
Journal of

Imaging

Article

Enhanced Magnetic Resonance Image Synthesis with
Contrast-Aware Generative Adversarial Networks

Jonas Denck 1,2,3,* , Jens Guehring 2, Andreas Maier 1 and Eva Rothgang 3

����������
�������

Citation: Denck, J.; Guehring, J.;

Maier, A.; Rothgang, E. Enhanced

Magnetic Resonance Image Synthesis

with Contrast-Aware Generative

Adversarial Networks. J. Imaging

2021, 7, 133. https://doi.org/

10.3390/jimaging7080133

Academic Editors: Mrinal Mandal,

Giuseppe Placidi and

Mustapha Bouhrara

Received: 12 July 2021

Accepted: 30 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany; andreas.maier@fau.de

2 Siemens Healthcare GmbH, 91052 Erlangen, Germany; jens.guehring@siemens-healthineers.com
3 Department of Industrial Engineering and Health, Technical University of Applied Sciences Amberg-Weiden,

92637 Weiden, Germany; e.rothgang@oth-aw.de
* Correspondence: jonas.denck@fau.de

Abstract: A magnetic resonance imaging (MRI) exam typically consists of the acquisition of multiple
MR pulse sequences, which are required for a reliable diagnosis. With the rise of generative deep
learning models, approaches for the synthesis of MR images are developed to either synthesize addi-
tional MR contrasts, generate synthetic data, or augment existing data for AI training. While current
generative approaches allow only the synthesis of specific sets of MR contrasts, we developed a
method to generate synthetic MR images with adjustable image contrast. Therefore, we trained a
generative adversarial network (GAN) with a separate auxiliary classifier (AC) network to generate
synthetic MR knee images conditioned on various acquisition parameters (repetition time, echo time,
and image orientation). The AC determined the repetition time with a mean absolute error (MAE)
of 239.6 ms, the echo time with an MAE of 1.6 ms, and the image orientation with an accuracy of
100%. Therefore, it can properly condition the generator network during training. Moreover, in a
visual Turing test, two experts mislabeled 40.5% of real and synthetic MR images, demonstrating
that the image quality of the generated synthetic and real MR images is comparable. This work can
support radiologists and technologists during the parameterization of MR sequences by previewing
the yielded MR contrast, can serve as a valuable tool for radiology training, and can be used for
customized data generation to support AI training.

Keywords: adversarial learning; deep learning; magnetic resonance imaging; image synthesis

1. Introduction

In magnetic resonance imaging (MRI), multiple contrasts are usually acquired within
a single exam that are required to make a reliable diagnosis. Each contrast is based on
the parameterization of an MR sequence through multiple acquisition (pulse sequence)
parameters. In general, the acquisition parameters for an MR sequence affect image
contrast, image resolution, signal-to-noise ratio, and scan time. Important acquisition
parameters that affect the image contrast are the repetition time (TR) and echo time (TE).
The parameterization of a sequence is subject to clinical guidelines, the MR system (vendor,
model, software version, and field strength), the clinical protocol (i.e., the set of parameter-
ized sequences used for the exam), internal guidelines (e.g., slot time), and radiologists’
preferences. Clinical guidelines (e.g., ACR-SPR-SSR Practice Parameters [1]) offer recom-
mendations but “are not inflexible rules or requirements of practice and are not intended,
nor should they be used, to establish a legal standard of care” [1]. Thus, the guidelines do
not specify exact acquisition parameter settings as they will depend on the field strength
and desired contrast weighting.

Consequently, sequence parameterizations differ significantly across different radiol-
ogy sites [2,3]. However, due to the various degrees of freedom in protocol configuration
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and sequence parameterization, this can also be true for a single radiology site. These dif-
ferences additionally increase the complexity of MRI protocoling (i.e., selecting a set of
parameterized sequences for an MRI exam), image interpretation and diagnostics, and the
development of AI (artificial intelligence) applications for MRI. Since most AI applications
are trained and evaluated on a limited set of MR sequences with fixed or narrowly defined
acquisition parameter values [4], the applicability of AI-based applications to sequences
with different parameterizations is not guaranteed. Consequently, retraining with a new
set of MR images may be necessary. However, since the abundance of clinical images for
AI training is limited, this is not always possible.

To mitigate the problem of the availability of MR images for varying contrast settings,
we developed an approach for MR image synthesis that can be parameterized with acquisi-
tion parameters. Our method can generate customized training data for AI applications
and serve as an additional data augmentation tool through contrast augmentation. More-
over, it can be used as a tool for MRI training for technologists and radiologists and can
support protocoling and sequence parameterization by visualizing the yielded contrast of
a parameterized sequence.

We developed a generative adversarial network (GAN) that can generate synthetic
MR images of the knee conditioned on the repetition and echo time. The model can
additionally synthesize MR images conditioned on the image orientation. In contrast to
existing AI-based approaches for the synthesis of MR images, our model is not conditioned
on different sets of contrasts (e.g., T1w, T2w, or PDw) but on the acquisition parameters
that determine the contrast weighting. This allows the generation of MR images with
fine-tuned contrast, adjusted to the application’s specific needs.

The rest of our paper is structured as follows: first, we shortly review the current
literature of generative adversarial networks with the focus on MR image contrast synthesis
(Section 2). Then, we describe our approach, including the data used to train the GAN in
Section 3. We evaluate our approach qualitatively and quantitatively (Section 4), discuss
our results (Section 5), and then conclude our work (Section 6).

2. Background

Generative adversarial networks [5] learn to generate images through the adversarial
training of a generator network G, which is trained to produce realistic samples and
tries to fool the discriminator network D that learns to distinguish between real and
synthetic samples. Commonly, the generator takes as input a latent or noise vector z,
randomly sampled from a normal distribution. The original GAN formulation is adapted
in several ways, e.g., introducing conditional GANs [6,7], adapting the input for image-
to-image [8], and text-to-image [9] translations, enhancing the network architecture [10],
the loss formulation [11,12], and training procedure [13]. GANs are successfully applied to
various domains, and a detailed overview of GANs and their variants are given in [14].

GANs have also been successfully applied to the field of medical imaging (e.g., [15,16]),
with applications that can mainly be divided into seven categories: synthesis, segmentation,
reconstruction, detection, denoising, registration, and classification, whereas the majority
of publications address synthesis applications [17].

In the following, we review publications focused on synthesizing MR images with
noise-to-image GANs (Table 1). A detailed general overview of GANs in the field of
medical imaging is given in [18].

Most publications in the field of MR image synthesis with noise-to-image GANs
address the generation of different contrasts (e.g., T1w, T2w, and PDw) in a categorical
manner, without the incorporation of the acquisition parameter values. Their main target
application is enhanced data augmentation for deep learning applications (see Table 1).

In ref. [19], a Laplacian GAN [20] was trained on 2D image slices from sagittal brain
MR 3D-T1w slices to enhance the augmentation of biomedical datasets.

A semi-coupled GAN was used as a data generation method for deep learning-based
detection of incomplete left-ventricle coverage [21]. Additionally, a Wasserstein-GAN was
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used to synthesize brain MR images of different contrasts (T1w, T1c, T2w, and FLAIR)
with a resolution of 128 × 128 pixels [22] and a progressive growing GAN (PGGAN) [13]
to both synthesize brain MR images and place brain metastases on synthetic MR images
(256 × 256 pixels) for enhanced data augmentation for AI training [23,24]. Multi-modal
MR images were synthesized with a PGGAN in [25]. Moreover, GANs were used for
enhanced image denoising [26] for brain MR images and the generation of additional
training data for brain tissue segmentation networks [27].

Performance benefits through additional GAN-based data augmentation are reported
for different medical deep learning applications [28,29]. However, the improvement gain
depends on the amount of real data seen during training, with the greatest improvements
observed for training procedures with a limited amount of real data [27].

Current GAN-based MR image and contrast synthesis methods only generate single
categorical contrasts with no scale of similarity between the different
contrasts [19,23,24,27,30]. Consequently, the GAN does not learn to disentangle the un-
derlying anatomy from the contrast specifications, limiting the GAN’s capability for MR
image synthesis. We solve this by conditioning the GAN on the acquisition parameters that
determine the MR image contrast, therefore disentangling anatomy and contrast synthesis.

Table 1. Literature review: MR image synthesis using noise-to-image GANs.

Ref. Anatomy Method/Network
Architecture

Sequence
Specification

Resolution
[Pixels] Application

[19] Brain LAPGAN T1w (4/2000 ms) 128 × 64 DA

[21] Heart SCGAN Cine 120 × 120 DA

[22] Brain DCGAN/WGAN
T1w, T1c, T2w,

FLAIR (BRATS 2016
[31])

128 × 128 DA

[23] Brain CPGGAN T1c (BRATS 2016) 256 × 256 DA

[24] Brain PGGAN + MUNIT/
SimGAN T1c (BRATS 2016) 256 × 256 DA

[25] Brain PGGAN T1w, T1c, T2w,
FLAIR (BRATS 2016) 256 × 256 DA, unsupervised

classification of pathology

[26] Brain DCGAN T1w 220 × 172 Image denoising

[27] Brain PGGAN FLAIR 128 × 128 Segmentation

Legend: DA: data augmentation. FLAIR: fluid-attenuated inversion recovery sequence [32]. T1c: T1-weighted contrast-enhanced sequence.
LAPGAN: Laplacian GAN. SCGAN: semi-coupled GAN. DCGAN: deep convolutional GAN [10]. WGAN: Wasserstein GAN [12].
PGGAN: progressive growing GAN. CPGGAN: conditional progressive growing GAN. MUNIT: multimodal unsupervised image-to-image
translation framework [30]. SimGAN: semantic image manipulation using generative adversarial networks [33].

3. Materials and Methods
3.1. Progressive Growing WGAN-GP

In order to train a network on the synthesis of MR images, we used a progressive
growing GAN proposed by [13] that started with learning low-resolution images and
progressively increases the resolution by stacking additional layers to the network. Pro-
gressive growing allowed the network to learn large-scale features of the data distribution
first and refined structures when adding additional layers and progressing in training,
which stabilized GAN training significantly. Our network architecture was trained with
800 k images before doubling the resolution (following the training procedure proposed
in [13]). A new layer was faded in during training with additional 800 k images until
we reached the final resolution of 256 × 256. We used a Wasserstein GAN with gradient
penalty loss (WGAN-GP) [12] following the proposed training procedure in [13]:

LWGAN−GP = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)] + λgp·Ex̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(1)
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where E[·] denotes the expected value, Pr is the real data distribution, Pg is the data dis-
tribution generated through x̃ = G(z, c), and c denotes the target labels (conditions).
A gradient penalty term, weighted by λgp (λgp = 10), was added for the random sam-
ple x̂ ∼ Px̂, with ∇ŷ denoting the gradient operator toward the generated samples.
Px̂ described the distribution of points uniformly sampled along straight lines from pairs
of points from Pr and Pg [11]. The utilization of a gradient penalty term resulted in a more
stable training process than weight clipping of the discriminator as proposed in [12].

3.2. Separate Auxiliary Classifier

We deviated from the conventional auxiliary classifier GAN (ACGAN) network ar-
chitecture [7], which uses a classification layer in the discriminator to learn the conditions
by employing a separate auxiliary classifier (AC) that is only trained on the conditions.
This allowed us to use data augmentation on the training data for the AC. In general,
this enhances the classification performance of a trained network by avoiding overfit-
ting [34,35], and only a well-trained auxiliary classifier can provide good guidance for
the training of the generator. In contrast to training the AC, heavy data augmentation
diminishes the GAN performance of generating sharp, realistic images. Consequently,
no data augmentation was used for training the discriminator that learns to score the
realness of a given image in a WGAN-GP.

We used the DenseNet-121 architecture [36] for the AC and jointly trained the network
to determine TR, TE, and imaging orientation of the patient (IOP) from MR images only.
The categorical cross-entropy loss (CCE) was used for the image orientation and the mean
squared error (MSE) loss for TR and TE, which were both scaled to values between 0 and
1. The AC was trained to minimize the following loss:

LAC = λIOP·CCEIOP(c, c̃) + λTE·MSETE(c, c̃) + λTR·MSETR(c, c̃) (2)

where c̃ = C(x) is the output of the auxiliary classifier for an image x with labels c.
We heuristically set λIOP = 1 and λTE = λTR = 10.

3.3. Controllable GAN

To avoid overfitting the generator to the conditioning, we incorporated the training
procedure of ControlGAN [37]. Overfitting can occur if the auxiliary classifier reaches
imperfect classification performance and consequently an issue for many machine learning-
based classification and regression tasks. We used an adaptive loss weighting to avoid
overfitting the generator on the conditions and balanced the GAN training to produce
realistic images. An adaptive weight loss parameter γt for time step t for each condition c
of the GAN was introduced:

γc, t = min
[
τc,, max

[
0, γc, t−1 + r·

{
Lc(c, C(G(z, c)))− Ê·Lc(c, C(x))

}]]
(3)

where r is a learning rate parameter for γt, γ0 is set to zero, and τ is a maximum constraint
for γt. The parameter τ was set to 100 and the learning rate r to 0.01 for our training
procedure. Ê balances the ratio between the classification loss on the real training images
and the generated images and was set to one. Lc denotes the condition-specific loss (CCE
for the image orientation or MSE for TR and TE). Thus, the GAN was trained to minimize
the conditioning loss:

LAC−GAN = γIOP, t ·CCEIOP(c, C(G(z, c))) + γTE, t ·MSETE(c, C(G(z, c))) + γTR, t ·MSETR(c, C(G(z, c))) (4)

Minimizing the sum of the WGAN-GP loss (Equation (1)) and the auxiliary classifier
loss with adaptive weights (Equation (4)) led to the generation of realistic MR images with
the intended MR contrast. Thus, the overall GAN loss function was given as the sum of
LGAN−GP and LAC−GAN .
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3.4. Data

For training and evaluation of our GAN, we used the fastMRI dataset [38]. It con-
tained DICOM data from 10,000 clinical knee MRI studies, each comprising a set of multiple
pulse sequence parameterizations. We applied several data filters based on the DICOM
header information to obtain a dataset with a comparable image impression, a dense and
homogenous acquisition parameter distribution (TR, TE), and a high variance in anatomy.
We wanted the image impression and contrast within our training set to depend on the
acquisition parameters TR and TE. Therefore, other parameters affecting the image impres-
sion, such as field strength and manufacturer, were removed by selecting the most common
parameter value within the fastMRI dataset (1.5T field strength and scanners from Siemens
Healthcare, Erlangen, Germany). Several attributes were missing in the DICOM header,
but we could deduce the manufacturer for DICOM images with the missing manufacturer
by adopting the manufacturer of the used receiver coil. The MR images from our filtered
dataset were acquired on five different Siemens Healthcare scanners (MAGNETOM Aera,
MAGNETOM Avanto, MAGNETOM Espree, MAGNETOM Sonata, MAGNETOM Sym-
phony). To create a dense data distribution for the conditioning parameters TR and TE,
we only took image series with TR values between 1800 ms and 5000 ms, set the upper
limit of TE to 50 ms, and discarded fat saturated images. Then, we took the six central slices
from each volume to discard peripheral slices. The final dataset contained MR images from
5387 different studies and 8535 image series. The joint distribution of TR and TE values in
the training dataset is shown in Figure 1.

Figure 1. Distribution of the acquisition parameters TR and TE in the training dataset. The kernel
density estimate plot visualizes the density of the bivariate target distribution. The multiple modes of
the multimodal distribution (compared with distribution of TE values), arise from varying sequence
parameterizations used at different scanners in the dataset.
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The dataset of 51,205 images was split into a training, validation, and test dataset ran-
domly by study IDs, with 2000 images each used for validation and testing. The remaining
images were used for training. Each slice was normalized to intensity values between −1
and 1 and resized to the smallest common resolution within the dataset (256 × 256 pixels)
using bilinear interpolation to obtain identical image resolution. Thus, the complete dataset
could be used for training without discarding images due to insufficient resolution and
image upsampling was avoided, which reduced image quality.

3.5. Training Details

We trained the discriminator and generator networks with a balanced number of
weight updates (Figure 2). No conditioning was applied during the progressive growing
of the networks until the final resolution was reached. The AC loss was incorporated with
adaptive loss weights as defined in Equation (4). The AC was pre-trained on the same
dataset as the GAN for the final resolution for 200 epochs (batch size of 64, Adam opti-
mizer [39] with learning rate 0.001, β1 = 0, β2 = 0.99). We trained the GAN (batch size
of 16, Adam optimizer with learning rate 0.001, β1 = 0.9, β2 = 0.99) until it observed ten
million images, at which point no further improvement for the conditioning loss could
be observed.

Figure 2. Training and inference phase of our GAN. The generator was trained to synthesize MR images for a given latent vector z and
a set of acquisition parameters c1, guided by two networks, the discriminator, and the auxiliary classifier. After training, a synthetic
MR image can be generated for a given latent vector z with any acquisition parameters c2 (prediction phase). The shown images were
generated for a random latent vector with two different sets of acquisition parameters (represented by c1, c2), corresponding to coronal
imaging orientation, and a TR of 3000 ms, TE of 15 ms, and 45 ms for c1 and c2.

4. Results

The evaluation of our model consisted of a qualitative and quantitative component:
we evaluated how indifferentiable the synthetic MR images were from real MR images and
how well the intended contrast settings (through the acquisition parameters TR and TE)
were reflected within the synthetic MR images.

4.1. Qualitative Evaluation

While different measures have been proposed for the assessment of GANs without
reference images (i.e., without corresponding ground truth image pairs), a human observer
study remains the gold standard for image quality evaluation [18]. The so-called visual
Turing tests are commonly used in computer vision and medical imaging to evaluate
how indistinguishable generated images are from real ones [19,23,24,40,41]. However,
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when asking medical experts to label randomly displayed images as either real or synthetic
in a visual Turing test, the experiment may be subject to bias toward labeling more images as
synthetic [23,24]. Thus, the reported (accuracy) metrics are also biased and less conclusive.
Therefore, we adapted the commonly used, biased experiment by using a grid of images
(3 × 2 images) with an equal number of real and synthetic images displayed. The evaluator
or expert labels each image as real or synthetic (by either clicking the left or the right mouse
button) and must mark the same number of images as real and synthetic within each grid.
Additionally, for the images marked as synthetic, the expert can explain why the image
appears synthetic. This experiment setup removes potential labeling bias by enforcing the
true label distribution for the predicted labels.

We asked two experts to label 150 images (75 synthetic, 75 real images; displayed in
random, but the same order for both experts) as either synthetic or real with the experiment
mentioned above. The experts had more than 15 years’ experience in MRI as an MRI
technologist (expert 1) and five years’ experience as a radiologist (expert 2). No prior
information (e.g., examples of synthetic MR images) was provided before the experiment,
and only the MR images and the TR and TE values were shown. The TR and TE values
and the imaging orientation of the displayed synthetic images matched the values from
the real images. No feedback was provided during the experiment on whether the labeling
was correct. The confusion matrix of the visual Turing test is presented in Table 2.

Table 2. Confusion matrix of visual Turing test. IRA: inter-reader agreement.

True Label
Real Synthetic

Pr
ed

ic
te

d
la

be
l

Real
Expert 1 53 22
Expert 2 36 39

IRA 29 10

Synthetic
Expert 1 22 53
Expert 2 39 36

IRA 15 24

The experts reached an accuracy score of 71% (expert 1) and 48% (expert 2) on the
identification of real and synthetic MR images. The experts were unable to distinguish a
significant share of real and synthetic images correctly, which shows the generator’s ability
to synthesize MR images indistinguishable from real images with reference to anatomy and
contrast. The low inter-reader agreement (IRA) for true positives (29/75 images) and true
negatives (24/75 images) shows that only the minority of cases can clearly be identified as
either real or synthetic.

According to the experts, image quality impediments of synthetic MR images were
mainly attributed to overly smooth tissue (muscles, fat tissue, and bones) compared to
fibrous muscle tissue, granular texture in fat tissue, and fine structures in bones of real
MR knee images. Additionally, due to the downsampling of several of the real images
to a resolution of 256 × 256 pixels using bilinear interpolation to obtain identical image
resolution, the image quality of the real images was described as inferior in certain cases,
making it hard for the experts to classify. An example of acquisition parameter interpolation
is shown in Figure 3, and additional examples of varying anatomy demonstrating the
variability of the generated samples are shown in Figure 4. The effect of TE on the tissue
contrast can be seen in signal changes of the muscle tissue (Figure 3). Varying TR results
in signal differences in the fluid-cartilage contrast [42] and mainly affects contrast on T1-
weighted images [43], which are not available within the dataset (see Section 5. Discussion).
Therefore, the signal changes through varying TR are less prominent.
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4.2. Quantitative Evaluation

The performance of a GAN to generate conditional samples depends on proper
guidance during training by a well-trained auxiliary classifier. Therefore, we evaluated
different conditional GAN architectures with reference to the classification and regression
performance to determine the acquisition parameters on the test dataset (Table 3). Although
the mean squared error was used as regression loss for TR and TE, we reported the mean
absolute error (MAE), as the MAE is a more descriptive metric for these targets.

Figure 3. Acquisition parameter interpolation of TR and TE for a single latent vector. A single latent
vector was reconstructed with different TR and TE values, showing the capability of the generator to
synthesize MR images with adaptable image contrast. The axes describe the intended acquisition
parameter values and the values at the bottom left of each image the output of the AC. The images
are annotated (in red) with acquisition parameter values as determined by the AC, showing a low
overall conditioning error. The contrast adapts properly within images along the axes; however,
the anatomy also slightly changes, which is a sign of feature entanglement of the latent vector with
the conditions.
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Figure 4. Additional examples of synthetic MR images with varying TR and TE to show the variety
of the generated image samples. The imaging orientation alternates between sagittal and coronal.
The images are annotated (in red) with acquisition parameter values as determined by the AC,
showing a low overall conditioning error.

Table 3. Auxiliary classification performance optimizations.

Model Architecture
Image Orientation TR TE

Accuracy [%] MAE [ms] MAE [ms]

ACGAN 63.8 640.0 6.4

Separate AC: DenseNet-121 and
HP Tuning 100 239.6 1.6

Synthetic 100 219.4 2.8

With the original ACGAN architecture, the discriminator is trained to differentiate
between real and fake samples and the conditions [6]. However, training the same model
on the GAN loss and the conditioning loss leads to training instabilities and, therefore,
poor performance in generating realistic images and conditioning the image synthesis.
Introducing a separate AC model with the DenseNet-121 architecture as the discriminator,
which is only trained on the conditions, significantly improves performance, leading to an
optimized auxiliary classifier performance. Decoupling the development of the auxiliary
classifier from the actual generator and discriminator with a separate network breaks down
the complexity of the overall architecture. This facilitates additional data augmentation
during training and hyperparameter tuning on the AC, significantly improving the GAN’s
conditioning performance (Table 3).



J. Imaging 2021, 7, 133 10 of 13

The adaptive weighting scheme for the conditioning loss based on ControlGAN yields
different benefits. It removes the necessity to manually tune the loss weights for the
various conditions. Furthermore, it guides the training process of the GAN properly by
focusing the training on the conditioning terms that still need improvement (TR, TE) and
decreasing the loss weight for conditions that were already learned sufficiently (imaging
orientation). It also balances the overall conditioning learning with the GAN loss (WGAN-
GP). Therefore, it prevents overfitting the generator on the conditions and produces realistic
MR images. The AC’s performance on synthetic data (identical size and label distribution
as the test set) and the test set are similar (Table 3), which shows that the generator is
neither over- nor underfitting on the conditions.

5. Discussion

Our method generates realistic MR images with high variability in the displayed
anatomy that are adjustable in their image contrast through the main contrast acqui-
sition parameter TR and TE. The images are hard to distinguish from real images for
medical experts.

Since no method is currently available to retrieve the TR and TE values from an
MR image alone, the quantitative evaluation of the correct contrast is difficult. However,
the auxiliary classifier performs well to determine the acquisition parameters on unseen
test data and can serve as a reliable method to determine the contrast settings. The GAN’s
capability to adjust to the contrast settings properly (i.e., TR and TE values) mainly de-
pends on the auxiliary classifier’s performance. Consequently, the AC’s training must be
improved with additional training data and hyperparameter tuning in future works to
enhance the GAN performance further.

The generator’s conditioning on the acquisition parameters was limited to values
between 1800 ms to 5000 ms for TR and 12 ms to 50 ms for TE due to training data
availability. All sequences within the training data were denoted as PD-weighted (by
the DICOM series description). A wider range of TR and TE values within additional
training data is anticipated to enable T1- and T2-weighted MR image synthesis. However,
this dataset has decisive advantages over multiple publicly available datasets (e.g., [31])
despite these limitations. The dataset comprises DICOM files that includes MR acquisition
parameters and offers a clinically realistic distribution of the acquisition parameters values,
as shown in Figure 1.

Another issue to address in future work is the latent vector’s existing feature entan-
glement, representing the anatomical features, with the conditioning term representing
image contrast (and imaging orientation). When adapting the conditions, the image
contrast adjusts properly, but the anatomy also slightly changes (see Figure 3). Feature
(dis)-entanglement of generative adversarial networks is a known problem and subject of
current research [44].

Applications and Future Work

GANs have proven to be a useful data generation and augmentation tool in the
medical data domain with the additional benefit of anonymizing patient identifiable in-
formation [45]. Therefore, our method can be used as an advanced data augmentation
technique for AI training with MR images that can generate MR images with adaptable
image contrast. It enables training data generation tailored to an MRI application’s contrast
requirements and is also anticipated to increase AI applications’ robustness against contrast
changes. While AI training with synthetic data quality is not necessarily anticipated to
yield the same performance as training on real data, synthetic data has several advantages.
Generally, it avoids data privacy issues and can therefore be more easily shared than a
proprietary dataset with patient-identifiable information. Moreover, it allows customizable
training data generation in terms of dataset size and parameter distribution. Medical image
datasets are often imbalanced in terms of acquisition parameter distribution or pathologies.
This proof-of-concept is able to solve the acquisition imbalance and is extendable to addi-
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tional conditioning (e.g., pathologies). Therefore, it may enhance the use of GAN-based,
synthetic data for AI training in MRI.

Furthermore, our work can be used as a training tool for radiologists and technologists
to visualize the influence of the acquisition parameters on the image contrast.

Additionally, it can serve as a tool to support protocol configuration by allowing to
preview the yielded contrast for a parameterized sequence. Although medical guidelines
exist, MR protocol configuration and sequence parameterization are still a matter of ra-
diologists’ and technologists’ preferences and vary significantly (see Figure 1). A tool to
visually support sequence parameterization is anticipated to enhance and simplify the
protocol configuration workflow.

However, there are also limitations to point out. The AC’s performance mainly limits
the generator’s ability to accurately produce an MR image with an arbitrary contrast.
The use of more MR images with a wider acquisition parameter range for training of the
AC is anticipated to boost the AC’s performance further and, therefore, of the generator.
Moreover, the incorporation of additional acquisition parameters (e.g., flip angle, inversion
time, and scan options) and sequence techniques (e.g., gradient echo) can enhance the
model’s capability for protocoling support, training data generation, and as a training tool
for radiology education.

This proof-of-concept has demonstrated the capabilities of GANs to generate cus-
tomizable, synthetic MR images that are difficult to distinguish from real data. However,
the performed visual Turing test must be extended to a higher number of experts in order
to estimate the true “indistinguishability” of the synthetic MR images in future work.
Moreover, the extension of the proposed approach to 3D is anticipated to enhance the
synthesis performance as 3D image stacks offer additional information that can be utilized
by a generative network to produce accurate synthetic samples. The extension to other
body regions is only limited by the availability of a suitable dataset with a wide range of
acquisition parameter settings as well as varying anatomy.

Additionally, more advanced GAN architectures and training procedures have been
proposed recently [46] and their application to MRI will be subject to future work.

6. Conclusions

We have proposed a generative adversarial model based on the architecture presented
in [13] that uses a separate auxiliary classifier and the adaptive conditioning loss from
ControlGAN. The network is trained to generate synthetic MR knee images and is condi-
tioned on the MR acquisition parameters TR, TE, and the image orientation. Our approach
allows us to generate synthetic MR images that are difficult to distinguish from real images
and adapt the MR image contrast based on the input acquisition parameters (TR and TE).
Our MR image synthesis approach can support radiologists’ and technologists’ training
and can adapt to AI-based MR applications’ specific requirements by providing fine-tuned,
custom MR images with the required contrast.
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