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Abstract: Falls are one of the most critical health care risks for elderly people, being, in some adverse
circumstances, an indirect cause of death. Furthermore, demographic forecasts for the future show
a growing elderly population worldwide. In this context, models for automatic fall detection and
prediction are of paramount relevance, especially AI applications that use ambient, sensors or
computer vision. In this paper, we present an approach for fall detection using computer vision
techniques. Video sequences of a person in a closed environment are used as inputs to our algorithm.
In our approach, we first apply the V2V-PoseNet model to detect 2D body skeleton in every frame.
Specifically, our approach involves four steps: (1) the body skeleton is detected by V2V-PoseNet
in each frame; (2) joints of skeleton are first mapped into the Riemannian manifold of positive
semidefinite matrices of fixed-rank 2 to build time-parameterized trajectories; (3) a temporal warping
is performed on the trajectories, providing a (dis-)similarity measure between them; (4) finally, a
pairwise proximity function SVM is used to classify them into fall or non-fall, incorporating the (dis-
)similarity measure into the kernel function. We evaluated our approach on two publicly available
datasets URFD and Charfi. The results of the proposed approach are competitive with respect to
state-of-the-art methods, while only involving 2D body skeletons.

Keywords: fall detection; healthcare; positive semidefinite matrices; Riemann manifold; Dynamic
Time Warping; Gram matrix

1. Introduction

In 2019, the United Nations (UN) published statistics about the world population [1].
According to this report, in the next years, the percentage of elderly people will grow con-
siderably in Sub-Saharan Africa, Northern Africa, Western Asia, Latina America, Caribbean,
Australia, North America, etc.In the same document, the estimated change in the percent-
age of elderly people between 2019 and 2050 is also reported. For example, the number of
persons over 65 years in Morocco is expected to increase from 7.3% of population in 2019
to 11.2% of population in 2030.

On the other hand, the World Health Organization (WHO) published a report about
the problems caused by falls [2]. This article reports an impressive statistic, according to
which it is expected that most unintentional injuries in elderly people will be caused by falls.
Another statistic shows that more than (646,000) persons die every year as a consequence of
falling, and elderly people contribute the highest percentage of these deaths. They expect
more than 37.3 million falls, the majority of them causing serious problems to healthcare
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services. Furthermore, the Center for Disease Control Prevention [3] showed statistics
about adult and senior falls. It results that about 20% of falls caused serious consequences,
e.g., fractures, head injuries or hip fractures (in more than 95% of falls). Overall, more than
3 million seniors enter emergency departments every year due to falls.

In the last few years, a lot of solutions have been developed to decrease the danger
caused by falls. For example, there are a lot of works aiming to monitor persons by using
cameras, sensors and ambient/fusion [4–7]. These methods analyze the motion of persons
and aim to distinguish between falls and daily activities.

Several approaches use wearable sensors, such as accelerometers and gyroscopes to
detect posture and inactivity of the person [8–15] and extract different features from the
data: angles, directions, acceleration, etc. The classification step is typically performed
by using thresholds or machine learning algorithms. Other works based their models on
utilizing room information, such as sound and floor vibration [16,17]. Generally, it is very
easy to setup a fall detection system using a wearable device-based approach. However,
these systems are expensive, not robust and consume batteries. Moreover, the accuracy
and intrusion of these methods depend on the specific scenarios. Last, it is impossible for
the care services to visualize and verify the data to better understand and improve the
obtained accuracy.

Computer-vision approaches monitor an imaged subject by using cameras [18–31]. They
analyze the change of body shape by computing different features, such as the ratio
between height and width of the box surrounding the person, the histogram projection
of the silhouette, the coordinates of an ellipse surrounding the person and the key joints
of the person’s skeleton. Furthermore, computer-vision approaches are the most used to
detect fall thanks to their robustness and ease of setting up a fall detection system. These
methods are highly accurate and do not depend on scenarios. In Section 2, we present
more details about previous fall detection works appeared in the literature.

In this paper, we present an algorithm to detect fall using a computer-vision approach
that does not rely on wearable sensors or handheld devices. Firstly, we apply the V2V-
PoseNet [32] model to detect the skeleton of the person in a 2D image. In the second step,
we measure the similarity between sequences of skeletons and use the matrix of similarity
scores between all sequences as an input to a classifier. In doing so, we rely on the method
in [33] and employ the Riemannian manifold of positive semidefinite matrices to compute
a trajectory from the skeletons of the person. Then, we employ the Dynamic Time Warping
algorithm to align the trajectories and compute the similarity scores between sequences.
Finally, we use a Support Vector Machine (SVM) to classify between fall and non-fall events
using the similarity scores.

The rest of the paper is organized as follow. In Section 2, we summarize works in the
literature that detect fall by using ambient/fusion, wearable sensors and computer vision.
In Section 3, we show the different operations that constitute our approach. In Section 4,
we present the results of applying our solution by using the Chari and the URFD datasets
and compare with state-of-the-art methods. Finally, in Section 5, we conclude our paper
and present some perspectives for future work.

2. Related Work

In the last few years, many approaches have been proposed to detect fall of elderly
people [4–7]. These works can be grouped in three main categories [4]: (i) methods that
use wearable sensors to monitor the person and detect abnormal activities during time; (ii)
solutions that use ambient/fusion to collect room information such as floor vibration and
sound, with recent works that also utilize other technologies such as smartphones, Wi-Fi,
etc.; and (iii) methods that use a camera to detect the change of body shape during time. In
the following, we focus more on the methods in the third category since they are closer to
our proposed approach.

Wearable sensors: Wearable device-based approaches use triaxial gyroscopes [12,13],
accelerometers [8–11,15,34,35] or both types of sensors [36] to monitor the person and
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detect posture changes and inactivity. In these solutions, data acquired by the sensors are
used to compute different features, such as angles [9,12], differences and derivatives of
the sum X, Y and directions [8,9], maximum acceleration and fluctuation frequency [12],
decreasing of heat rates [10], variation of different parts of the body [11], the acceleration
of the body parts [13], mutual information and removing highly correlated features using
Pearson correlation coefficient and Boruta algorithm [35], etc.In addition, they distinguish
fall and non-fall events by using thresholds [8–10], machine learning [11–14,35] and deep
learning algorithms [15,34].

Ambient/fusion: Many works used the sound captured in the environment as a clue
for detecting the fall of a person [16,17]. This is obtained by detecting the sound of the
person during fall and normal activities, in order to compute the Mel-frequency spectral
coefficient. In the last step, fall and non-fall events are classified by using machine learning
techniques.

Computer vision-based: Many methods have been developed to monitor a person us-
ing cameras. Sequences of frames are used to calculate different features such as histogram
projection of the person’s silhouette [18,22,37]; aspect ratio and orientation of principal
components [21]; motion vectors of the person [19,20], bounding box coordinates [22,24],
feet-related features such as step length symmetry, normalized step count, speed and foot
flat ratios [37]; body-related features such as amount of movement in the left and right
side of the body, movement symmetry, shift in the centre of gravity and torso orientation
[37]; etc.Other works employed Riemannian manifolds to analyze the shape of the person
and detect fall [23,24]. In addition, solutions based on deep learning algorithms such as
Convolution Neural Networks (CNNs) [19,20] and Long-Short Term Memory networks
(LSTM) [38] have been also used.

Several methods exist that use the skeleton of the monitored person to compute
features in every frame of a sequence. These methods can either detect the skeleton of
a person in 2D images by using CNN models, such as OpenPose, PoseNet, ALphaNet,
etc., or they can detect the skeleton in images captured by a Kinect sensor. Relying of the
detected skeleton, several methods estimate the human pose by extracting features from
the skeleton and classifying them. For example, Chen et al. [25] developed an algorithm
to recognize accidental falls by using the skeleton information. They first detected the
skeleton of the person by applying the OpenPose algorithm. Then, they computed the
speed of descent of the hip joint’s center, the angle between the floor and the center-line of
the human body and the ratio between the width and height of the rectangle surrounding
the human body. They take on consideration the standing up of the person after fall in their
algorithm. Their model achieved a success rate in fall recognition of 97%. Alaoui et al. [39]
developed an algorithm to detect falls by using the variation of a person’s skeleton into
the video. Firstly, they detected the joints of the person into the video by using OpenPose.
Then, they computed the angle and the distance between the same joint into two sequential
frames. Finally, they trained their model using SVM, KNN, Decision Tree and Random
Forest to classify fall and non-fall sequences. The SVM classifier resulted the most effective
in their work. Loureiro and Correia [40] employed the VGG-19 architecture to classify
pathological gaits or to extract features from the skeleton energy image. After that, they
fed these features into a linear Discriminant Analysis Model and Support Vector Machine
to classify normal, diplegic and hemiplegic gaits simulated by healthy people.

There are many methods that use images captured by Kinect sensors, in order to
generate joint positions of the human’s body. For example, Yao et al. [26] developed an
algorithm that includes three steps. Firstly, they captured motion information of joints
in 3D coordinates using the R, G and B channels of a pixel. They focused on a reduced
set of 25 joints of the human skeleton. Then, every frame is encoded independently as a
slice of motion image, in order to overcome the problem of losing information caused by
trajectory overlap. In the last step, the Limit Of Stability Test (LOST) is used to detect fall
from the start to the end key frame. They reported an accuracy of 97.35% on the TST v2
dataset, with effective performed reported also on the UT-A3D dataset. Kawatsu et al. [27]
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proposed an approach to detect fall. They developed two algorithms that use the skeleton
generated from the Kinect SDK. The first algorithm aims to determinate the maximum
distance between the floor and the position of all the joints. They detected fall by comparing
this distance with a threshold. The second algorithm computes the average velocity of all
the joints. In addition, in this case, to detect falls, the average velocity is compared with a
threshold.

Alazrai et al. [28] developed a fall detection algorithm based on a representation
layer and two classification layers. They used a Kinect sensor to collect RGBD images and
derive 3D joint positions. They computed the Motion Pose Geometric Descriptor (MPGD)
for every input frame in order to describe motion and pose of human body parts. After
that, they employed an SVM to classify every frame in the first classification layer. The
second classification layer employed the Dynamic Time Warping algorithm to classify
fall and non-fall sequences generated from the SVM. They tested the model by using
the 66-dataset that contains 14, 400 frames and 180 activity sequences. Using five-fold
cross validation, they achieved 98.01% precision, 97.13% recall and 97.57% F1-measure.
Pathak et al. [29] proposed a fall detection method. They first detected and tracked key
joints from a Kinect sensor and extracted two parameters using key joints. Then, to detect
falls, they compared these parameters with a threshold. They also integrated in their
system an alert message, which is sent to a predefined number when a fall event is detected.
They tested the model on a real dataset of 50 persons, obtaining 94.65% accuracy in indoor
environment. Abobakret et al. [31] presented an algorithm to detect fall using a skeleton
posture and activity recognition. They analyzed local variations in depth pixels to recognize
the posture using frame acquired from a Kinect-like sensor. They employed a random
decision forest to distinguish standing, sitting and fall postures and detected fall events
by employing an SVM classifier. They reported 99% sensitivity on a synthetic live dataset,
99% sensitivity on a synthetic dataset and 96% sensitivity on popular live dataset without
using accelerometer support. Seredin et al. [30] developed an algorithm to detect falls by
using skeleton feature encoding and SVM. They computed a cumulative sum to combine
the decision on a sequence of frames. The model achieved 95.8% accuracy in the cross
validation procedure, using a Leave-One-Person-Out protocol.

Discussion: As summarized above, different methods exist for fall detection. These
algorithms have been evaluated using their sensitivity and specificity, which resulted
highly effective in many cases. For example, algorithms that employ depth sensors are
very accurate. In addition, systems reported a high accuracy when they employed multi-
dimensional combination between physiological and kinematic features [26–31]. However,
existing solutions show several limitations. For example, systems that use Wearable [8–
15,34–36] and ambient [16,17] features have some disadvantages, which are related to the
inconceivability of visually checking object information. In addition, systems that use
computer vision techniques [18–25] are flexible. The majority of these algorithms are not
specific, do not depend on different scenarios, are simple to setup and are very accurate [4].

3. Proposed Method

We present a method to classify between fall and non-fall events, which is based on
computing the similarity between video sequences. Figure 1 provides an overview of the
proposed approach. As a preliminary step, we employ the V2V-PoseNet [32] model to
extract a skeleton from each frame of a sequence. After that, we represent our data (i.e.,
the sequence of skeletons) using Gram matrices and thus on the Riemannian manifold of
positive semidefinite matrices. To this end, we compute a Gram matrix from the skeleton in
each frame of a sequence. Gram matrices are symmetric matrices that lay on the Riemannian
manifold of positive semidefinite matrices, so that a sequence is transformed to a trajectory
of points on the manifold, i.e., a point is derived on the manifold for each frame. A
Riemannian metric is then defined on the manifold to compare two Gram matrices. Finally,
the Dynamic Time Warping (DTW) algorithm is used to extend the Riemannian metric
from the frame level to the sequence level and compute a similarity score between two
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sequences. This aims to be invariant with respect to differences in the speed of execution of
the action captured in a sequence. This score is the input to a linear SVM classifier that we
use to distinguish between fall and non-fall events.

Figure 1. Overview of the proposed approach. After detecting the skeleton of a person in every frame
of a sequence, a Gram matrix is computed for each frame. In this way, a sequence is represented
by a trajectory of points on the manifold of positive semidefinite matrices S+(2, n). The Dynamic
Time Warping (DTW) algorithm is employed to align trajectories on the manifold. Finally, a kernel
generated from DTW and linear SVM are employed to classify fall and non-fall sequences.

3.1. Skeleton of a Person

The skeleton of a person is detected by using the V2V-PoseNet [32] model for each
frame of a sequence. There are four steps in the construction of the V2V-PoseNet model.
First, a volumetric convolution is computed by utilizing a volumetric basic block, then a
volumetric batch normalization [41] plus an activation operation are applied to remove
negative values. In the second step, a volumetric residual block is employed to extend from
a 2D convolution block. The residual blocks exploit the result of the previous convolution
blocks in order to extract more features. The third step applies a down-sampling operation
using max-pooling, thus reducing the image dimension and the processing time. In the last
step, a volumetric decoding block is used to decode the results of the previous steps (i.e.,
decode features found in the previous steps and visualize them into the input images). This
step also contains a volumetric normalization block and an activation operation (ReLu) to
remove the negative values as well as to normalize the values produced after the decoder
block. In summary, the V2V-PoseNet [32] model applies convolutional blocks and computes
features, producing the pose confidence and joint key points of the person in a given image
as initial result. Then, it visualizes these features into the input image as key points. We
also tested other algorithms to detect the skeleton of the person such as OpenPose and
AlphaNet. We found that V2V-PoseNet is the most accurate to detect skeletons from videos.
Figure 2 illustrates the results of detecting skeletons by using V2V-PoseNet and the 3D
projection of a sequence of skeletons detected from a video sequence.
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Figure 2. Results of applying the V2V-PoseNet model to detect the skeleton of a person: (A) the input
frame to V2V-PoseNet; (B) projection into the input image of the skeleton detected by V2V-PoseNet;
and (C) the 3D projection of a sequence of skeletons corresponding to a video sequence.

In our work, we aim at detecting falls by analyzing the change of a person’s body
during a sequence. To this end, we extract the skeleton of the person and represent the
shape by a set of points. In this way, the shape is given by a time series of the 2D coordinates
of the points. This time series contains the coordinates of all the skeletons tracked during
an event. A fall event is detected from a sequence containing m frames, where every
frame is represented by a vector with the skeleton coordinates, i.e., the vector Vi contains
{(x1, y1), . . . , (xn, yn)}, where n is the number of joints. Every video is characterized by a
set of vectors, where every vector represents the coordinates of skeleton’s points (i.e., a
video corresponds to V1, . . . , Vm). More specifically, every V1≤i≤m is a n× 2 matrix.

We represent a sequence of skeletons by a sequence of Gram matrices, where each
Gram matrix is computed as:

Gi = ViVT
i . (1)

The resulting matrix is an n× n positive semidefinite matrix, with a rank smaller than
or equal to 2. Such n× n positive semidefinite matrices of rank 2 have been studied in
several works [42–48].

These Gram matrices belong to S+(2, n), the manifold of n× n positive semidefinite
matrices of rank 2 for which a valid Riemannian metric can be defined as follows:

d(G1, G2) =

[
tr(G1) + tr(G2)− 2 tr

((
G

1
2
1 G2G

1
2
1

) 1
2
)] 1

2

, (2)

being G1 and G2 two generic Gram matrices in S+(2, n). We can also use Singular Value
Decomposition (SVD) to compute the previous distance by employing:
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d(G1, G2) = minQ∈Qd ||V1Q−V2||F . (3)

The optimal value Q∗ = AU is computed by using SVD, where VT
1 V2 = AΣUT .

Our final goal is classifying fall and non-fall sequences by using the similarity scores.
This requires for a method computing a similarity score between sequences, as described
in the following.

3.2. Sequence Similarity Using the DTW Algorithm

Dynamic Time Warping (DTW) is an algorithm that aims at measuring the similarity
between two temporal sequences. As such, it is largely employed in time series analysis.
One important characteristic of DTW is its capability of computing the similarity between
two sequences that vary in speed, so with different acceleration or deceleration. For
example, two sequences can correspond to two persons walking with different velocities.

In fall detection, the major difference between a fall event and a non-fall event is the
acceleration and deceleration of a person. The acceleration of a falling person is bigger
than the acceleration of a person who is not falling. For this reason, we employ DTW to
measure the similarity between sequences [49,50].

As discussed above, we represent a sequence of skeletons as a sequence of Gram
matrices. For example, let V1 = {V1

0 , . . . , V1
τ1
} and V2 = {V2

0 , . . . , V2
τ2
} be two sequences

of skeleton matrices. Computing the Gram matrices, we represent V1 = {V1
0 , . . . , V1

τ1
}

by G1 = {G1
0 , . . . , G1

τ1
}, where G1

i = V1
i V1T

i , 0 ≤ i ≤ τ1, and V2 = {V2
0 , . . . , V2

τ2
} by

G2 = {G2
0 , . . . , G2

τ2
}, where G2

j = V2
j V2T

j and 0 ≤ j ≤ τ2. Then, we compute the distance
between any two pairs of Gram matrices in the two sequences. The result is a matrix of
size τ1 × τ2, where D(i, j) is the distance between G1

i and G2
j (i.e., V1

i and V2
j , respectively),

0 ≤ i ≤ τ1 and 0 ≤ j ≤ τ2. D(i, j) is computed as:

D(i, j) = d(G1
i , G2

j ) . (4)

where d(·, ·) is the Riemannian metric defined in (2). The matrix D is used as input to the
DTW algorithm that computes the distance DDTW(G1, G2) between the two sequences of
Gram matrices.

The result of this computation is used to evaluate the Gaussian kernel required to
train the SVM classifier. For two generic sequences i and j, this is defined as:

k(i, j) =
1
2
× exp−DDTW(i, j)

2σ2 . (5)

The DTW algorithm that we use here is based on the work of Gudmundsson et
al. [51]. The Algorithm 1 summarizes the computation of the Gaussian Kernel using the
Riemannian distance between two sequences.

Algorithm 1: Gaussian Kernel.

input :Two sequences of skeletons matrices V1 = {V1
0 , . . . , V1

τ1
} and

V2 = {V2
0 , . . . , V2

τ2
}

output : Matrix k contains the results values of applying Gaussian Kernel between
two sequences V1 and V2

k← Zeros(τ1, τ2);
for i← 1 to τ1 do

for j← 1 to τ2 do
k(i, j)← 1

2 × exp−DDTW (i,j)
2σ2 (5)

end
end
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In the DTW algorithm, a matrix M is computed, where the M(i, j) element is the sum
of k(i, j) and the minimum of M(i, j− 1) + M(i− 1, j− 1) + M(i− 1, j). The matrix M has
size (1+ τ1)× (1+ τ2), where τ1 is the size of the sequence V1, τ2 is the size of the sequence
V2, 1 ≤ i ≤ 1 + τ1 and 1 ≤ j ≤ 1 + τ2. In particular, the element M(i, j) is computed as:

M(i, j) = k(i, j) + min{M(i, j− 1), M(i− 1, j− 1), M(i− 1, j)} . (6)

The similarity score between these two sequences is the last value of the matrix (i.e.,
M(1 + τ1, 1 + τ2)). The Algorithm 2 summarizes the DTW procedure.

Algorithm 2: Dynamic Time Warping.

input :Two sequences of skeletons matrices V1 = {V1
0 , . . . , V1

τ1
} and

V2 = {V2
0 , . . . , V2

τ2
}

output : M(τ1 + 1, τ2 + 1), similarity value between V1 and V2

k← Algorithm 1(V1, V2);
M← Zeros(τ1 + 1, τ2 + 1);
for i← 1 to τ1 + 1 do

for j← 1 to τ2 + 1 do
M(i, j)← k(i, j) + min(M(i, j− 1), M(i− 1, j− 1), M(i− 1, j)) (6)

end
end

3.3. Classification

Once the similarity scores have been computed, we use them as input to an SVM clas-
sifier. To this end, we represent every sequence by a vector, which contains the similarity
scores between this sequence and all the other sequences. Let Vi = {vi

0, . . . , vi
τi
} be a se-

quence of skeleton matrices, where τi is the number of skeleton matrices (respectively, Gi =
{Gi

0, . . . , Gi
τi
}). The similarity vector is computed as {φ(V1, Vi), . . . , φ(Vi, Vi), . . . , φ(Vi, Vs)},

where s is the number of sequences, and φ(Vi, V j)0≤i,j≤s is the similarity score (computed
using the Gaussian kernel) between sequences Vi and V j. Now, we can represent the set of
sequences by a set of vectors containing the similarity scores. This results into a matrix X,
where Xj is the jthline of matrix X and corresponds to the similarity scores between the jth
and all others sequences (it also contains the similarity score between the jth sequence and
itself.

The Algorithm 3 summarizes the computation of the similarity scores matrix.

Algorithm 3: Computation of the similarity scores matrix.

input : Set of sequences S = {V1, . . . , Vs}, where s is the number of sequences.
output : Matrix X contains similarity scores
φ← Algorithm 2(V1, V2);
X ← Zeros(τ1 + 1, τ2 + 1);
for i← 1 to s do

for j← 1 to s do
X(i, j)← φ(Vi, V j)

end
end

4. Experimental Results

We evaluated the performance of our approach on the Charfi [52] and UR Fall Detec-
tion [53] datasets, and compared the results against state-of-the-art methods as reported
below.
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4.1. Charfi Dataset

This dataset was designed and acquired at the ”Laboratoire Electronique, Informatique
and Image” (Le2i) [52]. It includes 240 videos with resolution of 320× 240, each reporting
fall and non-fall events as occurring in daily activities. The dataset includes several daily
life activities, such as sitting, laying, sleeping and also falling events, while performed
in different locations, including reading room, office, coffee and home. Various views of
the camera are used to monitor the imaged person. The background of the video is fixed
and simple, while the texture of images is difficult. Moreover, shadows are also present
in this dataset. Every frame is labeled with the location, the fall/non-fall class and by the
coordinates of the person given as bounding box. Figure 3 illustrates some frames from the
Charfi dataset in different locations.

Figure 3. Charfi dataset: Examples frames taken from lecture room, home, coffee room and office locations.

Using the V2V-PoseNet, we first extract the skeleton joints of the person in the frames,
as illustrated in Figure 4. Interestingly, the detection is robust to the presence of shadows
in the image.

To evaluate the performance of our algorithm, we adopted a Leave-One-Out cross
validation protocol as in [22,54]. According to this, the training set comprises all sequences
except one, while the sequence left out is used as test. Using iteratively all the sequences of
the Charfi dataset as test, we obtained the normalized confusion matrix reported in Table 1.
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Figure 4. Charfi dataset: Skeleton detected by applying V2V-PoseNet to some frames.

Table 1. Charfi dataset: The confusion matrix obtained by applying our approach.

Predicted label

Fall Non-Fall

Real label Fall 97 0

Non-Fall 19 131

Table 2 illustrates the accuracy, specificity and sensitivity of our algorithm and other
works on the Charfi dataset. For example, applying our algorithm results into an accuracy
of 93.67%, a specificity of 87% and a sensitivity of 100%. In particular, we observe in this
dataset there are some videos corresponding to a normal activity of the person that are
similar to a fall sequence. For these sequences, the speed of the person is similar to the
speed of a person as occurring in fall sequences. This makes the detection challenging and
results in a specificity (i.e., the capability of classifying a non-fall sequence that is similar
to a fall) of 87%. In addition, our algorithm classifies between fall and non-fall sequences
with an accuracy of 93.67%. This value represents the capacity of classifying between fall
sequences and non-fall sequences classified as non-fall sequences. This value is represented
also by the ROC curve in Figure 5, which represents the cumulative rate between true
positives (i.e., fall sequences classified as fall sequences) and false positives (i.e., non-fall
sequences classified as such).
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Table 2. Charfi dataset: Sensitivity, specificity and accuracy of our work in comparison to state-of-
the-art methods.

Methods Sensitivity Specificity Accuracy

Georgios Goudelis et al. [54] - - 100–96.6
Charfi et al. [52] 73 97.7 -
M. Chamle et al. [55] 83.47 73.07 79.31
Arisa Poonsri et al. [21] 93 64.29 86.21
Alaoui et al. [56] 94.55 90.84 90.9
Alaoui et al. [39] 95 100 97.5
Ours 100 87 93.67

Figure 5. Charfi dataset: ROC curve representing the cumulative rate between true positive rate and
false positive rate.

4.2. UR Fall Detection Dataset

The URFD dataset whas designed and captured by the Interdisciplinary Center for
Computational Modeling at the University of Rezeszow [53]. The imaged person is mon-
itored in a closed environment, in order to capture the maximum of person’s activities.
Daily activities were considered such as lying on the floor, crouching down, lying on the
bed/couch, sitting down and picking up an object. Video sequences corresponding to fall
events contain the person during fall, after fall (this part of the sequence is not used in
the classification) and before fall. Figure 6 shows some example frames from the URFD
dataset.

The results of extracting the skeleton joints of a person with the V2V-PoseNet model
on some frame of the UR dataset are shown in Figure 7.

We evaluated the performance of using URFD by adopting a Leave-One-Out cross
validation protocol. The concept of this validation protocol consists of using one sequence
left out for testing, while all the remaining sequences are used for training. The normalized
confusion matrix obtained by applying our approach on the URFD dataset is reported
in Table 3.
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Figure 6. URFD dataset: example frames.

Table 3. URFD dataset: The confusion matrix obtained by applying our algorithm.

Predicted label

Fall Non-Fall

Real label Fall 63 0

Non-Fall 2 27

Videos in the URFD dataset have a short duration and correspond to fall and non-fall
sequences. For these videos, the speed of a person performing daily activities is not high,
when compared to some videos in the Charfi dataset. This results in a higher specificity that
reaches the value of 96.55%. This value is represented also using the Receiver Operating
Characteristic (ROC) curve in Figure 8. The ROC curve is used to plot the probability of
detecting fall by using similarity scores (the ratio between sequences, which are detected
as fall sequences and all fall sequences) against probability of detecting non-fall sequences
(the ratio between non-fall sequences, which are detected as fall sequences and all non-fall
sequences) at various thresholds. The comparison between the results obtained by our



J. Imaging 2021, 7, 109 13 of 19

proposed method and approaches reported in the state-of-the-art on the URFD dataset is
shown in Table 4. The speed of the person has an important impact on the classification.
For this reason, our algorithm reaches 100% sensitivity for both datasets. The most critical
challenge for our algorithm is the difference in acceleration (deceleration) values. For
example, a person who sits down very quickly is probably classified as a fall sequence.
Moreover, the skeleton of the person will not be detected in dark room. This can suggest
a possible adaptation of our algorithm with very poor lighting, in order to overcome the
problem of low illumination.

Figure 7. UR dataset: Skeleton detected with the V2V-PoseNet on some frames.

Figure 8. URFD dataset: ROC curve representing the cumulative rate between true positive rate and
false positive rate.



J. Imaging 2021, 7, 109 14 of 19

Table 4. URFD dataset: Sensitivity, specificity and accuracy of our work in comparison to state-of-
the-art methods.

Methods Sensitivity Specificity Accuracy

Ali, Syed Farooq et al. [57] 99.03–99.13 99.03 -
Kepski et al. [58] 100 96.67 95.71
Bourke et al. [59] 100 90 -
Kepski et al. [53] 100 92.5 95
Alaoui et al. [39] 100 95 97.5
Yixiao Yun et al. [23] 96.77 89.74 -
Ours 100 93 96.55

4.3. Cross Data Evaluation

We also performed a cross-dataset evaluation. We trained our algorithm using se-
quences from the Charfi dataset. After that, we tested our model using sequences from
the URFD dataset and vice versa. Table 5 illustrates the results of using the cross data
evaluation protocol. Our algorithm has an accuracy of 87.39%, sensitivity of 100% and
specificity of 62.5% using the Charfi dataset to train our algorithm and the URFD dataset
to test it. In addition, our algorithm reports an accuracy of 85.34%, specificity of 62.85%
and specificity of 95.06% by utilizing the URFD dataset to training and the Charfi dataset
for testing. Our algorithm is able to detect fall sequences. For this reason, we found a high
value for sensitivity. However, our method cannot detect non-fall sequences correctly. For
this reason, we found a low value for specificity because of the differences between the
length of non-fall sequences into the Charfi and URFD datasets. Charfi contains sequences
with different conditions such as light and dark environment, different places, etc.; thus, we
found that the accuracy using Charfi to train our model is greater than that using URFD.

Table 5. Cross data evaluation: Sensitivity, specificity and accuracy using the Charfi dataset to train
our algorithm and the URFD dataset as testing and vice versa.

Training Dataset Testing Dataset Sensitivity Specificity Accuracy

Charfi URFD 100 62.5 87.39
URFD Charfi 95.06 62.85 85.34

4.4. Computation Time

In order to measure the overall processing time of our algorithm, we computed the
time of every step included in our processing pipeline: (i) the time for extracting the
skeleton from an individual frame; (ii) the time for applying the DTW algorithm between
two sequences; and (iii) the time for the classification step (i.e., time to classify fall and
non-fall sequences by a linear SVM). These times were computed on a laptop equipped
with a i5-7200U (7th gen) processor, 8 GB of RAM and 2 GB NVIDIA GeForce 940MX.

Table 6 presents the results of computing the processing time for each step. We used
two images to evaluate the time of the V2V-PoseNet step. For the first image taken from
the Charfi dataset, we measured a time of 0.277 s to extract the skeleton. For the same
step, but performed on an image from the URFD dataset, the skeleton detection operation
required 0.32 s. This difference can be explained by the different resolution of the images
in the Charfi and URFD datasets. It is relevant to note here that V2V-PoseNet is capable of
detecting the skeleton without problem due to shadow.

The time for the DTW step was computed using two sequences from the Charfi dataset,
the first one with 12 frames and the second containing 32 frames. The resulting time was
0.063 s. For the URFD dataset, we computed the DTW step for two sequences, with 12
and 30 frames, respectively, with a processing time of 0.061 s. The last step consists of
classifying the similarity score vectors using sequences from the URFD dataset. The time
required by this step was 0.053 s. For the Charfi dataset, the time taken for the classifying
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fall and non-fall sequences was 0.65 s. It can be noticed that the processing time is low,
yet the approach is theoretically solid and robust.

Table 6. Computation time (in seconds) for each step of our algorithm. Computation times were
computed separately for the Charfi and URFD datasets.

Dataset V2V-PoseNet DTW Classification (Linear SVM)

URFD 0.32 0.061 0.053
Charfi 0.277 0.063 0.65

4.5. Discussion

The proposed method aims to detect falls using a computer-vision approach. The major
advantage of using a camera to monitor a person is overcoming the problem of background
noise in the environment that is observed when using wearable sensors [8–13,15,34–36].
In addition, a computer-vision approach is very flexible because it does not depend on the
particular scenario, it is not specific, it does not consume much time and it is simple to set
up [4].

Our algorithm is based on using a CNN model to detect the person’s skeleton into
every frame, which is similar to other works (e.g., [25,26,39]). With respect to other works
in the literature, we compute different features from the skeleton of an imaged person. In
particular, in our approach, we represent the sequence of skeletons by a set of Gramian
matrices, which result into a trajectory of points on the Riemannian manifold of positive
semidefinite matrices. After that, we employ a Riemannian metric, a Gaussian Kernel and
the DTW algorithm, in order to compute similarity scores between sequences. In the last
step, we employ a linear SVM to classify between fall and non-fall events using similarity
scores. Using the skeleton of the person has the clear advantage of overcoming the noise,
which can occur by removing the background [23]. We also employ the Riemannian
manifold in a different way with respect to that employed in other works (e.g., [23]). In
addition, our algorithm does not depend on the person’s information, such as color. This
differs from other works in the literature that cannot detect the silhouette of the person
when the color of the person’s clothes is similar to the background [22,23,57]. In addition,
our approach is able to detect the skeleton of the person in a video sequence that contains
other moving objects, in contrast to methods that detect the silhouette of the person by
removing the background (e.g., [21,52,54–56,60]).

Our approach only takes into consideration changes in the person’s skeleton during a
video sequence, or a difference in person acceleration during a fall and non-fall real life
event. In addition, our approach does not depend on the position of the camera. Further-
more, our algorithm shows a high classification rate on the URFD and Charfi datasets, as
reported in Tables 2 and 4. The same tables also show our approach is competitive with
respect to other state-of-the-art methods.

Limitations: Some problems still occur in our algorithm as in most of the computer-
vision systems. Our algorithm aims to detect falls for a single person living alone at home,
and it cannot manage multiple persons. In addition, our method detect sequences of daily
activities as fall sequences, when the person’s acceleration is high. For this reason, it reports
a specificity of 87% on Charfi and 93% on URFD. Furthermore, it is very difficult to detect
the skeleton in dark environments using V2V-PoseNet.

From a more general point of view, fall detection research still suffers from some
inherent limitations. The most evident one is related to the nature of the available data.
The majority of fall detection datasets are small due to the number of participants. They also
contain only a few simulated falls. For this reason, the validity of the test performed on
such data is diminished and the reproducibility in real world scenarios needs to be proved.
However, this seems to still be a difficulty that is problematic to remove. A further limitation
of fall detection from simulated data is the inability to handle imbalanced datasets. In the
real world, there are many more non-fall events than fall ones. Due to this, the accuracy is
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biased toward correct detection of non-fall events rather than correct detection of falls. In
addition, the majority of fall detection datasets do not take into consideration objects that
an aged person can employ such as crutches. For works based on background removal,
it is necessary to take into consideration crutches. In our case, the crutch does not cause
an occlusion problem, because the skeleton of the person can be detected with or without
crutches.

5. Conclusions

In this paper, we present an algorithm to detect fall events in video sequences by using
the manifold of positive semidefinite matrices. Our method consists of four steps. In the
first step, the skeleton of the imaged person is extracted from every frame of a sequence.
The sequence of skeletons is then represented on the manifold of positive semidefinite
matrices, during the second step. After that, in the third step, we compute the similarity
scores between sequences using the DTW algorithm with a Riemannian metric. In the last
step, an SVM classifier with a linear kernel is used to classify between fall and non-fall
sequences. In the experiments, we demonstrated that our method achieves results that are
competitive with state-of-the-art solutions on the same datasets. As future work, we aim to
extend our approach to data captured by IR cameras. To make our model dynamic, we will
recompute the similarity scores matrix for each new video sequence.
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