were
significantly correlated to the above-ground biomass with p-value > 0.05 (95% confidence)
except the Red reflectance at Fore-scattering direction (p-values = 0.564852, 0.692547).
Nevertheless, the newly proposed Vegetation Structure Index (VSI) with highest R2 value
and low p-value (0.000000) was able to explain much of the variation of the above-ground
biomass data.
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4. Discussion

There is an increased need for improved retrieval of canopy structural information
from remote sensing data. The optical-imagery-based metrics have been useful to gen-
erate canopy structural attributes in different forests [41,42]. Radiative transfer models
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have shown efficient performance on the estimation of canopy gap fraction and biochem-
istry [43,44]. The multi-angular remote sensing datasets have a particular capability of
capturing structural information and enable wider applications in ecology and terrestrial
monitoring [45–47]. The spectral indices derived from multi-angular observations are
promising techniques that can be used to obtain vegetation structural attributes [48–50].

Some previous studies have demonstrated the utility of multi-angular reflectance
measurements for assessing vegetation structure such as leaf area index, canopy clumping,
etc. [51,52]. In this research, we evaluated the performance of seven extant multi-angular
vegetation indices for the estimation of above-ground biomass. Among them, the hot-spot
incorporated NDVI (NDVIHS) proposed by Pocewicz et al. [37] could estimate the above-
ground biomass in the most efficient manner (R2 = 0.57, RMSE = 55.22). However, it should
be noted that none of the extant multi-angular indices were proposed for the estimation of
above-ground biomass. The NDVIHS was proposed for the estimation of leaf area index.
Wang et al. [53] tested angular and band effects on forest biomass retrieval and found that
off-nadir vegetation indices could predict the forest biomass more accurately than the nadir.
Cui et al. [54] also emphasized typical angle reflectances for estimating canopy heights. In
line with these studies, the proposal of VSI for the sole purpose of deriving volumetric
structure of the canopy (above-ground biomass) is a timely and significant contribution.

Field survey data are important for biomass modeling research. In this research, above-
ground biomass data selected from five forests in the New England region ranged from
18.72 to 309.76 Mg/ha with a mean value of 182.62 Mg/ha, which was considered quite
diverse for the assessment of multi-angular vegetation indices. Choi et al. [55] used this
dataset to evaluate waveform lidar-based canopy height metrics. Similarly, Park et al. [56]
utilized this dataset for examining the canopy heights estimated from waveform lidar
data. Wang et al. [57] also utilized this dataset for validating the global estimation of forest
canopy height. These research studies show the feasibility of this dataset for assessing the
potential of multi-angular vegetation indices.

5. Conclusions

In this research, the Vegetation Structure Index (VSI) was proposed based on the
concept that higher near-infrared reflectance in the fore-scattering direction indicates
exposure of higher contents of the canopy volume, whereas lower red reflectance in the
back-scattering direction indicates suppression of the ground reflectance with higher
contents of the canopy volume. The VSI was found to be more sensitive to the above-
ground biomass in the New England forests than other extant multi-angular vegetation
indices. Achieving 7% increase in the estimation of above-ground biomass over the extant
multi-angular indices by the VSI is considerable. It suggests that the right choice of
the spectral channel and observation geometry should be considered for improving the
estimates of the above-ground biomass. In addition, the right choice of seasonal data
(summer) was found to be important for estimating the forest biomass while other seasonal
data were either insensitive or pointless. The VSI has been derived from the MODIS-based
BRDF parameters which can be generated all over the globe. Availability of much higher
resolution bi-directional reflectance data is expected in the future for improved estimates
of the above-ground biomass in the field of multi-angular satellite remote sensing.
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