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Abstract: DeepFake detection is a novel task for media forensics and is currently receiving a lot of
research attention due to the threat these targeted video manipulations propose to the trust placed
in video footage. The current trend in DeepFake detection is the application of neural networks to
learn feature spaces that allow them to be distinguished from unmanipulated videos. In this paper,
we discuss, with features hand-crafted by domain experts, an alternative to this trend. The main
advantage that hand-crafted features have over learned features is their interpretability and the
consequences this might have for plausibility validation for decisions made. Here, we discuss three
sets of hand-crafted features and three different fusion strategies to implement DeepFake detection.
Our tests on three pre-existing reference databases show detection performances that are under
comparable test conditions (peak AUC > 0.95) to those of state-of-the-art methods using learned
features. Furthermore, our approach shows a similar, if not better, generalization behavior than neural
network-based methods in tests performed with different training and test sets. In addition to these
pattern recognition considerations, first steps of a projection onto a data-centric examination approach
for forensics process modeling are taken to increase the maturity of the present investigation.

Keywords: DeepFake detection; hand-crafted features; forensic process model; plausibility of decisions

1. Introduction

DeepFakes (a neologism combining the terms “deep learning” and “fake”) are syn-
thetic videos (or images) in which a person’s face (and optionally also voice) is replaced
with someone else’s likeness using deep learning technologies. Having emerged in late
2017, DeepFakes nowadays pose a serious threat to the trust placed in video footage. Pa-
pers such as [1,2] elaborate on the effect of DeepFakes on current politics, disinformation
and trust.

Like countering any other form of image, audio or video manipulation, detecting
DeepFakes is an important task for media forensics and is currently receiving a lot of
research attention due to the significance of the threat.

According to a well established definition given in [3], information technology (IT)
forensics is: “The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation and presentation
of digital evidence derived from digital sources for the purpose of facilitating or furthering the
reconstruction of events found to be criminal, [...]".

This paper focuses on DeepFake detection as a novel challenge in the IT forensics
subdiscipline of media forensics. In contrast to many other forensic subdisciplines, such as,
e.g., the field of fingerprint analysis, this field is an especially young and immature research
field, currently being far away from achieving the ultimate goal of courtroom readiness.

Regarding the basic methodology applied in the state-of-the-art work in DeepFake
detection, it can be stated that most of the current research work is based on pattern
recognition approaches using feature spaces learned with the help of neural networks.
While this method achieves promising detection rates for small scale empirical evaluations
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with selected DeepFake datasets, it has the inherent drawback that it is extremely hard to
validate the plausibility of decisions made by a neuronal network since the semantics of
the features learned cannot easily be interpreted by humans. For other, more established,
pattern recognition disciplines such as template matching or statistical pattern recognition,
the issue of plausibility testing also exists, because the results generated by the application
of machine learning strategies lack the intuitive verification that usually accompanies
human decision-making processes. Nevertheless, for these disciplines, validation methods
have been developed over the decades to establish whether the results of the learning and
decision processes are reasonable. In practice, this means to establish that the patterns
trained and detected are really the patterns that the user wants to distinguish between and
that side-effects as well as external influence factors are known for the pattern recognition
process. Such methods, which include, amongst others, feature selection strategies, as
well as model analysis methods aimed at establishing the exact decision (or detection)
performance and error behavior of an analysis method. The reason to do this is that this
knowledge determines the plausibility of the result of the application of pattern recognition
mechanisms in a forensic application scenario and should therefore be directly linked to
the trust we place in their decisions.

In addition to the problems in estimating the plausibility of decisions of current
(mostly neural network-driven) DeepFake detection methods, a second shortcoming in the
current state of the art in this field has to be mentioned here: Apart from the considerations
of efficiency (i.e., detection performance and plausibility), all forensic methods should
aim at fulfilling some form of forensic conformity. Criteria for such conformity should
address the admissibility of methods as a basis for expert witnesses’ testimony as evidence
in legal proceedings. For the United States of America (by far the most active legal
system worldwide), those criteria are codified, amongst other regulations, by the so called
Daubert standard (see e.g., [4] or [5] for a detailed discussion of this US case-law standard)
in combination with the US Federal Rules of Evidence (FRE) [6]. In addition to those
admission criteria for expert witnesses’ testimony questions of evidence handling (i.e.,
chain of custody) also have to be looked into.

To address aspects of these two identified shortcomings (i.e., the explainability issues
of feature spaces learned using a neural network on one hand and the lack of adherence
to forensic process models on the other hand), this paper provides the following two
main contributions :

¢  Using hand-crafted features for DeepFake detection and comparison with the perfor-

mance of state-of-the-art deep learning-driven approaches, we discuss three sets of
hand-crafted features and three different fusion strategies to implement DeepFake
detection. Those features analyze the blinking behavior, the texture of the mouth
region as well as the degree of texture found in the image foreground. Our tests on
three pre-existing reference databases show detection performances that are under
comparable test conditions to those of state-of-the-art methods using learned features
(in our case obtaining a maximum AUC of 0.960 in comparison to a maximum AUC
of 0.998 for a recent approach using convolutional neural networks). Furthermore,
our approach shows a similar, if not better, generalization behavior (i.e., AUC drops
from values larger than 0.9 to smaller than 0.7) than neural network based methods in
tests performed with different training and test sets .
In addition to those detection performance issues, we discuss at length that the
main advantage which hand-crafted features have over learned features is their in-
terpretability and the consequences this might have for plausibility validation for
decisions made.

e Projection onto a forensic process model: With the aim to improve the maturity of pat-
tern recognition-driven media forensics, we perform first steps of the projection of our
work onto an established forensic process model. For this, a derivative of the forensic
process model for IT forensics published in 2011 by the German Federal Office for
Information Security (BSI) is used here. This derivative, or more precisely extension,
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is called the Data-Centric Examination Approach (DCEA) and has seen its latest major
overhaul in 2020 in [7]. While it is not yet perfectly capable of fitting the needs of
media forensics analyses, our work shows first benefits of this modeling as well as
points where DCEA would need to undergo further extension to fit those purposes.

The paper is structured as follows: In Section 2, the background and state of the art in
DeepFake detection (Section 2.1), feature space design alternatives (Section 2.2) and the
forensic process model chosen for this paper (Section 2.3) are discussed. Section 3 discusses
the chosen solution concept for implementing DeepFake detection with hand-crafted
features, while Section 4 focuses on implementation details.

Section 5 presents and discusses our evaluation results, structured into results for
individual detectors (Section 5.1) and for fusion operators (Section 5.2). In Section 6, we
provide a summary of the results and a comparison with other approaches from the state of
the art (in Section 6.1) as well as our conclusion on the comparison between hand-crafted
and learned features for DeepFake detection (in Section 6.2). Section 7 closes the paper
with some indication for potential future work.

2. Background and State of the Art

By arguing that "Multimedia Forensics is not Computer Forensics", the authors of [8]
point out that “multimedia forensics and computer forensics belong to the class of digital forensics,
but they differ notably in the underlying observer model that defines the forensic investigator’s view
on (parts of) reality, [...] while perfect concealment of traces is possible for computer forensics, this
level of certainty cannot be expected for manipulations of sensor data”. Even though this statement
dates back to 2009, before the rise of neural network-driven data generation methods, such
as generative adversarial networks (GANSs), it still holds true; additionally, modern-day
targeted media manipulations such as DeepFake generation, either leave telltale traces
of the manipulation (here, the synthesis and insertion of a face into a video) or violate
the source characteristics (e.g., violating the noise pattern of the camera). Recent papers
on DeepFake detection, such as [9], provide strong indication that, if applied correctly,
targeted detection using pattern recognition methods might be a viable media forensics
approach to counter DeepFakes.

In Section 2.1 of this chapter, the state of the art regarding recent DeepFake detection
methods is briefly summarized. Following this survey, which points out that nearly all
recent methods found in the literature are looking at learned feature spaces as a means of
tackling this pattern recognition problem, Section 2.2 discusses the existing alternatives
for feature space design and reflects upon their suitability in sensitive decision processes,
such as e.g., medical image processing or (media) forensics. Additionally, in Section 2.3,
a discussion on the needs for integration of pattern recognition-driven methods into a
forensic process model is summarized.

2.1. DeepFake Detection

Usually, the detection of DeepFakes happens with various combined Convolutional
Neural Network (CNN) architectures such as autoencoders (AEs). The reasons behind
this are obvious: First, most DeepFakes are produced with AEs because internet platforms
such as YouTube provide many video sources with different human faces which are usable
for the training of DeepFake generators based on neural networks. FakeApp [10] is one
example of an autoencoder—decoder structure which is able to swap the latent features
of two different faces [11]. These architectures introduce several artifacts to the video
while creating a DeepFake that are, in most cases, not visible for the human eye but are
potential artifacts that could be utilized for DeepFake detection using image or video
analysis methods. It stands to reason that neural networks are also useful for the detection
of DeepFake videos, assuming that there is a sufficiently large set of representative data to
train features, allowing for the localization of the aforementioned artifacts. Second, which
is also a consequence of the first reason, several large and publicly available DeepFake
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databases (such as FaceForensic++ [12] or Celeb-DF [13]) already exist and provide huge
datasets, which can easily be used for the training of CNN-based DeepFake detectors.

The survey paper from Nguyen et al. [11] summarizes different DeepFake detec-
tion approaches into the two main categories of temporal features across video streams (i.e.,
inter-frame analysis) and visual artifacts within video frames (i.e., intra-frame analysis). For ex-
ample, the approach of Sabir et al. [14] extracts temporal features of video streams for the
detection of DeepFake videos: The authors analyze a potential DeepFake video frame-by-
frame for low level artifacts which are only present in single frames to class a video as a
DeepFake. Then, they use a Recurrent Convolutional Network (RCN) model to detect and
track the temporal artifacts across frames [11,14]. In Li et al.’s work [15], another CNN-
based inter-frame analysis approach addresses the eye blinking of a person in a video under
the assumption that many DeepFake generated videos are not able to reproduce a natural
blinking behavior. The authors first extract the eye areas based on six eye landmarks from
a segmented face region. After that, they use the extracted eye area of all video frames
in a long-term recurrent convolutional network (LRCN) to detect temporal discrepancies
in the blinking behavior [11,15]. An approach which should also be considered for these
temporal features across video streams category is described in [16]. Here, the authors
analyze (amongst other detection strategies) the lip movements with a combined neural
network structure of Mel-Frequency Cepstral Coefficients (MFCCs), Principal Coefficients
(PCAs) and an RNN-based (recurrent neural network) Long Short-Term Memory (LSTM)
and check whether the lip movement is synchronized to the audio signal [16,17].

The second category for DeepFake detectors, defined by Nguyen et al. [11] (i.e., the
intra-frame analyses), is divided into the subcategories of deep and shallow classifiers:
During the DeepFake creation process, it is necessary to warp the face area by scaling,
rotation and shearing. Deep classifiers address resolution inconsistencies between the
warped face area and the surrounding context. These inconsistencies are represented in
artifacts which are detectable by CNNss (see, e.g., [11,18]). In contrast, the so called shallow
classifiers refer to different visual feature artifacts in head pose, eyes, teeth or in facial
contours. In particular, the last three features are addressed in Matern et al.’s work [19].
They solve the DeepFake detection by analyzing the eye and teeth areas for missing
reflections or details as well as the texture features from the facial region [11,19].

Other survey papers in this rapidly growing research field, such as the work of, e.g.,
Yu et al. [20], use the main structure of the DeepFake detection method to classify these
methods into several detector categories. Similar to Nguyen et al., they distinguish broadly
between inter- and intra-frame analyses. In their scheme, the first (i.e., temporal) features
are covered by temporal consistency-based methods using mainly network structures such
as recurrent CNNs which are able to detect temporal features frame-by-frame. The latter
category is addressed by general network-based methods, which are divided into transfer
learning methods and specially designed networks. The methods of transfer learning
re-train detectors originally trained for a different recognition problem, while specially
designed networks construct and train entirely novel architectures and detectors dedicated
entirely to the task of detecting DeepFake videos.

In summary of the (survey) papers discussed above, it can be stated that most Deep-
Fake detection approaches are based on (convolutional) neural networks to learn the feature
space to be used. This approach usually requires big databases of real and DeepFake videos
to generate detectors that usually perform with very high detection rates on test material
that is similar to the used training material in terms of its characteristics.

Hand-crafted feature methods, as an alternative to features learned with neural net-
works, have the benefit that they (at least theoretically) could work without training. In
addition to this and other potential benefits (see Section 2.2), hand-crafted feature spaces
for the detection of DeepFake videos are much less common in the literature than neural
network-based approaches. Most of the existing research papers relying on hand-crafted
approaches (such as [21-23]) use Support Vector Machines (SVMs) for a fast and efficient
detection of DeepFake videos.
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For the DeepFake detection of persons of interest (POIs) such a Barack Obama, Hillary
Clinton or Donald Trump, Gu et al. [23] analyzed speech in combination with face and head
movements. They followed the assumption that a person has individual facial expressions
and head movements while they are speaking. Their detection pipeline starts with a single
video were they tracked facial and head movements first. These facial expressions are
defined by 2D and 3D facial landmark positions and several facial action units which are
then used for further evaluation steps. For the DeepFake detection, they trained and tested
one-class SVMs only with extracted features from authentic videos of specific POls.

Jung et al. [24] present a hand-crafted DeepFake detector called DeepVision [24],
which evaluates eye blinking behavior. In their first step, they extract the face region from
a potential DeepFake video. In the following, they use an eye tracker to detect the eye area
of a person. After this step they check the eye area of each frame for closed or open eyes
and calculate the eye blink elapsed times and eye blink periods.

Unfortunately, the authors of some survey papers, such as [25,26], refer to learned
features using specially designed networks (such as those proposed in [15,18]) and also as
being "hand-crafted". This is not our perspective of hand-crafted features because they only
design the neural network architectures and not the actual features and their semantics.
In the following section, we will provide working definitions for the terms hand-crafted
and learned features to be used in this paper.

2.2. Feature Space Design Alternatives

In pattern recognition, feature extraction starts from an initial set of input data and
builds derived values (features) intended to be informative and non-redundant, facilitating
the subsequent learning and generalization steps. It is generally seen to be one form of
dimensionality reduction projecting the input into an easier to process and (optimally)
less noisy representation. In applied pattern recognition, there generally exist two distinct
approaches for feature design:

(a) Features are especially designed (so-called hand-crafted) by domain experts for an
application scenario in a process, which, despite the fact that it is sometimes also
called intuition-based feature design, usually requires strong domain knowledge.
Here, the domain expert uses his/her own experience to construct the features
to encode his/her own knowledge about the semantics (and internal as well as
external influence factors) inherent to the different pattern classes in the problem
at hand. As a result, usually rather low-dimensional feature spaces are designed,
which require only small sets of training data (or none at all) for the training (i.e.,
adaptation/calibration) to a specific application scenario. The semantic character-
istics intrinsic to these feature spaces can easily be exploited to validate decisions
made using such a feature space.

Such features can also be the result of the transfer of features from other, related or
similar pattern processing problems.

(b)  Feature spaces are g by methods such as neural networks, where a structure (or
architecture) for the feature space is designed (or chosen from a set of known goods)
and then labelled training specimens are used to train the network from scratch
or re-train an already existing network in transfer learning. The inherent charac-
teristic of this process is that it requires very large sets of labelled, representative
data for the training of the network (a little less so in case of transfer learning).
The resulting feature spaces and trained models usually lack the encoding of easily
interpretable semantics.

While neural network-based methods have seen a growing popularity in the field
of media forensics in the last few years, they are still burdened by the problem that the
plausibility of a decision made on the basis of such features is extremely hard to verify. One
of the main reasons for this is the fact that the learned features as such hardly ever encode
semantics that could be interpreted by a human expert. Instead, with the help of decision
validation approaches such as the expert interpretation of heatmaps using methods such as
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Layer-wise Relevance Propagation (LRP; [27]), it can be shown that these methods assign
meaning to regions in the input (see e.g. [28]).

For this reason, i.e., problems with the interpretability of the feature space and cor-
responding decisions, many application fields with sensitive tasks are hesitant to rely on
learned features. A good example of a very thorough discussion of the pros and cons of
hand-crafted features in contrast to those learned using convolutional neural networks can
be found in Lin et al.’s work [29]. In this paper, the authors discuss this issue for specific
medical data analysis problems, which, similar to forensics, is another very sensitive re-
search field applying pattern recognition. In their work, they highlight and demonstrate
with their datasets three main drawbacks of neural network-based feature space learning;:

1. In the case of only small amounts of training data being available (which seems
to be a problem encountered often in medical data analysis problems, including
clinical studies where “the recruitment of a large number of patients or collection of large
number of images is often impeded by patient privacy, limited number of disease cases,
restricted resources, funding constraints or number of participating institutions” [29]), the
classification performance of hand-crafted features (which usually show persistent
detection performances with small training datasets) outperformed their feature
spaces learned by neural networks. This is hardly astonishing since it is well known
that CNNs require a large amount of training data for reliable imaging classification.
This situation changes with increasing training dataset sizes.

2. Another advantage of hand-crafted features is interpretability. Lin et al. summarize
this issue as follows: “Therefore, interpretability of [hand-crafted] features reveal why
liver [magnetic resonance] images are classified as suboptimal or adequate” [29], i.e., these
features allow for expert reasoning on errors, loss or uncertainty in decision making.

3. Feature selection strategies help learning about significance and contextual relation-
ship for hand-crafted features, while they fail to produce interpretable results for
learned features.

For the more traditional feature space designs (i.e., using hand-crafted features), the
question of plausibility verification is usually easier to address. A multitude of methods
for feature space analysis have been discussed in the past, including feature space-driven
plausibility validation as well as model-driven validation.

Initially, there existed two main approaches for feature selection: wrapper methods,
in which the features are selected using the classifier, and filter methods, in which the
selection of features is independent of the classifier used. Around 2001, both main ap-
proaches were joined into a so-called hybrid method (see, e.g., [30,31]), which are usually
used nowadays to analyze hand-crafted feature spaces.

2.3. A Data-Centric Examination Approach for Incident Response and Forensic Process Modeling

Forensic process models are an important cornerstone in science and more impor-
tantly the practice of forensics. They guide investigations and make them comparable,
reproducible as well as certifiable. Usually, the adherence to strict guidelines (i.e., process
models) is regulated within any legal system (e.g., in the US by the fourth Daubert criterion
(“the existence and maintenance of standards and controls” [4])). For mature forensic sciences,
such as, for example, dactyloscopy, internationally accepted standards (such as the ACE-V
process model for dactyloscopy) have been established over recent decades.

Due to the fact that IT forensics is a rather young discipline in this field (with media
forensics being an even younger subdiscipline), it is hardly astonishing that here the
forensic process models have not yet achieved the same degree of maturity as in other fields.
Nevertheless, they would still be important to achieve universal court acceptability of
methods. One well established forensic process model for IT forensics is the one proposed
by the German Federal Office for Information Security (BSI). When it was originally
published in 2011, its sole focus was on computer and network forensics, but since then it
has evolved to also include suite and also some extend the needs of other subdisciplines
such as digitized forensics. The latest major revision of this process model, which is used
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within this paper, can be found in [7] and is called the Data-Centric Examination Approach
(DCEA). The core of the DCEA consists of three main aspects: a model of the phases of a
phase-driven forensic process, a classification scheme for forensically relevant data types and
forensic method classes.

The DCEA phases are briefly summarized in Table 1.

Table 1. Sets of examination steps for digital forensics, as defined in [7] (updated from [32]) .

Sets of Examination Steps Description (According to [7])

Includes measures taken by the operator of an
IT system and by the forensic examiners in or-
der to support a forensic investigation prior to
an incident

Strategic preparation (SP)

Includes measures of preparation for a forensic

Operational preparation (OP) investigation after the detection of a suspected
incident
Data gathering (DG) Includes measures to acquire and secure digital

evidence

Includes measures to evaluate and extract data

Data investigation (DI) for further investigation

Includes measures for detailed analysis and cor-
Data analysis (DA) relation between digital evidence from various
sources

Includes measures for the detailed documenta-
tion of the proceedings, also for the transforma-
tion into a different form of description for the
report of the incident

Documentation (DO)

One important reason for this paper to use the DCEA to model our own work is the
separation of preparation steps in an investigation into two distinct phases (the strategic
preparation (SP) on one hand an the operational preparation (OP) on the other). In [7], the
SP is generally defined as: “The strategic preparation [...] includes all preparation procedures
taken ahead of the actual occurrence of a specific incident”. Exemplary measures for SP in the
context of digital forensics are given by [7] as: “Documentation and extension of knowledge
of IT systems specifics, tool testing for forensic data types and sets of methods determination for
error loss and uncertainty estimation, setup of logging capabilities, performance of system landscape
analysis, data protection considerations, [...]”. In contrast, the OP is specified to “[...] include
all preparation procedures taken after of the actual occurrence of a specific incident. Those procedures
by definition do not alter any data on the targeted system”. These preparation phases are then
followed by the actual application of forensic procedures, separated in DCEA into the triplet
of data gathering (DG), data investigation (DI) and data analysis (DA). The whole process
is, in every phase (including SP and OP), supported by accompanying documentation,
which is in the last phase (documentation (DO)) used as basis for the generation of the
official documents regarding the investigation (e.g. the evidence to be interpreted in expert
testimony in a court case).

The second core aspect of DCEA is the classification scheme for forensically relevant
data types, as summarized in Table 2. The categories in this scheme are not classes in
a mathematical sense, since all other later data types are interpreted out of raw data.
More recent publications, such as [33], have shown that this scheme needs to be extended
accordingly if new investigation domains are considered.
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Table 2. Forensic data types defined in [7] (updated from [34]).

Forensic Data Type

Description (According to [7])

Raw data

A sequence of bits or data streams of system
components not (yet) classified

Hardware data

Data not or only in a limited way influenced by
the OS and application

Details about data

Meta data describing other data

Configuration data

Modify the behavior of the system and applica-
tions

Communication protocol data

Modify the communication behavior of the sys-
tem

Process data

Data about a running process

Session data

Data collected by a system during a session

User data

Content created, edited or consumed by the
user

This original set of data types, which was designed with digital (IT) forensics in
mind, needs to be adapted to every investigation domain. In [7,32], such an adaptation for
the field of digitized forensics has been discussed for the field of dactyloscopy (forensic
fingerprint analysis and comparison). This adaptation is summarized in Table 3 below
because it is much closer to the requirements we face within this paper than the original
data types summarized in Table 2.

Table 3. Forensic data types defined in [7] for an exemplary selected process in digitized forensics (here, digital dactyloscopy)

(updated from [32]).

Forensic Data Type

Description (According to [7])

Raw sensor data (DD1)

Digital input data from the digitalization process (e.g., scans of test samples)

Processed signal data (DD2)

Results of transformations to raw sensor data (e.g., visibility enhanced fingerprint
pattern)

Contextual data (DD3)

Contain environmental data (e.g., spatial information, spatial relation between
traces, temperature, humidity)

Parameter data (DD4)

Contain settings and other parameters used for acquisition, investigation and
analysis

Trace characteristic feature data (DD5)

Describe trace specific investigation results (e.g., level 1/2/3 fingerprint features)

Substrate characteristic feature data (DD6)

Describe trace carrier specific investigation results (e.g., surface type, individual
surface characteristics)

Model data (DD7?)

Describe trained model data (e.g., surface specific scanner settings, reference data)

Classification result data (DD8)

Describes classification results gained by applying machine learning and compara-
ble approaches

Chain of custody data (DD9)

Describe data used to ensure integrity and authenticity and process accompanying
documentation (e.g., cryptographic hash sums, certificates, device identification,
time stamps)

Report data (DD10)

Describe data for the process accompanying documentation and for the final report

The third core aspect of DCEA is the definition of forensic method classes as presented
in Table 4. For a detailed discussion on these method classes, including considerations on
the estimation of availability in certain investigation contexts, practicalities of the forensic
process, etc., we refer to [7].
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Table 4. Grouping of sets of methods for the forensic process in digital forensics defined in [7]
(updated from [32]).

Sets of Methods for the Forensic Process in

Digital Forensics Description (According to [7])

Methods that provide forensically relevant data
Operating system (OS) as well as serving their main purpose of dis-
tributing computing resources

Methods that provide forensically relevant data
File system (FS) as well as serving their main purpose of main-
taining the file system

Methods provided by IT applications that pro-
IT application (ITA) vide forensically relevant data as well as serv-
ing their main purpose

Methods that are executed autonomous on a
Explicit means of intrusion detection (EMID) routine basis and without a suspicion of an in-
cident

Methods that are unsuited for routine usage
Scaling of methods for evidence gathering in a production environment (e.g., due to false
(SMG) positives or high computation power require-
ments)

Dedicated methods of the forensic process that

Data processing and evaluation (DPE) display, process or document information

The DCEA is relevant for the work presented in this paper for two different reasons:
On one hand, we will use it in Section 3 to provide a comparative description of the solution
concept to address the issue of DeepFake detection in this paper. On the other hand, we
will elaborate on the question related to how well this process model fits the needs of media
forensics investigations and which changes or extensions would be required in DCEA to
provide better support for this very young subdiscipline in IT forensics.

3. Solution Concept for DeepFake Detection with Hand-Crafted Features

The main findings considering the background and state of the art in Section 2 can
be summarized as follows: DeepFake detection is a very active research field trying to
address a significant recent threat. While many detection approaches have been published
in the last few years (some reporting astonishing detection performances), only a small
number of publications have been tackling the questions of interpretability and plausibility
of results. We attribute this lack of studies mainly to the type of features used in the
majority of the research published so far, which rely on neural networks to learn feature
spaces used, a method that has inherent difficulties with interpretability (see Section 2.2).
Additionally, this question of creating the feature spaces required for a pattern recognition-
driven media forensics method such as DeepFake detection, a close integration of forensic
procedures and “the existence and maintenance of standards and controls” [4] is an open issue.
This can contribute to the comparative novelty of many media forensics methods, including
DeepFake detection.

To address both of these apparent gaps (interpretability of feature spaces and projec-
tion into forensic procedures), our work in this paper focuses on the usage of hand-crafted
features for this pattern recognition problem as well as discussions on the applicability of
the Data-Centric Examination Approach (DCEA, see Section 2.3) to map out our work.
Regarding the pattern recognition aspects, the concept in this paper focuses on four items:

e  The design, implementation and empirical evaluation of features for DeepFake detec-
tion: Here, two feature spaces hand-crafted especially for DeepFake detection and a
hand-crafted feature space derived from a different but similar pattern recognition
problem domain (face morph detection) are implemented and evaluated. For the
empirical evaluation, pre-existing reference databases containing DeepFake as well as
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benign ("original") face video sequences are used together with a pre-existing out of the
box classification algorithm implementation. To facilitate the interpretation of results
and the comparability with other detector performances reported in the state of the art,
different well established metrics are used: detection accuracy, Cohen’s kappa as well
as (ROC) AUC (Area Under the Curve (of the Receiver Operating Characteristic)).

¢ The discussion of different information fusion techniques and the empirical compar-
ison with detection performances of individual classifiers: Here, with feature-level
fusion and decision-level fusion, two different concepts are applied. For the latter,
with the majority voting and weighted linear combination, two popular choices are
used and compared with single classifiers in terms of the classification performance
achieved.

e  The comparison of the detection performance of our hand-crafted features with
performances of learned feature spaces from the state of the art in this field: Here,
the results obtained by single classifiers as well as fusion approaches are compared in
terms of detection accuracy with different approaches from the state of the art, relying
on learned features.

¢ Attempts at validating the detectors’ decisions on basis of the features and trained
models: Some classifiers, such as the decision tree algorithm used in this paper, train
models that can be read, interpreted and compared by humans. Here, we analyze the
decision trees trained on different training sets to identify the most relevant features
and see how much these trees have in common and where they differ.

In addition to these pattern recognition aspects, we project the different operational
aspects in training, validating and applying the DeepFake detectors into the established
process model DCEA to show how such media forensics methods would have to be
integrated into forensic procedures. In this projection, the first question to be asked
concerns where the detector is supposed to be used. There exist two potential operation
points in the phases described by the DCEA: either as a method of explicit means of
intrusion detection (EMID) as part of incident detection mechanisms, which would place
the whole DeepFake detection with the training of the method and its application into the
phase of strategic preparation (SP), or in scaling of methods for evidence gathering (SMG),
which would place DeepFake detection after an incident is detected or suspected and
place the corresponding components in the operational preparation (OP), data gathering
(DG), data investigation (DI) and data analysis (DA) phases. These two distinct operation
points as a live detector or as means of post-mortem (or a posterior) analysis in data
investigation have, amongst other effects, significant impact on the training scenario that
can be assumed: In the case of application as an live detector (EMID), in SP, only pre-trained
models can be applied. In the case of a post-mortem (SMG) detector, in the OP the material
to be investigated can be analyzed to design targeted training datasets perfectly matching
the characteristics encountered. Using those sets (and own DeepFake algorithms to also
generate a specimen for this class) optimal models could be trained for each case. In this
paper, the conceptual choice made is that of a live detector, reserving considerations on
targeted training for future work.

The concept of training brings us to a second issue where the principles of the DCEA
can help structuring of the description of media forensics methods such as DeepFake
detectors: The accompanying documentation in the DCEA is meant to allow for inter-
pretability and plausibility validation steps while compiling the case documentation in
DO. For our work, this implies not only documenting all details of the pattern recognition
process at hand but also using these data to reason about the plausibility of decisions
(e.g., by comparing the characteristics of training and test sets to determine questions of
generalization power).

One important realization when trying to apply the DCEA data types for digital or
digitized forensics, as summarized in Tables 2 and 3, is that they do not perfectly match the
media forensics task at hand. Using the original model for digital forensics, only four of
the data types would be covered (raw data differentiated into different user data media



J. Imaging 2021, 7, 108

11 of 29

streams (video, audio, network stream) and possibly hardware data (derived from the
camera/microphone used) as well as details about data). If the model for digitized dacty-
loscopy is used, which slightly better matches with the characteristics of our application
scenario, then eight of the ten data types would be directly relevant (processed signal
data (DD2), contextual data (DD3), parameter data (DD4), trace characteristic feature data
(DD5), model data (DD?), classification result data (DD8), chain of custody data (DD9) and
report data (DD10)), while one other would very likely also to be of significance (raw sensor
data (DD1), which might be used to calibrate specific cameras or camera models, etc.).

It is apparent that an adapted data type model for media forensics would be required
to be able to make use of the full potential of the DCEA in this context. Nevertheless, it is
outside the scope of this paper to propose such an adapted data type model.

4. Implementation of the Individual Detectors and the Fusion Operators

For our DeepFake detection methods, the input video is evaluated frame-wise with
the intention to analyze inter-frame patterns (e.g., the time between two blinks of one
eye). In a pre-processing step, the presence of a face in a frame is determined, the face
region is segmented and annotated frame-wise with a semantic model localizing 68 facial
landmarks. This semantic model [35] is provided by the dlib library [36]. The output of
this pre-processing is shown in Figure 1.

Figure 1. Visual representation of the 68 facial landmark model [35]. Image originates from Utrecht
ECVP [37] with application of keypoints generation by dlib [36] followed by cropping.

In case no face can be localized in a frame, this event is logged, if a face is found,
and the segmented face pixel matrix and the positions of these 68 facial landmarks are
then forwarded to the feature extraction component of each individual detector as well
as the concatenation operator for the feature-level fusion. This process is repeated frame-
wise until the end of the video is reached, which initializes the detection operations
performed. The entire processing sequence is shown in Figure 2. Due to the specific
recording conditions of the datasets used in this paper (which all represent a single person
in an ideal interview-like recording setting with perfectly illuminated faces and none of
the facial key regions, such as eye and mouth, occluded), the pre-processing could be kept
that simple. In case more realistic/averse videos have to be analyzed, this pre-processing
would necessarily have to be extended.
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Figure 2. Concept pipeline considered in this paper.

The domain knowledge used here in hand-crafting features for DeepFake detection is
based on the fact that DeepFake generators (similar to face morphing algorithms) rely on
blending operations in the face region, which is a well established fact in the state-of-the-art
research in this field [13]. Blending itself describes the process of a weighted combination
of two or more faces to create a new identity [38]. This often goes hand in hand with a loss
of local details in the face regions, while the background of a video or image is usually
not affected, which is a fact also used in similar media forensics detectors such as, e.g.,
morphing attack detectors [39].

This knowledge is translated in Section 4.1 into three distinct hand-crafted feature
spaces aiming at solving the following pattern recognition tasks to distinguish between
DeepFake and genuine videos: (a) anomaly detection for eye blinking (Section 4.1.1),
(b) anomaly detection in mouth and teeth region level of detail (Section 4.1.3), and
(c) DeepFake detection based on image foreground texture (Section 4.1.3). In terms of
the DCEA data type model, these features would make up the Trace characteristic feature
data (DD5) from the data model discussed in [7] for digitized forensics. While the broad
category actually fits, the extensive discussion on feature space design alternatives for
DeepFake detection presented in Section 2.2 indicates that more detailed modeling would
be required to sufficiently address this aspect.

To implement the actual classification, we decided not to design or implement our
own but instead rely on a proven classification algorithm detection which does facilitate
feature space as well as model-driven plausibility considerations. The actual algorithm that
we use here is the WEKAs [40] J48 decision tree, which is an open source implementation
of Ross Quinlans C4.5 decision tree algorithm [41]. The classifier is used here in its default
parameterization, i.e., without parameter optimization being applied.

To further increase the performance and robustness of DeepFake detection, differ-
ent fusion operators for feature-level fusion and decision-level fusion are implemented,
as shown in Section 4.2.

In terms of datasets (i.e., processed signal data (DD2)), the pre-existing, publicly avail-
able and widely accepted reference datasets TIMIT-DF [16,42], FaceForensics++ [12,43,44]
and Celeb-DF [13] are used in our evaluations. VidTIMIT [42], which was used to create
TIMIT-DF [16], is a long-established reference database for various video processing tasks.
It represents recording criteria that are ideal for face recognition and similar tasks: uniform
lighting, the presence of exactly one person in each video, a frontal position to the camera,
an average duration of 3 to 5 s and the speaking of ten different, pre-defined sentences.
A total of 430 videos are included in the set, recorded using 43 volunteers. The resulting
DeepFake videos were generated for TIMIT-DF by face swapping in two different reso-
lutions with the autoencoder resolutions 64 x 64 and 128 x 128, respectively. Through
prior selection, 16 suitable pairs of faces were selected for the generation, resulting in 32
DeepFake entities. This yields a total of 640 DeepFakes, which were taken into account in
the TIMIT-DF dataset [16].

The second dataset considered is called DeepFakeDetection (DFD) [44], which origi-
nates from the FaceForensics++ [12] dataset. It contains a total of 363 source videos based
on 28 actors (DFD-source). DeepFake synthesis was performed with an autoencoder resolu-
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tion of 256 x 256 pixels and a total of 3068 DeepFake videos (DFD-DF) were generated. All
videos considered were compressed with H.264 at CRF 23. Due to time constraints, only a
subset of the DFD dataset, containing 55 DFD-source and 55 DFD-DF videos, were used.
Video selection was carried out manually, selecting videos in which only a single person
can be found speaking towards the camera. In the DFD dataset, this was carried out by
searching for the keyword talking in conjunction with against wall or outside.

The third dataset is Celeb-DF [13], which includes videos (harvested from YouTube) of
celebrities being interviewed. These source videos were divided in [13] into the two datasets
Celeb-YouTube and Celeb-real, whereby only Celeb-real was considered for the DeepFake
synthesis. The synthesis method is more advanced than the one from TIMIT-DF in terms of
quality, using an autoencoder resolution of 256 x 256. Due to an average video duration of
about 13 to 15 s, only a subset of this dataset is used in our own paper. For our evaluations,
120 source and 120 DeepFake videos were chosen. For simplification, the entire dataset is
subsequently also referred to as Celeb-DF.

Those three datasets, summarized in Table 5 were used to design different training
and testing scenarios to be able to establish facts about the generalization power of the
detectors trained, which is an important aspect of the quality assessment for every method.
Such evaluations would have to be performed as part of quality assurance in the strategic
preparation (SP) phase of each forensic process.

Table 5. Collection of datasets used for this paper.

Dataset Number of Videos Reference
VidTIMIT 430 * [42]
TIMIT-DF 640 [16,42]

DFD-source 55 * [12,44]

DFD-DF 55 * [12,44]

Celeb-YouTube 60 * [13]
Celeb-real 60 * [13]
Celeb-DF (v2) 120 * [13]

*: Numbers do not reflect the total but rather the number of videos used in the context of this work.

4.1. Individual Detectors Using Hand-Crafted Features

In general, the 68 facial landmark model [35] used in this paper (see Section 4) can be
structured into different facial areas, as shown in Figure 1. Here, the following segmentation
alternatives are used to derive the features for our individual detectors: The first set of
keypoints, numbers 0 to 26, describes the edges of the face along the chin and eyebrows.
These keypoints are used to segment the image foreground, as explained in Section 4.1.3.
Keypoints 27 to 35 describe the nose, which is neglected in this work. The eyes are described
with the help of keypoints 36 to 47 and form the basis for the detection of blinking behavior
considered in Section 4.1.1. The final keypoints, 48 to 67, are used to model the mouth,
which is examined in more detail in Section 4.1.2.

In the following subsections, our three distinct detectors relying on different hand-
crafted features spaces are described. A summarizing overview over all features extracted
is presented in Table Al at the end of the document in Appendix A.

4.1.1. DeepFake Detection Based on Eye Blinking

The first implemented detector is based on the biometric modality eye and acts on the
behavior of eye blinking. Using the 68 facial landmark model [35], each eye is described by
six keypoints (keypoints 36 to 41 and 42 to 47, respectively). The process of blinking itself
occurs subconsciously about 10 to 15 times per minute. On average one blink takes 0.3 to
0.4 s between closing and reopening the eyes. It should be noted that blinking behavior
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is also influenced by gender, age, time of day and how tired the person is [24]. In some
publications, the minimum duration of human blinking is noted as 0.1 s [45]. To enable
the detection of blinking, the eyes are modeled to two possible states—open and closed.
To distinguish between these two states, the degree of aperture for each eye is determined
individually by the formula:

YMax — YMin

AspectRatio =
XMax — XMin

The parameters of this bounding box are determined from the six keypoints of the
68 facial landmark model, which describe the respective eye. The main idea of the feature
design here is strong likeliness of DeepFake synthesis artifacts leading to lower average
AspectRatio values, due to the inherent impact of the blending operation. Considering
diversity in eye shapes and the inclusion of emotions, as shown in Figure 3, results on the
use of a dynamic threshold (determined empirically on the training data used) were used
to distinguish the eye states.

Figure 3. Illustration of the challenges of correctly detecting the aperture of eye opening as widely
open (left), based on ethnicity (center) and inclusion of emotions (right). Images originate from
LondonDB [46] dataset with application of cropping.

The eye state classification is carried out as binary decision, under the assumption
that the aspect ratio always represents exactly one of two values, representing the two
eye states (open and closed). The threshold under consideration was implemented as a
bimodal distance function. Here, both states are described by a value which corresponds to
the most frequent value of the upper and lower thirds of values found in the training data.
The closed state is described by the most frequent value of the lower third of the value range.
Conversely, open is described by the most frequent value, which is found in the upper third
of the value range. Subsequently, the state for each eye and frame is determined via smaller
distance to one of the two values representing the states.

For DeepFake classification based on eye blinking, a feature vector of fixed size of
13 dimensions was designed. Seven out of these 13 features are directly based on the
AspectRatio, one is based on the difference between the two eyes and the other six are
based on eyelid movements. This eyelid movement is detected as a rate of change on a
frame-by-frame basis. Features 8 to 13 are based on the given eye state modeling. One
feature introduces a new metric of anomaly, hereinafter referred to as noise. This noise
is described as a frequent change in eye states below the expected frequency. In detail,
this timespan is set to 0.05 s and thus corresponds to half the duration of a blink to detect
anomalies only. Another feature describes the percentage of time in the video that the
person has their eyes open. The last four features considered refer to the extreme values
given the duration in each eye state.

In the summarizing overview of all features in this paper, given in Table Al at the
end of the document in Appendix A, these eye blinking features are the first 13 feature
vector elements.

4.1.2. DeepFake Detection Based on Mouth Region

The second implemented detector is based on the biometric modality lip-movement.
The focus of this approach is on analyzing the highly detailed teeth region. Under the
assumption of blending as part of DeepFake creation, a blurred, less detailed image of
the teeth is expected. The 68 facial landmark model is also used to localize the mouth
region by using keypoints 48 to 67. These keypoints allow the mouth to be displayed as
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two separate images, one of which represents the entire mouth described by keypoints 48
to 59. This representation is henceforth called the OuterBoundRegion (OBR). The other
keypoints (60 to 67) can be used show another representation considered in this work.
This, in the following, is called the InnerBoundRegion (IBR) and represents the mouth
area with the exception of the lips. The IBR is used to determine whether the mouth is
open, since a closed mouth can be represented by a non-existent IBR. The third and last
representation considered to describe the mouth region is the so-called TeethRegion (TR).
The TR is created by segmenting the OBR to preserve potential teeth found in the image.
An example of the representations can be found in Figure 4. In addition, the degree of
aperture of the mouth is determined as an additional parameter based on the OBR. Here,
the x and y dimensions are considered separately in order to act independently of the
spoken phoneme. The respective values are determined by the bounding box of the OBR
using Aperturey = Xpax — Xmin and Aperturey = Ypiax — Ymin for each frame.

Figure 4. Illustration of the proposed representations for the mouth region OBR (left), IBR (center)
and TR (right). Mouth image originates from LondonDB [46] dataset with application of keypoint
generation by dlib [36], segmentation and cropping.

Based on these representations, a total of three states are conceived to describe the
mouth. These states are: closed mouth, open mouth without detectable teeth and open mouth
with detectable teeth. The subdivision of the states is made by two binary decisions. The first
decision is based on the IBR and describes whether the mouth is open. The metric used
for the decision is the number of pixels found in the IBR. Here, a conscious decision is
made against cropping and scaling of the representations in order to prevent distortion
of the image when viewing different visemes [47]. As a consequence, the number of
pixels of the OBR is taken as a reference. Thus, the decision threshold is determined
empirically on training data as: %#gf;; > 0.211137, for criteria for an open mouth.
The second decision, if the mouth is classified as open, is made with the help of the number
of pixels in the TR, once again using the OBR as a reference. The threshold considered
(after empirical determination from training data) is PixelCountrr_ (11455 for detectable

PixelCountpopr
teeth. An example of each state considered can be found in Figure 5.

w -

Figure 5. Illustration of the proposed mouth states: closed (left), open without detectable teeth
(center) and open with detectable teeth (right). Image originates from VidTIMIT [42] dataset with
application of keypoint generation by dlib [36] and cropping.

For the detection of DeepFakes based on mouth region, a feature vector of dimension-
ality 16 is designed. Six of these features are based on mouth movements. This mouth
movement is recognized image-wise as the rate of change, which corresponds to the ex-
treme values for the x- and y-dimensions, respectively. The other 10 features are based on
the detected mouth states, leaving out the closed mouth state. Thus, the focus of this review
is based on the description of the level of detail in the mouth region. For this purpose,
FAST and SIFT keypoint detectors as well as Sobel edge detection and the number of
closed regions are considered. All of them are implemented by OpenCV [48] and used with
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default parameters. For the open without teeth state, the maximum of each feature, and for
state open with teeth, the minimum of each feature are determined over all frames. Lastly,
the percentage of time in both states is considered. The expectation for this approach is a
low level of detail in the open with teeth state for DeepFakes or even a wrong assignment to
the open without teeth state, although teeth are recognisable, due to blending of artifacts.

In the summarizing overview over all features in this paper, given in Table Al at the
end of the document in Appendix A, these mouth movement features are elements 14 to 29
of the feature vector.

4.1.3. DeepFake Detection Based on Image Foreground

The third and last proposed detector is based on domain transfer of hand-crafted
features from a similar media forensics task. As shown by Kraetzer et al. [39], such a domain
transfer seems plausible to detect blending anomalies in face morph attack detection. This
requires an image foreground, which is characterized by a uniform distance towards the
camera. Image foreground Imgroreqround i designed as an extension of the facial region
Imgrace, which is determined based on the 68 facial landmark model—more precisely,
keypoints 0 to 26. The extension of the facial region is carried out by widening along
the vertical axis to include the upper body, which is potentially shown in the image.
A third representation, called Imgroj, is conceived as the differential image of the previous
two, formally described as Imgror = IMgForeground — IMgFace- A visual example of each
representation can be found in Figure 6.

Figure 6. Illustration of the proposed representations for anomaly detection based on image fore-
ground Imgg,.. (right). Image originates from VidTIMIT [42] dataset with application of keypoint
generation by dlib [36] and segmentation.

For the detection of DeepFakes based on the image foreground, a feature vector of
fixed size of eight elements was designed. The first subset of features is based on face
detection itself, counting the number of frames and sequences where no face can be found.
Here, it is assumed that a failure is due to anomalies of the DeepFake synthesis. The second
set of features is based on the level of detail in Imgr,, relative to Imgro;. For each frame
and representation, the characteristics of FAST and SIFT keypoints as well as the Sobel edge

image are determined. The implementation of these metrics is carried out using the default
I MEFace

) Imgror *
Lower values for DeepFakes are expected here. Lastly, the respective extreme values of all

frames are extracted as features.

In the summarizing overview of all the features in this paper, given in Table Al
at the end of the document in Appendix A, these features are elements 30 to 37 of the
feature vector.

parameters given by OpenCV [48] and the scoring for each frame corresponds to

4.2. Fusion Operators

To further increase the performance as well as robustness of the detection, different
methods of fusion were implemented for our evaluation. The fusion itself is considered
here both at feature level and decision level [49]. At the feature level, the feature spaces
of the individual detectors are concatenated, without additional pre-processing such as
weighting or filtering. At the decision level, a total of four operators are applied: The
first operator makes an unbiased decision using simple majority voting [50]. In contrast,
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the other three operators implement weighted linear combinations and derive the weights
for each individual detector based on its classification performance on the training set.
Considering the different training scenarios, there are two sets of weights, each based on
the training using dataset TIMIT-DF [16,42], DFD ( [12,44]) or Celeb-DF [13]. The explicit
weights determined this way can be found in Section 5.2. In summary, the following five
fusion operators are considered:

Feature-level fusion: concatenation of all features;

Decision-level fusion: simple majority voting;

Decision-level fusion: weighted, based on accuracy using TIMIT-DF for training;
Decision-level fusion: weighted, based on accuracy using DFD for training;
Decision-level fusion: weighted, based on accuracy using Celeb-DF for training.

Ol L=

5. Evaluation Results

The evaluation of the created approaches (i.e., our three feature spaces used in training
and testing with the used J48 classifier) for DeepFake detection is looking into aspects of
performance, generalizability and plausibility of the decisions made (i.e., the kind of informa-
tion summarized in the DCEA data type model for digitized forensics as Classification
result data (DDS8)). To address performance and generalizability, the three datasets used for
training and testing are presented as different scenarios (as shown in Table 6). Scenarios
S1, S5 and S9 , which represent evaluations in a simplistic (i.e., very naive) setup, split one
dataset in disjointed training and test subsets. These three scenarios are used to validate
the performance of detectors under optimal conditions.

In contrast, for evaluations on the generalizability, separate training and testing datasets
are used in scenarios 52, 53, 54, 56, S7 and S8. Since the individual detectors classify binary
according to {DeepFake, OK}, the evaluation is carried out using the metrics’ true positive
rate (TPR; a true positive (TP) in our case being a DeepFake detected as a DeepFake), true
negative rate (TNR; a true negative (TN) being an unmodified video classified as OK),
accuracy and Cohen’s kappa (x).

Table 6. Representation of the considered training and testing scenarios, given by differentiation of
the training and testing datasets used.

J Training/Testing — TIMIT-DF DFD Celeb-DF

TIMIT-DF scenario 1 (S1) scenario 2 (S2) scenario 3 (S3)
DFD scenario 4 (S4) scenario 5 (S5) scenario 6 (S6)
Celeb-DF scenario 7 (S7) scenario 8 (S8) scenario 9 (S9)

In addition, the hand-crafted features are evaluated in terms of interpretability and
relevance. This is carried out by manually evaluating the trained decision trees in model-
driven decision validation, looking at the individual features used to make the decision, the
threshold used, and their distance from the root node. To support this analysis, the complete
list of all features and experts” assumptions about their content behavior can be found in
Table Al at the end of the document in Appendix A. To extend the initial model-driven
decision validation, a comparison of the three decision trees trained on the different
datasets, TIMIT-DF, DFD and Celeb-DF, is made.

5.1. Results for Individual Detectors

The detection approach based on blink behavior has a generally higher TPR than TNR,
regardless of the scenario considered. For S1, it has a TNR of 70.47% and a TPR of 90.94%,
resulting in an accuracy of 82.15% and x of 0.6306. In comparison, S9 shows a TNR of
63.33% and TPR of 75.00%, resulting in an accuracy of 69.17% and « of 0.3833. It is assumed
that the Celeb-DF dataset also represents an improvement of the DeepFake synthesis over
the older TIMIT-DF by incorporating more realistic blinking behavior. Considering the
generalizability, a drastic decrease in detection rates can be seen in S7, S8 and S9, with a
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tendency to label all videos as DeepFake. In numbers, S3 indicates a TNR of 33.33% and
TPR of 75.00%, with an accuracy of 54.17% and x of 0.0833. In comparison, S7 shows
a TNR of 6.05% and TPR of 99.53%, resulting in an accuracy of 61.96% and « of 0.0659.
By performing feature selection on the 13 features considered, only the eyelid movement-
based features (ID2y;,x to ID7p5nk) seem suitable. In addition, looking at the two eyes
separately shows added value. As a result of the model-driven comparison of both trained
decision trees, a DeepFake can be described by a higher difference between opening and
closing speeds, relative to a non-manipulated video. However, the ranges of the values
found as well as the associated thresholds are different for the TIMIT-DF and Celeb-DF
datasets, explaining the drastic performance decrease for S3 and S7. Training on the DFD
dataset shows only the use of features ID9;,x and D10y, for decision making.

The second detection approach considered, based on the mouth region, has the highest
individual classification performances. For S1, a TNR of 88.84%, TPR of 97.81%, accuracy
of 94.21% and x of 0.8779 was achieved. In contrast, S9 resulted in a TNR of 91.67%, TPR of
97.50%, accuracy of 94.58% and « of 0.8917, thus showing better results in direct comparison.
Based on this result, it is suspected that newer DeepFake generators, such as the one used
to create Celeb-DF, also exhibit said blending artifacts. Once again, there are clear losses in
generalizability for S3 and S7: For 53, a TNR of 40.83%, TPR of 72.50%, accuracy of 56.67%
and x of 0.1333 were observed. 57 shows slightly better results with a TNR of 63.02%, TPR
of 71.09%, accuracy of 67.85% and « of 0.3378, which are justified by more general inclusion
conditions of the Celeb-DF data and more general classification model. Based on the 16
features considered in feature selection, the set of features describing the grade of detail,
excluding the ones using Sobel operator, are used to classify a DeepFake. This clearly
shows that blending results in a loss of detail in the facial region, which can be found for
both states open without teeth and open with teeth. Additionally, the assumption that the state
open with teeth is found less frequently for DeepFakes is correct. However, it should be
noted here that the approach only works if an open mouth can be found—for example, if a
person is speaking.

The trend of high TPR at the expense of TNR is also emerging for the detector based
on the image foreground. For 51, a TNR of 52.33%, TPR of 87.50%, accuracy of 73.36% and x
of 0.4182 were observed. For S9, the results look similar, with a TNR of 56.67%, TPR of
85.00%, accuracy of 70.83% and « of 0.4167. This approach also shows poor generalizability,
with a TNR of 43.33%, TPR of 70.00%, accuracy of 56.67% and x of 0.1333 for S3. Lastly,
S7 shows a TNR of 32.79%, TPR of 79.38%, accuracy of 60.83% and « of 0.1297. For the
decision making itself, the features based on the level of detail except for the Sobel operator,
as well as the number of frames without a found face, are used. However, the ID1{yregr0und
shows a different classification strategy depending on the dataset considered, when at
least one frame without a face is found. While for TIMIT-DF and DFD it is interpreted as a
DeepFake, for Celeb-DF it serves the classification OK. It is suspected that for TIMIT-DF
and DFD, the synthesis may result in artifacts, making the face undetectable. On the other
hand, less strict recording conditions in Celeb-DF do not exclude side shots that cannot be
detected by the facial landmark model. The use of features ID3¢oreground t0 ID6foreground
corresponds to the assumptions about blending, whereby lower levels of detail are taken
as an indication of a DeepFake.

In conclusion, regardless of the detection approach considered, in all cases, a value for
Cohen'’s kappa > 0 was obtained, implying for all cases a detector performance better than
chance agreement (i.e., better than guessing). Nevertheless, it has to be admitted that the
differences between the more naive setups (S1 and S9 with x > 0.35) and the more realistic
setups (53 and S7 with x < 0.15 for all but one case) indicate a very limited generalization
power of the trained detectors.

Analyzing the trained models in more detail, it has to be highlighted that the decision
tree trained on Celeb-DF is shown to be smaller and more compact. This is justified
by a lower number of suitable features for the detection of higher quality DeepFakes.
In addition, S3 generalizes better than S7, which goes hand in hand with the preceding
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statement. Here, Celeb-DF represents a more general dataset, with fewer indicators of
DeepFakes, where the trained model applies better to TIMIT-DF than vice versa.

5.2. Results for Fusion Operators
For all fusion operators considered, the metrics TPR, TNR, accuracy and Cohen’s

kappa are used to allow comparability between fusion and individual detectors. In addition,
the receiver operating characteristic (ROC) for all scenarios considered, based on the different
approaches of fusion at the decision level, are determined. The resulting graphs can be
found in Figure 7. Based on the ROC, the area under curve (AUC) is determined in order to
realize a better comparison with research results in the state of the art in the literature.
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Figure 7. Receiver operation curves (ROCs) for the decision-level fusion methods simple majority
voting and weighted fusion, based on DFD and Celeb-DF. Scenarios S5, 56, S8 and S9, which consider
both the DFD and Celeb-DF datasets, are presented here. The false alarm rate (false positive rate) is

plotted on the x-axis. The sensitivity (true positive rate) is plotted on the y-axis.

The first fusion approach considered is carried out at the feature level by concatenating
all features without prior adjustments or filtering. A descriptor of this vector can be found
in Table A1. For S1, a TNR of 96.74%, TPR of 98.13%, accuracy of 97.57% and « of 0.9494
and for S9 a TNR of 92.50%, TPR of 95.83%, accuracy of 94.17% and x of 0.8833 are achieved.
This outperforms the best individual detector from Section 5.1. However, this performance
is accompanied by even more significant losses for generalizability seen for S3 and S7:
A TNR of 70.83%, TPR of 38.33%, accuracy of 54.58% and x of 0.0917 are achieved for S3
and a TNR of 63.02%, TPR of 64.22%, accuracy of 63.74% and x of 0.2653 are achieved for S7.
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The model-driven feature selection shows that mainly features of the mouth region are
used here. From the other two feature spaces, only ID2pink and ID6oreground are considered
(the latter is found in the root of the respective decision trees). This again implies that
the individual features based on blinking and image foreground appear more unsuitable
than the features based on the mouth region. In addition, the differences between the
performances on the datasets and corresponding differences in threshold determination
described at the end of Section 5.1 are again apparent.

The second approach of the fusion operators takes place at decision-level in the form
of simple majority voting. Here, detection rates of TNR of 79.53%, TPR of 98.75%, accuracy
of 91.03% and « of 0.8075 for S1 and TNR of 78.33%, TPR of 94.17%, accuracy of 86.25%
and « of 0.7250 for S9 are determined. Furthermore, simple majority voting shows the best
generalizability of all approaches for S3, with a TNR of 53.33%, TPR of 64.17%, accuracy
of 58.75% and x of 0.1750. A TNR of 26.74%, TPR of 91.41%, accuracy of 65.42% and x of
0.2015 are determined for S7.

For the considered weighted decision-level fusion approaches, the weight combinations
Whlink = 0.328967, Winouth = 0.377246 and Weoreground = 0.293787 based on the use of TIMIT-
DF for training, Wplink =  0.257934, Wmouth = 0420621  and
Wioreground = 0.321445 based on the use of DFD as well as wpin = 0.294849,
Wmouth = 0403197 and Wioreground = 0.301954 based on the use of Celeb-DF for training
are derived based on the determined detection performances in training. In addition,
the optimal threshold value for the classification is determined manually. For both cases,
the ideal threshold can be described as:

Whlink T Weoreground < threshold < Wouth + Whlink| foreground

It is therefore necessary that both the detector based on the mouth region and an-
other one arrive at the classification result DeepFake so that the fusion also arrives at that
conclusion. In the following, a threshold value of 0.65 is used. Considering the results,
these resemble the detector based on the mouth region and show S1 with a TNR of 91.40%,
TPR of 97.03%, accuracy of 94.77% and x of 0.8904, as well as a TNR of 91.67%, TPR of
94.17%, accuracy of 90.42% and « of 0.8083 for S9. In the context of generalizability, this
fusion approach for S3 shows a TNR of 59.17%, TPR of 55.83%, accuracy of 57.50% and
x of 0.1500. Scenario S7 has a TNR of 63.72%, TPR of 70.94%, accuracy of 68.04% and x
of 0.3427 are determined, representing the best results of all considered implementations
for S7. A marginal improvement of the weights based on the Celeb-DF can be found in
consideration of the ROC AUC, as shown in Figure 7.

In conclusion, previous trends are confirmed showing that S7 has a higher performance
than S3 and thus more refined DeepFakes and less limiting factors of acquisition are
necessary for a more accurate classifier.

Table 7 summarizes and compares the performances of the individual and fusion
detectors. While the best performances are very similar, the fusion-based approaches show
a much smaller range in their results, which implies that the strongest of the three single
detectors (using the mouth region features) has a dominating impact out of all three fusion
operators tested. By switching from single classifiers to fusion approaches, here no gain
could be made in terms of increasing generalization power. The reason has to be sought
in the different thresholds that were derived for both training sets (see the corresponding
discussion at the end Section 5.1).
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Table 7. Classification results based on accuracy in percent, followed by Cohen’s kappa in parenthesis, for the different

methods proposed in this paper. Best result for each combination of training and test data is highlighted bold.

Training Dataset —

TIMIT-DF [16,42] DFD [12,44] Celeb-DF [13]

TIMIT- Celeb- TIMIT- Celeb- TIMIT- Celeb-
1 proposed method test dataset — DF DFD DF DF DFD DF DF DFD DF
DeepFake detection based on 82.15% 50.00% 57.50% 58.32%  59.09% 52.92% = 62.06%  58.18% = 69.17%
eye blinking (0.63)  (0.00) (0.15)  (0.15) (0.18)  (0.06) (0.07) (0.16) (0.38)
DeepFake detection based on 94.21% 76.36% 56.67% 64.95%  96.36% 53.75%  67.85%  69.09%  94.58%
mouth region (0.88) (0.53) (0.13)  (0.29) 0.93)  (0.08) 0.34) (0.38) (0.89)
DeepFake detection based on 73.36% 53.64% 56.67% 5833%  73.64% 54.02%  60.83%  5455%  70.83%
image foreground (042) (0.07) (0.13) (0.17) 0.47)  (0.11D) (0.13) (0.09) (0.42)
Feature-level fusion 97.57% 66.36% 54.58%  65.05% 97.27% 56.25% 63.74% 60.00% 94.17%

(0.95)  (0.33)  (0.09)  (0.30) (0.95)  (0.13) (0.27) (0.20) (0.88)
Decision-level fusion: 91.03% 69.09% 58.75% 59.72%  61.18% 52.08%  6542%  62.73%  86.25%
simple majority voting (0.81) (0.38) (0.18) (0.24) (0.24) (0.04) (0.20) (0.25) (0.73)
Decision-level fusion: 94.77% 70.91% 57.50% 67.00%  95.45% 53.75%  68.04%  65.45%  90.42%
weighted (threshold=0.65) (0.89) (0.42) (0.15)  (0.33) (091)  (0.08) (0.34) 0.31) (0.81)

6. Summary and Conclusions

To allow for a direct comparison of hand-crafted and learned features, Section 6.1
discusses our obtained performances and the generalization behavior observed in direct
comparison with a state-of-the-art paper using deep learning under comparable evaluation
conditions. Furthermore, we compare our feature concept implementations for eye blinking,
mouth region and foreground texture analysis with other hand-crafted and learned features
considering the same facial regions.

In Section 6.2, we summarize our conclusions on the comparison of hand-crafted and
learned features for DeepFake detection.

6.1. Summary of the Results and Comparison with other Approaches from the State of the Art

In the sections below, we provide a comparison of the results obtained in our ex-
periments with selected work from the state of the art in this fast growing research field.
Section 2.1 shows that there exists a wide range of different approaches to distinguish
DeepFake from real videos, with a strong tendency towards relying on features learned by
using neural networks. In subsection 6.1.1, we compare our results with selected detection
performances and generalization behaviors observed in the state of the art. In Section 6.1.2,
we compare our concepts for feature designs (looking at hand-crafted features, espe-
cially for eye blinking, mouth region and image foreground) with similar approaches by
other authors.

6.1.1. Performances and Generalization Power

Table 8 consists of two parts, the upper half represents our results on fusion-based
detectors trained on the DFD and Celeb-DF dataset and tested on TIMIT-DF, DFD and
Celeb-DF. The values given above are the results taken from Table 7 translated into area
under curve (AUCQC).

The second half are the results resented by Bondi et al. in [9], where the authors
performed very similar experiments like us only with a feature space learned with a
convolutional neural network (CNN). In their paper, they also used a total of four sets to
design training and test setups as we did with our 51 to S9. Two of the sets are Celeb-DF
and DFD, which are also used by us. Comparing our work and the AUC results from
Bondi et al. on the sets that are used in both papers, we can state that our approach with
hand-crafted features performs only slightly worse (maximum AUC = 0.960) than their
method relying on learned features (maximum AUC = 0.998). Furthermore, we can point
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out that their experiments with training and testing on different sets of DeepFakes results
in very similar, if not worse problems in terms of generalization power (i.e., AUC drops
from values larger than 0.9 to smaller than 0.7).

Table 8. Comparison (in terms of AUC) of different state-of-the-art DeepFake detectors with the presented methods. Further
separation based on differentiating training and test dataset.

Training Dataset — DeepFakeDetection (DFD) [12,44] Celeb-DF [13]

J fusion method test dataset —  TIMIT-DF DFD Celeb-DF TIMIT-DF DFD Celeb-DF
Ours: simple majority 0.668 0.947 0.556 0.690 0.685 0.925
Ours: weighted based on accuracy 0.685 0.960 0.556 0.682 0.712 0.954
using DFD for training

Ours: weighted based on accuracy 0.685 0.960 0.556 0.698 0.712 0.955
using Celeb-DF for training

[9]: Baseline - 0.987 0.754 - 0.708 0.998
[9]: Triplet Training - 0.882 0.759 - 0.554 0.995
[9]: EfficientNetB4. Binary Cross

Entropy with augmentation - 0.990 0.842 - 0.795 0.998
[9]: EfficientNetB4. Triplet Loss

with augmentation - 0.982 0.809 - 0.604 0.995

6.1.2. Comparison of Feature Concepts

In the case of DeepFake detection, eye blinking is a feature which is used for hand-
crafted as well as learned feature space approaches. Section 2.1 also recaps the main
functionality of DeepVision by Jung et al. [24] where they describe a hand-crafted detection
method of the eye blinking behavior of persons in potential DeepFake videos. This ap-
proach is similar to our proposed feature detector for the eye blinking behavior. After the
face detection happens in both cases, the detection of both eyes frame-by-frame. In our
work, for every detected eye the AspectRatio changes are tracked over time. Jung et al. [24]
evaluate only the amount of blinking events in a video and also the blink elapsed time
as well as the blinking period time, which would correspond to the features ID8};,x to
ID13yjink of our work. Implementation differences are visible in handling the threshold for
state (open vs. closed) determination.

Li et al. [15] used a CNN for the segmentation of the eyes after they located the face
area in a video. For their inter-frame blinking analysis they use an RNN with LSTM cells.
The output of each RNN neuron is connected to a fully connected network, which estimate
the output of the LSTM cells if an eye is open or closed.

Unfortunately, a direct comparison with these other publications in terms of perfor-
mances is not possible here, since entirely different datasets were used.

To our knowledge, there is currently in the literature no similar DeepFake detection
approach analyzing only the visible mouth region in the video with hand-crafted features.
Currently, our approach only analyzes the mouth region in the video stream but does
not consider of the spoken speech in the audio stream combined with the lip movements.
Extending it with methods for fake voice detection, as in [51], would be an interesting next
step for this method.

Considering neural network-based approaches for analysing the mouth region, Agar-
wal et al. [47] present the hypothesis that DeepFake videos are not able to reproduce spoken
phoneme such as "M", "B" or "P", where the mouth is normally completely closed for the
pronunciation. Their detection pipeline starts with the extraction of all phoneme locations.
The phoneme generation is managed by the transcribing API Speech-To-Text of Google
and then manually reduced to six phoneme groups ({OY,UH,UW}, {AA}, (M,B,P}, {L}, {EV},
{CH,JH,SH}). The video stream is then aligned to these phonemes. After that, they measure
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the visemes for several evaluation tests in three different ways (manual, profile, CNN) [47].
This approach corresponds to a simplified lip-sync approach for a DeepFake detection,
which is realized in [16] (see Section 2.1).

To the best of our knowledge, in the current literature, no hand-crafted approach
analyzing only the image foreground to detect DeepFakes using image foreground can
be found.

Looking for neural network-based approaches implementing such a feature space,
the papers of Zhang et al. [52,53] have to be mentioned here. In contrast to our approach,
they developed an automatic approach using a CNN. The idea behind their approach is that
the image compression ratio of the face and background is different between the DeepFake
and original. The reason behind this issue is that the resolution all current DeepFake
algorithms is very limited. In addition, the generated fake faces are modified by affine
transformations such as scaling, rotating and shearing. Based on this hypothesis, Zhang
et al. try to detect the resulting artifacts of these affine transformations. The detection of
the compressing distortions happens in their case with the well known error level analysis
(ELA) method [54]. It follows that the training of a CNN with these ELA images which
extracts the counterfeit features of the ELA images. If the CNN is able to extract these
counterfeit features, then the input image of the CNN is a DeepFake. Even though the
detection in [52,53] uses only DeepFake images in its tests, it would be possible to upgrade
this approach for a DeepFake detection of videos.

6.2. Comparison of Hand-Crafted and Learned Features for DeepFake Detection and Conclusions

Our proposed hand-crafted features as well as hand-crafted features from other
sources such as [21-24] have shown that also such expert knowledge-driven approaches
are able to distinguish real from DeepFake videos. The detection rates are usually high
but in most cases slightly lower than the performance achieved with learned feature
spaces. The main advantage that hand-crafted features have over learned features is
their interpretability and the consequences this might have for plausibility validation for
decisions made.

All current approaches for DeepFake detection in the literature show error rates which
are far from perfect. In particular, when DeepFake detectors are evaluated in a realistic
setting, i.e., with independent training and test sets, then current hand-crafted as well as
learned feature space approaches suffer generalization problems if the characteristics of
training and test data are different. This has been demonstrated in our results but also in
papers performing similar tests with learned feature spaces, such as Bondi et al. in [9].

Obviously, the problems of individual detectors could be increased if the DeepFake
generators would include active mechanisms (counter-forensics) into the generation pro-
cess to enforce false results with known detectors. Various strategies could and should be
applied to address these performance and reliability issues. In this paper, we performed fu-
sion operations to improve detection performances of hand-crafted feature spaces. In their
work, Lin et al. [29] propose to extend fusion even further by combining hand-crafted
features and CNN features. By doing so, they imply that it would enable us to find a solu-
tion that combines the interpretability of hand-crafted features with the potentially higher
classification accuracy of learned features. The main benefit of such fusion approaches
is that they generate complexer decision constructs that could compensate the problems
of individual detectors in the set and might be more resilient against counter-forensics.
However, these benefits would be bought at the cost of throughput/runtime behavior and
a much more difficult interpretability of decisions.

In most cases, hand-crafted approaches do not need much data for model training,
which may also result in lower process costs for memory or calculation time. Additionally,
approaches which are including neuronal networks and specially convolutional neuronal
networks need much more memory (mostly graphic memory) and CPU or GPU power
for the training of the detection networks. In particular, the analyzing process of whole
videos and specially a recurrent network structure have a huge impact to the needed
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memory. These learned approaches are also expensive in purchase costs for (new) hardware
architectures. However, when the networks are finally trained, the networks are able to
detect DeepFake videos in a very short time, similar to models created/trained with hand-
crafted features. Therefore, neither choice would limit the application in incident response
procedures (EMID), where fast (close to real time) detector responses would be required
for live detectors.

7. Future Work

Our proposed hand-crafted features reach acceptable detection rates for DeepFake
videos. However, not every video was classified correctly. Some DeepFake videos were
detected as real video and vice versa. It is necessary to detect, analyze and find the
reasons for a misclassification to improve our proposed approaches for DeepFake detection.
A further improvement can be achieved by investigating different feature selection methods
to strengthen the suitability of the proposed features. Possible improvements would
also affect approaches from other sources, as it is extremely unlikely that any detection
method can correctly classify every video, especially considering potential counter-forensics
methods included in the DeepFake generation. Different detection approaches should be
analyzed and the benefits of these approaches should be finally combined into a single
detection method with a better detection rate and higher robustness against counter-
forensics. This also concerns the fusion of hand-crafted and learned features whereat
also the integration of hand-crafted methods into learned approaches are meant. In this
context, the evaluation of our approaches should expand to other DeepFake databases
to create a wider base for training or construct more evaluation scenarios to validate the
generalizability of the approach.

A DeepFake video usually consists of two media types: the visible video and the
underlying audio. These different media types should be analyzed in combination at
the same time. For example, our handcrafted detector for the mouth region should be
expanded to include a lip synchronization detector. It is also possible to extract the current
emotion of a person in a video. Here, it is imaginable to analyze the emotion of one area
(e.g., the left eye) and compare it to another (e.g., the right eye and/or the mouth). Possible
aspects to determine emotions are facial expression (e.g., gesture of mouth and eyes), as
well as the way of speaking.

In this paper, we started with trying to project the media forensics method of DeepFake
detection onto a forensic process model (here, the data-centric examination approach
(DCEA) introduced in Section 2.3). In future work, more effort is required to extend this
projection, including a required extension of the DCEA data type model to make it suitable
for the media data characteristics encountered here. As discussed in Section 3, the most
significant change would be the design of a new, domain specific data type model for
this media forensics task. While many components (such as the Processed signal data
(DD2), Contextual data (DD3), Classification result data (DD8), Chain of custody data
(DD9) and Report data (DD10)) could be re-used with only minor modifications, others
(esp. Parameter data (DD4), Trace characteristic feature data (DD5) as well as Model data
(DD7)) would need a major overhaul. The updated data modeling would also have to
reflect that, in this media forensics task, different correlated (media) data streams such
as video, audio, network, meta and synchronization data would have to be analyzed in
parallel to substantiate the findings.

In addition to the data-driven nature of DCEA, a second reason for its choice as a
forensic process model here is that it explicitly requests of modeling the error, (information)
loss and (decision) uncertainty of forensic methods [7]. These considerations have to by
extended for media forensics from closed set tests (where the ground truth class label in
a pattern recognition problem is known) to field applicability (where only the detector
response is available and the true class of a specimen encountered will remain unknown).
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Appendix A. Collection of Features Proposed in this Paper

Table A1. Collection of all features and their expected behaviors proposed in this paper.

ID Feature

Description

ID1¢usion Maximum AspectRatio difference between both
Ilelink eyes.

The expected difference is close to 0, whereby a larger distance
is suspected as an indication of a DeepFake. Additionally, the
absence of winking is required for this feature.

ID2¢ysion ~ Absolute maximum AspectRatio rate of change for
ID2pink the left eye.

ID3fusion Maximum AspectRatio rate of change for the left eye.

ID3pink Maximum opening speed of the left eye.

ID4¢gion Minimum AspectRatio rate of change for the left eye.

ID4pjink Maximum closing speed of the left eye.

ID5¢ysion ~ Absolute maximum AspectRatio rate of change for

Based on several studies the eyelid movement varies based on
different aspects, e.g., age and gender [24,45]. Nevertheless,
the maximum speeds, as well as the relation of opening and

closing speeds, could be an indication for DeepFake detection.

This rate of change for each frame is determined by the
difference between previous and following frame.

Normalization is carried out by multiplying the rate of change

ID5pjink the right eye. by the frame rate of the video. This results in the AspectRatio
IDbgusion  Maximum AspectRatio rate of change for the right change every 3 seconds, described as W
ID6yink eye. Maximum opening speed of the right eye. The suitability of these features is based on the disregard of
ID7¢sion  Minimum AspectRatio rate of change for the right blink behavior in DeepFake synthesis.
ID7p1ink eye. Maximum closing speed of the right eye.
DS . Noise is defined as a rapid change of eye state, where one state
IDsfuflon Noise count in the eye state signal. lasts for a maximum of 0.08 seconds. A higher number of these
blink noises is expected for DeepFakes.

Another feature that can be justified by studies about human
ID%sion ~ Percentage of video time at which the state open is blinking behavior [24,45].
ID%tink classified. Assuming a healthy person in a non-manipulated video,

on average a value of about 0.9 should be expected.

ID10¢y50n  Minimum duration detected for the eye state open in
ID10pjink seconds.

ID11¢y5i0n  Maximum duration detected for the eye state open in
ID11pjink seconds.

ID12¢,40n  Minimum duration detected for the eye state closed
ID12p 50k in seconds.

ID13¢,5i0n Maximum duration detected for the eye state closed
ID13pink in seconds.

Features based on the durations of the states are again based on
the knowledge of human blinking behavior.
It is assumed that the eyes are open longer than they are closed.
As a conclusion ID12yj;, < ID10jink and ID13pp00c < ID1 1500
are expected.
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Table A1. Cont.

ID Feature Description
igi4fusmn Absolute maximum rate of change in y-dimension. . . .
mouth This rate of change for each frame is determined by the
ID15¢,si0n Maximum rate of change in y-dimension. Lip difference between previous and following frame.
ID2,0uth opening movement in y-dimension. Normalization is carried out by multiplying the rate of change
ID16¢,5i0n  Minimum rate of change in y-dimension. Lip closing by the frame rate of the video. TT.us reSUIZSAl:;:C}:;uﬁ)SpeCtRatlo
ID3 houth movement in y-dimension. change every 3 S, described as /3 -
For these features, a maximum speed is assumed, which is
ID17fusion Absolute maximum rate of change in x-dimension. determined by training the model. Exceeding this maximum
ID4mouth speed is assumed to be an indication for the classification
ID18¢usi0n Maximum rate of change in x-dimension. Lip DeepFake.
D5, 0uth opening movement in x-dimension. Limitation: only works with videos where the person moves
ID19%5i0n Minimum rate of change in x-dimension. Lip closing their lips during the video, e.g., when speaking.
ID6mouth movement in X-dimension.
ID20¢,5i0n ~ Percentage of video time at which the state open
ID7 mouth without teeth is classified. The assumption for feature ID7, s, is that DeepFakes are
ID21y0n Maximum number of regions based on all frames of more often classified in this state compared to non-manipulated
D3 ston the video for state open without teeth. videos. The cause is the blending subprocess in the creation of
Gl P DeepFakes, which leads to a loss of information and detail in
ID22¢5i0n  Maximum number of FAST keypoints based on all the mouth region due to smoothing. As a consequence,
ID9mouth frames of the video for state open without teeth. DeepFakes are assumed to have both a comparatively low level
Maximum number of SIFT keypoints based on all of detail due to said blending and a comparatively high level of
ID23ysi0n frames of detail due to possible misclassification of open with teeth as open
ID10mouth the video for state open without teeth. L wzthout'teeth. . )
- - Normalization takes place relative to the number of pixels in
D245, 10 Maximum number of Sobel edge pixels based on all the TR (see Figure 4).
D11 frames of ‘ Default value is set to -1 to be outside the considered range.
mouth the video for state open without teeth.
ID25¢,5i0n  Percentage of video time at which the state open with
ID120uth teeth is classified. The assumption for feature ID12, ¢, is that non-manipulated
ID26y50n  Minimum number of regions based on all frames of videos are more oftfen classifie(:.l in this state cqmpared to.
D13, 0uth the video for state open with teeth. DeepFakes. The cause is the blending s.ubproces's in the creaqun
of DeepFakes, which leads to a loss of information and detail in
ID27gy5i0n ~ Minimum number of FAST keypoints based on all the mouth region due to smoothing. As a consequence,
ID14pouth frames of the video for state open with teeth. DeepFakes are assumed to have a comparatively low level of
ID28¢,5i0n  Minimum number of SIFT keypoints based on all detail due to said blending.
ID15,,0uth frames of the video for state open with teeth. Normalization takes place relative to the number of pixels in
— - the TR (see Figure 4). Default value is set to —1 to be outside the
ID2%5i0n  Minimum number of Sobel edge pixels based on all considered range.
ID160uth frames of the video for state open with teeth.
ID30tusion  Total number of frames in the video without a The consideration of these features is made under the
Dlforeground detectable face. assumption that DeepFake synthesis could result in artifacts,
causing the face detection to fail. Normalization is relative to
ID31¢y5i0n  Total number of segments in the video without a the number of frames of the video to ensure comparability

Iszoreground

detectable face.

regardless of the video length.
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Table A1. Cont.

ID Feature Description

ID32¢ysi0n
I]:)31:0regrouru:1

Maximum number of FAST keypoints based
on all frames of the video for the image
foreground.

ID33¢usion
I]:)4foregrouru:1

Minimum number of FAST keypoints based
on all frames of the video for the image The assumption for this set of features is that an almost constant

foreground. value can be found throughout the course of the video. As a result,

ID34¢ysion
ID5foreground

no significant differences between minimum and maximum of each

feature are expected. Greater distances are seen as an indication of
DeepFakes.

Normalization is carried out on the basis of the two representations

Maximum number of SIFT keypoints based
on all frames of the video for the image
foreground.

ID35¢ysion
ID6foreground

Minimum number of SIFT keypoints based ~ Face and ROI (see Figure 6 for reference) based on the level of detail
on all frames of the video for the image as well as the number of pixels. Formally, this takes the form of

foreground. Featuregace _ FeatureCountgy o | ROI
8 PeatweROI,where Featureg,ce|rOI = Pivelcountpycs (O]

ID36¢usion
ID7foreground

Maximum number of Sobel edge pixel based In order to prevent division by 0, the default value is set to —1 to be
on all frames of the video for the image outside the considered range.
foreground.

ID37fusion
ID8foreground

Minimum number of Sobel edge pixel based
on all frames of the video for the image
foreground.
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