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Abstract: In recent years, the use of drones for surveillance tasks has been on the rise worldwide.
However, in the context of anomaly detection, only normal events are available for the learning
process. Therefore, the implementation of a generative learning method in an unsupervised mode to
solve this problem becomes fundamental. In this context, we propose a new end-to-end architecture
capable of generating optical flow images from original UAV images and extracting compact spatio-
temporal characteristics for anomaly detection purposes. It is designed with a custom loss function
as a sum of three terms, the reconstruction loss (Rl), the generation loss (Gl) and the compactness loss
(Cl) to ensure an efficient classification of the “deep-one” class. In addition, we propose to minimize
the effect of UAV motion in video processing by applying background subtraction on optical flow
images. We tested our method on very complex datasets called the mini-drone video dataset, and
obtained results surpassing existing techniques’ performances with an AUC of 85.3.

Keywords: anomaly detection; UAV videos; deep one-class

1. Introduction

The use of drones is booming around the world with a large variety of potential appli-
cations: wireless acoustic networking for amateur drone surveillance [1], updating of UAV
networking using the software-defined radios (SDR) and software-defined networking
(SDN) [2], the multi-agent reinforcement learning (MARL) framework [3] and malicious
Wi-Fi hotspots detection [4]. In particular, the use of the UAV camera has become very
important in the field of detecting abnormal behaviour in video footage. This importance
stems from the fact that not only can a UAV monitor large and dangerous areas, but it
is also cost-effective and can replace an entire installation of fixed cameras [5]. Moreover,
processing video sequences from UAV for anomaly detection is a complex task compared to
its counterpart with fixed cameras for two reasons: (a) Lack of video datasets from UAV in
real conditions, and (b) dynamic, variable brightness and large-scale backgrounds. A video-
drone protection system is a closed-circuit television CCTV system that describes a whole
range of video surveillance technologies. Many factors can significantly reduce the effective-
ness of CCTV systems, such as fatigue and lassitude caused by prolonged viewing of many
surveillance videos. A possible solution to this problem would be the use of intelligent
video surveillance systems. These systems must be capable of analysing and modelling
the normal behaviour of a monitored scene and detecting any abnormal behaviour that
could represent a security risk. In recent years, considerable technological advances in the
fields of machine learning and computer vision have made it possible to process CCTV
systems. Some of these are classics of machine learning: image classification [6], facial
recognition [7], human pose estimation [8], natural language processing [9], automatic
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voice recognition [10], and even more atypical tasks; machine translation systems [11], lip
reading [12] and automatic software code generation [13]. Moreover, Deep Learning (DL)
is a sub-domain of Machine Learning (ML), it aims to learn high-level abstractions in data
using multi-level architectures. These different levels are obtained by stacking several non-
linear transformation modules. Each module transforms the data at a different level until
a suitable representation is obtained to perform the target task. Deep learning has made
it possible to go beyond the traditional model in certain application cases and to design
efficient pattern recognition systems without in-depth expertise on the target elements.
In fact, the most effective deep-learning methods are based on supervised learning, using
large, labelled databases containing samples from different classes. To take advantage of
these learning materials in an intelligent monitoring system, a large amount of training
data representative of normal and abnormal events is required. Abnormal events are the
rare events that does not appear redundantly at the scene. Thus, there are many barriers to
the creation of such databases—for example, we can cite the following:

• The contextual aspect of the event. Indeed, an event is closely linked to its con-
text, an abnormal event in one scene can be normal in another. This point makes
it almost impossible to design common databases that can be used uniformly for
different scenes.

• Risks and variability to reproduce some abnormal events make it impossible to identify
and generate enough training samples.

Abnormal video events have been called by many names in the literature, such
as abnormality, irregular behaviour, unusual behaviour, or abnormal behaviour. These
different names will be used alternately without worrying about technical inconsistency.
The detection of abnormal video events is also characterised by a variety of strategies for
processing training data. The first approach is to carry out the training only on normal
data and to consider any type of event outside the training phase as abnormal. Another
approach, in contrast to the first, is to use only abnormal events for training [14]. This
approach can be effective in identifying a certain type of abnormal events, but presents a
high risk of missing abnormal events that are different from those that have been trained.
Another approach is based on the use of data labelled in two different classes, normal
and abnormal [15]. Other work uses more advanced classified and labelled data where
each class represents a specific type of event [13]. Approaches that use abnormal events as
learning data often have limitations. Some abnormal events are impossible to reproduce.
The variability of abnormal events greatly complicates the learning task and can have a
negative effect on modelling. Other approaches are based on clustering methods with
the usage of unlabelled databases containing both normal and abnormal data [16]. It is
assumed that normal events are those that occur frequently, and abnormal events are those
that occur rarely. The advantage of this approach is that it does not require any labelling of
training data, but its effectiveness is compromised by the assumption that all rare events
are abnormal because, obviously, a rare event is not necessarily abnormal. Despite the
different strategies for training data on the detection of abnormal events [15,17–19], the first
approach of using only normal data during training has become the norm. In our work,
we adopt this approach and we propose a new architecture capable of detecting abnormal
event by training only with normal samples. The rest of the paper is organized as follows:
Section 2 briefly reviews related literature of this research field. Section 3 introduces the
proposed method. Experimental results are shown and discussed in Section 4. Section 5
concludes this paper and addresses some potential future studies.

2. Related Work

For many years, the development of a pattern recognition system based on the tra-
ditional model required expertise and in-depth knowledge to extract from the raw data
appropriate representations that could be used to detect, identify or classify items among
the input data. These methods require a priori knowledge to construct a feature extractor
adapted to the targeted events and the scene being monitored. These constraints have led
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to the emergence of abnormal event detection methods based on learning representations
and, more precisely, on deep learning. Representation learning or feature learning is a set
of techniques allowing to automate the feature extraction step. These methods make it
possible to define, by learning, the appropriate transformations to be applied to the input
data in order to obtain representations to perform a targeted task, such as the recognition
of an action, the classification of an image, the estimation of a human pose, semantic
segmentation, and so forth [6,9,20,21].

2.1. Transfer Learning

The CNN is a type of artificial neural network inspired from the animal visual cortex.
It consists of several layers that process data in a hierarchical pattern. It has been shown
that a CNN trained to perform a target task can provide generic and robust functionality
that can be used to perform another computer vision task different from the one for which
it has been specifically trained. In [22], representations extracted with OverFeat, a CNN
trained solely in object classification, are exploited by a linear SVM or Euclidean standard
for different tasks (scene classification, detailed classification, attribute detection, visual
instance retrieval). The results provide tangible evidence of the CNN’s ability to provide
generic and robust functionalities that can be used for different computer vision tasks. This
principle has been applied in many works on abnormal event detection. In [23], a 2D CNN
pre-formed from image classification databases is modified to extract representations of
different regions from input images. An OC-SVM is then used to detect which of these
regions have abnormal events. In [24], a pre-formed CNN is combined with a scattered
self-coder that can be formed to provide a two-level feature extractor. At the output of the
CNN, a first Gaussian classifier is used to classify regions of the image as normal, abnormal,
or suspect. Representations of suspect regions are then transformed by the auto-coder to
obtain more discriminating representations.

Methods based on transfer learning do not require a labelled database for feature
extraction, and their results in terms of detection and localisation are very promising.
However, the dependence of these methods on pre-trained models imposes a certain
rigidity which considerably reduces their prospects for potential improvements. This
drawback has originated the emergence of approaches based on generative and deep
one-class models.

2.2. Generative Models

In recent years, the use of Generative Adversarial Networks (GANs) in machine
learning has increased considerably. GAN is an unsupervised learning algorithm proposed
for the first time by [25]. It consists of two sub-networks, a generator and a competing
discriminator. During the learning phase, the generator tries to generate convincing data
to deceive the discriminator which, in turn, tries to detect whether the generated samples
are real (regular) or fakes (irregular). In [18], spatio-temporal adversary networks (STAN)
was proposed to meet the challenge of video anomaly detection. It is composed of two sub-
networks, a generator composed of convolution layers, ConvLSTM [26] and deconvolution
layers and a discriminator composed of 3D convolution layers. The detection of abnormal
events can be done directly by the discriminator or generator. However, the best results
in [18] were obtained by combining the decisions of the two networks. The author of [27]
also proposed the use of GANs for the detection of abnormal events. A thresholding of the
generation error of the two GANs is used in order to identify the image regions containing
the abnormal events. The first GAN is trained to generate optical flow representations from
images, and the second GAN is trained to generate images from optical flow representations.
However, the error between the generated images and the real images is not sufficient to
obtain convincing results.
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2.3. One-Class Models

Abnormal event detection approaches based on reconstructive, predictive or gen-
erative models are generally based on the assumption that a model formed on normal
images will not be able to reconstruct, predict or generate abnormal images. Therefore,
a threshold of reconstruction, prediction or degeneration error is often used to detect ab-
normal events. However, in the case of video events, the different elements of normal and
abnormal situations are often similar and it is usually their interactions or the context that
defines the normality or abnormality of a situation. In this respect, recent work aimed at
developing one-class networks has been proposed. The ref. [28] proposes Deep One-Class
(DOC), a convolutional neural network that can be trained end-to-end, using only one-class
learning examples. The network is obtained by replacing the softmax usually used in
CNNs with an OC-SVM. Moreover, The authors define an objective function that allows the
formation of not only the OC-SVM layer, but also of all the layers of the network that can be
formed. In this way, the network is optimised to extract compact representations and define
the appropriate hyperplane to isolate data representations from the target class. On the
other hand, many works based on one-class neural networks have been proposed for the
detection of anomalies [29,30]. These works require very little adaptation to be used in the
context of detection of abnormal video events. The ref. [31] proposes the use of transfer
learning for adapting pre-trained networks to perform anomaly detection. The authors
assume that two important aspects, compactness and description of the extracted features,
must be imperatively considered. The description provides descriptive features. However,
the compactness is used in order to ensure that images of the same class are described by
similar representations, so they are positioned compactly in the feature space. These two
aspects can significantly contribute to a decrease in the intra-class distance and an increase
in the inter-class distance. To obtain these two aspects, the authors propose two networks.
After the learning, the two identical networks are capable of providing both descriptive
and compact representations. These networks can be applied with a One-Class classifier
to dissociate the elements of a target class from the outliers. However, these methods
proposed to use extra data sets or optical flow samples for analysing motion, which make
these methods depend on handcrafted features and on the quality of extra datasets. In this
work, we propose to build an architecture capable of analysing motion from raw images
without using extra datasets.

2.4. Motivation and Contributions

In recent years, state-of-the-art methods have been based principally on generative
or deep one-class models to treat the problem of anomaly detection efficiently. However,
no single model has been proposed before being aimed at bringing together the benefits
of both models. For that reason, the originality of our work is to propose a new architec-
ture bringing together the advantages of both generative and deep one-class models for
anomaly detection purposes in a UAV video footage. Our motivation is to design this
new architecture in order to achieve high performance and a minimum Equal Error Rate
(EER), compared to existing methods. Moreover, for many existing methods, optical flow
features are computed by a pre-processing task before starting the inference. In this work,
we propose an architecture capable of generating optical flow features at the testing phase,
meeting the real-time constraint. The purpose of our work is to efficiently address the
problem of anomaly detection by drone cameras. This purpose is ensured by creating a
new deep one-class architecture capable of compacting the features of a given class into a
half-hyper sphere. This classification method can be useful for many anomaly detection
problems in other domains.

The contributions of our paper are summarized as follows:

• We propose a new end-to-end unsupervised generative learning architecture for deep
one-class classification in order to guarantee not only the compactness of the different
characteristics of normal events (optical flow and original images), but also the ability
to automatically generate optical flow images from the UAV original video during
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the test phase, which makes the processing chain faster for abnormal event detection.
We have trained our architecture with a custom loss function as a sum of three terms,
the reconstruction loss (Rl), the generation loss (Gl) and the compactness loss (Cl) to
ensure an efficient classification of normal/abnormal events.

• In addition, we have applied background subtraction on the UAV optical flow to
minimise the effect of camera movement, and we have tested our method on complex
and hard-to-reach datasets in terms of variety of content and conditions, such as
mini-video datasets.

3. Proposed Method

In this section, we propose a new end-to-end unsupervised architecture (Figure 1)
for anomaly detection in UAV video footages. It is trained with only consecutive normal
RGB and optical flow frames. Our architecture is capable of building new optical flow
representations of a UAV video from consecutive original frames. It is based on a mix
of convolution and deconvolution layers capable not only of automatically generating
optical flow images, but also of extracting compact features from the original and optical
flow images during the test phase. Classical computation of optical flow is then avoided
and replaced by a fast and efficient convolution/deconvolution-based neural network.
The proposed procedure can produce optical flow representations of abnormal samples
with higher optical flow error (OFE) generation than normal samples, intuitively by de-
creasing the intra-class distance of the normal class during the training phase, as in the
following equation:

OFE =
1
n

n

∑
1
(φ(i)− φ̂(i))2, (1)

where φ(i) is the original optical flow and φ̂(i) is the generated optical flow. Thanks to this
architecture, our model is able to correctly represent shapes and motion in videos. The neu-
ral network is composed of eight convolution layers: a concatenation layer, to combine
the feature maps of each of the four convolution layers, and eight deconvolution layers
to reconstruct the input composed of the consecutive original images and to generate the
consecutive optical flow images. The concatenation layer is our bottleneck layer. We called
our architecture a CNN optical flow generator because of its ability to generate optical flow
samples from original images. The hyper-parameters of our architecture are provided in
the following Table 1.

Table 1. Our architecture hyperparameters.

Layer Filters Kernel (h,w,d) Stride (h,w,d)

Conv1 64 [11,11,1] [2,2,1]
Conv2 128 [3,3,1] [1,1,1]
Conv3 256 [3,3,3] [2,2,1]
Conv4 512 [3,3,1] [2,2,1]
Conv5 64 [11,11,1] [2,2,1]
Conv6 128 [3,3,1] [1,1,1]
Conv7 256 [3,3,3] [2,2,1]
Conv8 512 [3,3,1] [2,2,1]
Concat 1024 —– —–

Deconv1 512 [3,3,1] [2,2,1]
Deconv2 256 [3,3,3] [2,2,1]
Deconv3 128 [3,3,1] [1,1,1]
Deconv4 1 [11,11,1] [2,2,1]
Deconv5 512 [3,3,1] [2,2,1]
Deconv6 256 [3,3,3] [2,2,1]
Deconv7 128 [3,3,1] [1,1,1]
Deconv8 1 [11,11,1] [2,2,1]



J. Imaging 2021, 7, 90 6 of 15

Figure 1. The proposed deep-learning architecture.

The Concat represents our concatenation layer; it does not need any filters or any
strides as hyper-parameters, as it concatenates the outputs of the Conv4 and Conv8 layers.
In the next section, we will discuss the proposed training strategy which is not limited to
reconstruction error, but introduces a new concept of compactness. We will also detail the
testing phase for our architecture during the inference.

3.1. Loss Function and Training Phase

We propose to train our architecture using only normal samples. We have used,
as input volumes, three consecutive frames F = {Ft; Ft−1; Ft−2} to describe not only the
shapes, but also the motion encoded in these three frames. Only in the training, the frames
and their corresponding optical flow representations are extracted from the raw videos
and resized to 227 × 227. We scaled the pixels values in [1, −1]. In the testing phase,
we used the same scaling values as in the training to ensure the condition of real-world
applications. Our architecture was trained by the Adam optimizer with a learning rate
equal to 0.00001. A hyperbolic tangent is used as the activation function of each convolution
and deconvolution layer to ensure the symmetry of the reconstructed and the input video
volume. The original aspect of our work is to design a custom loss function (L) as the sum
of three terms, as given in Equation (2): a term related to compactness Cl , a term related
to generation loss Gl and a term related to the reconstruction loss Rl . The aim of using
those three loss components is to maximize the inter-class distance (between normal and
abnormal samples) and to minimize the intra-class distance (between normal samples).
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The objective of the Cl and Gl loss terms is to obtain features capable of generalization
for normal samples and also of generating optical flow images with minimum OFE. Thus,
those terms aim at maximizing the inter-class distance between normal and abnormal
samples. The compactness loss allows to obtain compact features (both for shape and
motion) of training data by minimizing their distance to a fixed point C0. We have fixed
the point C0 at the maximum of our data range, which is a vector of ones. The overall loss
L is then written as:

L =
1
n
(

n

∑
i=1

(V − V̂)2 +
n

∑
i=1

(W − Ŵ)2) + α|M(xi)− 1| (2)

L = Rl + Gl + αCl , (3)

where V represents the volume of the original image input, V̂ is the corresponding shape-
reconstructed volume, W is the optical flow volume, and ŵ is its corresponding recon-
structed volume. M(Xi) is the mean value of features Xi at each patch in the Concat layer.
α is a hyper-parameter between [0, 1] of our custom loss function, and it controls the
influence of the compactness of our features. In practice, we fixed α to 0.1 to ensure the
scale condition of other terms of L. It should be noted that when α = 0, the model is trained
without compactness loss and limited to reconstruction and generation loss. When M(xi)
tends to 1, the features Xi tends to C0. Then, we ensure that all normal features at the
training are converging near the same point C0 (see Figure 2).

Figure 2. Average features during training.

3.2. Testing Phase

After training our architecture, we were able to obtain a model capable of extracting
a robust spatio-temporal representation of each patch. Thanks to this architecture, each
small region of the input video volume is represented by a 1024-vector of features capable
of describing the shapes and motion contained in that region.

In the test phase, only the original images were used. Optical flow samples were
generated by our architecture, which allows for fast implementation of the global detector.
The compactness is used to constrain feature vectors inside a half-hypersphere (S) with
centre C0 and a small radius R, enhancing the performance of the classification procedure.
For each new video volume, we extract the mean of the features M′(xi) at the Concat layers
and compare its distance to C0 to the radius R:{

Normal i f (C0 −M′(xi))± ε ≤ R
Abnormal i f (C0 −M′(xi))± ε > R

(4)

where ε defines the insensitivity zone.
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4. Experimental Results

We have used different datasets to evaluate the proposed detection method. The model
was trained with only normal events contained in datasets, and then it was tested within
different abnormal events. The used datasets are listed as follows:

• Mini-Drone Video Dataset :
Mini-Drone Video Dataset (MDVD) [32] is a dataset filmed by a drone of type Phantom
2 in a car park. It is mainly used for events identification. It is composed of 38 videos
captured in high resolution, with a duration up to 24 s each. The videos in MDVD
were divided into three categories: normal, suspicious, and abnormal, and they are
defined by the actions of the persons involved in the videos. The normal case is
defined by several events, such as people walking, getting in their cars, or parking
correctly. The abnormal cases are represented by people fighting or stealing. Finally,
for suspicious cases, nothing is wrong, but people do suspicious behavior which could
distract the surveillance staff. In order to use the MDVD dataset in unsupervised
mode for anomaly detection, we split this dataset into: 10 videos for the training
containing only normal samples, and 10 videos for the test containing both abnormal
and normal events.

• USCD Ped2 :
UCSD Peds2 [33] is an anomaly detection dataset consisting of video footage of a
crowded pedestrian walkway captured by a stationary camera. It contains both
normal and abnormal events, like the walking movement of bikers, skaters, cyclists,
and small carts. However, in the walkways, the motion of the pedestrian in an
unexpected area is also considered as an anomalous event. It contains 16 training
and 12 testing video samples, and provides frame-level ground truth, which helps
us to evaluate the detection performance and to compare our method with other
stat-of-the-art anomaly-detection methods.

• Brutal running dataset:
We propose a new small dataset with 1000 samples (340 training samples and 660 sam-
ples for test) called the brutal running dataset captured by a Phantom 4 pro drone.
The normal event consists of a girl walking outside, and the abnormal event occurs
when she is running. This kind of anomaly is largely used in anomaly detection by
fixed cameras.

4.1. Minimization of the Effect of UAV Motion on Optical Flow Images

Optical flow is the pattern of apparent motion of objects between two consecutive
frames. It is a 2D vector field, where each vector is a displacement vector showing the
movement of points from the first frame to the second. For training, we used the OpenCV
Gunner Farneback algorithm to extract dense optical flows. We obtained a two-channel
array with optical flow vectors (u,v). The Figure 3 shows same samples of optical flow
calculated by Farneback’s algorithm.

Figure 3. Optical flow samples of MDVD and other examples.
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In order to denoise and minimize the effect of UAV motion on optical flow images, we
propose to subtract the mean optical flow at the train and apply the same centering for the
optical flow samples during testing.

Figures 4 and 5 show some examples of the optical flow of the Mini drone dataset and
some other examples captured in a different scene. These figures prove that subtracted
mean drone motion can minimize the drone motion effect on optical flow frames which
become less noisy. We have used this version of optical flow to train our architecture.

Figure 4. Subtraction of mean optical flow.

Figure 5. Subtraction of mean optical flow in the MDVD dataset.
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4.1.1. Optical Flow Generating

Figure 6 shows the generated optical flow frames of both normal and abnormal
samples of MDVD. It shows that our architecture can reproduce optical flow frames
from original video frames. Then, at the testing phase (inference), it does not need a
handcraft algorithm to extract optical flow. The proposed architecture is fed only with a
raw video, directly ensuring the real-time implementation of the detection algorithm, even
on constrained embedded processing units.

Figure 6. Samples of optical flow generated by our architecture.

4.1.2. Architecture Evaluation

We used Error Equal Rate (EER) and Area Under Curve ROC (AUC) as evaluation
criteria. A smaller EER corresponds to better performance. As for the AUC, a bigger value
corresponds to better performance. The Table 2 summarizes our results on MDVD, and a
comparison was done with existing methods.

Table 2. EER and AUC for frame-level comparisons on MDVD.

Methods EER AUC

VGG+LSTM [5] – 72.75
VGG [5] – 50.12

Ours 19.85 85.3

Figure 7 illustrates algorithm results on MDVD, and proves that our method can
localize anomalies: biker and fighting events. However, when the drone motion is fast,
our system can give some localisation errors, but it still can dissociate between abnormal
and normal events at frame level. Despite the difference between the movements and
trajectories of the drone in the training phase and the testing phase, the results corroborate
the effectiveness of the proposed architecture which works properly in detecting and
localizing abnormal events.
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Figure 7. Our results on the MDVD dataset.

Figure 8 represents our results on the brutal running dataset. It shows that our method
is capable of detecting abnormal brutal motion (running, in this case).

Figure 8. Our results on the brutal running dataset.

In order to further evaluate of the proposed method, we have tested on UCSD Ped2
datasets with fixed cameras and compared our results with state-of-the-art methods. Table 3
and Figure 9 report these comparative results, showing again the effectiveness of our
method in video anomaly detection.
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Table 3. EER and AUC for frame-level comparisons on the Ped2 dataset.

Methods EER AUC

Mehran. [34] 40 -
Kim. [35] 30.71 -
PCA [36] 29.20 73.98

CAE(FR) [37] 26.00 81.4
S. Hamdi [38] 14.50 -
Sabokrou [39] 8.2 -

ours 8.1 94.9

Figure 9. Ourresults on the Ped2 dataset.

4.1.3. Compactness Evaluation

In order to evaluate the advantages of compactness loss, we trained our model with
and without this loss term. Table 4 shows the obtained results from MDVD using the
Mahalanobis distance (Equation (5)):

D = (yj −M)×Q× (yj −M)′ Mahalanobis distance :
{

Normal i f D ≤ α
Abnormal i f D > α

, (5)

where M is the mean and Q is the inverse of the covariance matrix of the training data
X. If the distance exceeds a threshold α, the testing vector yj is considered as an outlier,
and the corresponding frame is labeled as abnormal. The results of Table 4 show that the
compactness feature enhances the detection performances compared to the Mahalanobis
classifier based on the extracted features from the Concat layer.

Figure 10 shows that the characteristics of the normal samples have an average very
close to 1, but those of the abnormal samples are less close to 1. The confused samples are
obtained when the anomalies start to appear. This illustrates the capacity of the algorithm
to detect the abnormal events in a timely manner.

Table 4. Compactness loss importance.

EER AUC

our (without compactness) 23 78.2
our (with compactness) 19.85 85.3
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Figure 10. Mean of features at the testing phase.

From the presented results, we can see that our architecture is able to separate normal
events from abnormal events. This is due to the specificity of our architecture, which is
the ability to automatically extract deep features and contextual information from input
frames that correctly express the difference between normal and abnormal events.

5. Conclusions

In this paper, we propose a new, unsupervised learning method based on deep
end-to-end architecture for the detection of anomalies in UAV video streams. The main
advantage of this method is its efficiency to jointly extract the optical flow features and
to integrate a compactness regularization term during training. This method proves
promising in terms of detection and localization of anomalies by UAV cameras and gives
very high performance experimental results compared to state-of-the-art methods. Our
future work is to study these results by setting up an on-board computer on the UAV for
real-time anomaly detection application.
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