
Journal of

Imaging

Article

Direct and Indirect vSLAM Fusion for Augmented Reality

Mohamed Outahar 1,2,* , Guillaume Moreau 3,* and Jean-Marie Normand 1

����������
�������

Citation: Outahar, M.; Moreau, G.;

Normand, J.-M. Direct and Indirect

vSLAM Fusion for Augmented

Reality. J. Imaging 2021, 7, 141.

https://doi.org/10.3390/

jimaging7080141

Academic Editors: Didier Stricker,

Jason Rambach, Raimondo Schettini

Received: 24 May 2021

Accepted: 3 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Ecole Centrale de Nantes, AAU UMR CNRS 1563, 44321 Nantes, France; Jean-Marie.Normand@ec-nantes.fr
2 IRT Jules Verne, 44340 Bouguenais, France
3 IMT Atlantique, Lab-STICC UMR CNRS 6285, 29238 Brest, France
* Correspondence: mohamed.outahar@ec-nantes.fr (M.O.); guillaume.moreau@imt-atlantique.fr (G.M.)

Abstract: Augmented reality (AR) is an emerging technology that is applied in many fields. One
of the limitations that still prevents AR to be even more widely used relates to the accessibility of
devices. Indeed, the devices currently used are usually high end, expensive glasses or mobile devices.
vSLAM (visual simultaneous localization and mapping) algorithms circumvent this problem by
requiring relatively cheap cameras for AR. vSLAM algorithms can be classified as direct or indirect
methods based on the type of data used. Each class of algorithms works optimally on a type of
scene (e.g., textured or untextured) but unfortunately with little overlap. In this work, a method
is proposed to fuse a direct and an indirect methods in order to have a higher robustness and to
offer the possibility for AR to move seamlessly between different types of scenes. Our method is
tested on three datasets against state-of-the-art direct (LSD-SLAM), semi-direct (LCSD) and indirect
(ORBSLAM2) algorithms in two different scenarios: a trajectory planning and an AR scenario where
a virtual object is displayed on top of the video feed; furthermore, a similar method (LCSD SLAM) is
also compared to our proposal. Results show that our fusion algorithm is generally as efficient as
the best algorithm both in terms of trajectory (mean errors with respect to ground truth trajectory
measurements) as well as in terms of quality of the augmentation (robustness and stability). In
short, we can propose a fusion algorithm that, in our tests, takes the best of both the direct and
indirect methods.

Keywords: vSLAM; direct vSLAM; indirect vSLAM; fusion; augmented reality

1. Introduction

Visual simultaneous localization and mapping (vSLAM) is a family of algorithms that
offers the ability to create a 3D map of an unknown environment based on a video camera
feed while simultaneously being able to localize the camera in this map/environment.
This represents an essential component for robotics and AR applications, which explains
the wide interest of both the research and business/industrial communities for these
algorithms. Even though it is vast, the vSLAM family of algorithms can be separated
into two large subgroups depending on the type of basic data used. The first type, called
Direct vSLAM, uses raw pixels to accomplish the tasks of localization and mapping, an
example of such a direct system is the DTAM algorithm [1]. The second type, called Indirect
vSLAM, uses keypoints that represent a higher level of abstraction than raw pixels, see e.g.,
MonoSLAM [2].

Each subgroup (direct or indirect) has a set of advantages and disadvantages. Unfor-
tunately, none of them can address all of vSLAM’s use cases on their own. Interestingly,
to some extent, they do offer complementary performances. Indirect vSLAM is known
to be precise and robust against photometric changes [3]; however, since it is based on
the detection of keypoints (which rely on the existence of texture), it performs poorly
in untextured scenes. On the other hand, Direct vSLAM can handle scenes with little
texture information [4] but has difficulties with photometric changes in the scene such as
variable lighting.

J. Imaging 2021, 7, 141. https://doi.org/10.3390/jimaging7080141 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-9846-2910
https://orcid.org/0000-0003-2215-1865
https://orcid.org/0000-0003-0557-4356
https://doi.org/10.3390/jimaging7080141
https://doi.org/10.3390/jimaging7080141
https://doi.org/10.3390/jimaging7080141
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7080141
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7080141?type=check_update&version=2

J. Imaging 2021, 7, 141 2 of 17

The core idea of this work is to use the two methods—direct and indirect—concurrently.
Our goal is to exploit the strengths of both algorithms while avoiding their weaknesses,
and to use each type (direct or indirect) based on the nature of the scene.

As an indirect vSLAM algorithm, we chose ORBSLAM2 [5], and, as a direct vSLAM
we chose LSD-SLAM [6].

The layout of this paper is as follows: Section 2 deals with the most relevant state-of-
the-art. Section 3 details the components (ORBSLAM2 and LSD-SLAM) of our proposed
system, as well as how we fuse them. Section 4 explains the testing methods and presents
their results. Section 4.4 presents the discussion and the positioning of this work in the
field. Section 5 concludes the paper.

2. State-of-the-Art

SLAM describes the problem of mapping the environment while self-localizing in
the map being built. In order to accomplish these tasks, multiple sensors can be used,
including Lidar [7], inertial measurement units (IMUs) [8], cameras (RGB [6], stereo[9],
RGB-D [10]) or a combination of visual and inertial sensors [11]. SLAM that only uses
cameras as sensors, is usually called visual SLAM, referred to as vSLAM in this paper,
and is the one discussed in this work. vSLAM uses cameras to capture images and image
processing algorithms to accomplish the tasks of localization and mapping. In this work,
we decided to choose RGB cameras, and not stereo or RGB-D ones, because of the wide
availability of RGB cameras on devices (smartphones and tablets). Furthermore, most of
these devices only have one camera. Even though multiple camera devices are currently
being introduced, they still represent only a fraction of the existing hardware, hence our
choice for monocular vSLAM.

vSLAM algorithms can be classified in a number of ways. Aside from the one men-
tioned before (direct/indirect), they can also be classified based on the technique used in
vSLAM for managing the map. Two major groups are distinguished: filter-based and graph-
based techniques. Filter-based techniques have dominated the early days of vSLAM [2].
Examples of such techniques are EKF-SLAM [12], which uses a non-linear Kalman filter
to estimate the map and trajectory, FAST-SLAM [13], which uses multiple Kalman filters
and decomposes the vSLAM problem into one localization problem and multiple land-
mark estimation problems. The core idea is to use a filter (e.g., a Gaussian or a particular
filter) to keep track of the state variables and the landmarks/map. Given the problem of
quadratic growth of computational resources with the size of the map, this technique has
been gradually left aside in the last decade, even though there has been a recent resurgence
in filter methods [14]. The research community steered away from filter-based techniques
and focused on the now widely used graph formulation. The graph-based formulation
uses keyframes as nodes that are connected through poses. One of the first systems to
introduce graph formulation is PTAM [15]. Since PTAM, most vSLAM algorithms use the
graph formulation, including ORBSLAM2 [5], LSD-SLAM [6] and OpenVSLAM [16].

Even though this classification can be useful, the more prominent and useful type
of classification of vSLAM algorithms, in our case, is based on the input data, which
distinguishes between direct and indirect vSLAM. This classification is more useful because
it can be directly translated into the “type” of environment where each class performs better,
both in terms of robustness and precision. Indeed, direct methods work better in textureless
environments with consistent lighting conditions while indirect methods perform best on
textured scenes with dynamic lighting. The two subgroups are detailed below.

2.1. Indirect vSLAM

Indirect vSLAM relies on keypoints to track the camera and build the map. One
of the first vSLAM techniques (i.e., using cameras as primary sensor in SLAM) was
MonoSLAM [2], which relies on a Kalman filter, using keypoints for both tracking and
mapping. Another important system is PTAM [15], this algorithm is designed for AR
applications in small workspaces. PTAM was the first to propose the use of two parallel

J. Imaging 2021, 7, 141 3 of 17

threads to run localization and mapping concurrently and not sequentially. Furthermore
PTAM has introduced the use of keyframes. Keyframes are frames that are used for map-
ping (unlike regular frames, which are only used for tracking). Keyframes have become
a standard in state-of-the-art algorithms. PTAM has introduced new advances; however,
it did so without tackling the large scale mapping problem. Many algorithms have pro-
posed solutions to address it, including FAB-MAP [17], that introduced the concept of
Bag-of-Words [18] to be used for loop closing and thus handling a large scale map. Another
notable work is iSAM [19], which offered a representation of the SLAM problem in the
form of a graph. This formulation estimates the full trajectory and the map using all the
measurements, which improves the consistency of the global map. This formulation de-
scribes the estimation of trajectory and the map as a least square problem, this reduces the
computational resources needed for the tasks. Building on existing work, ORBSLAM [20]
and ORBSLAM2 [5] use the presented techniques (keypoint detection/description, parallel
threads, keyframes, graph formulation) to build a full vSLAM, with localization, mapping,
loop closing and relocalization (i.e., the ability to relocalize the tracked object in the map
after the algorithm becomes lost). ORBSLAM2 is explained in detail in Section 3.1. Other
vSLAM systems are also worth mentioning: OpenVSLAM [16] is a framework that offers
a highly usable and extensible indirect vSLAM with all the modules needed: keypoint
detection and matching, pose optimization, keyframe processing and local and global
mapping and optimization. Furthermore OpenVSLAM offers its components as separate
and having application programming interfaces (APIs) to make it easier for re-usability and
extensibility. OpenVSLAM is also compatible with various camera models and capable of
saving and loading maps. RKSLAM [21] introduced a multi-homography based keypoint
tracking as well as improvements to the local map optimization, which leads to a better
performance for AR applications. With all the algorithms and the improvements proposed,
indirect vSLAM, even though offering great robustness and precision, still faces major
challenges when dealing with low textured scenes, due to the need for keypoints. Indeed,
keypoints are detected by exploiting the intensity variations between close pixels [22],
which do not exist in textureless scenes.

2.2. Direct vSLAM

Using raw pixels directly for tracking and mapping is a relatively new concept,
with the first real-time system being introduced in 2011. DTAM [1] is one of the first
direct vSLAM algorithms that uses every pixel in the image to build an estimated depth
map for a (supposed static) scene. Tracking is achieved through image alignment (see
Section 3.2). Another one of the earlier algorithms proposed is SVO [23], a real-time semi-
direct visual odometry (VO) system. VO is similar to vSLAM but without the global
mapping component. SVO uses a similar dense image alignment technique for tracking
and local mapping. The same authors built on SVO to propose LSD-SLAM [6], which
develops VO to full vSLAM by adding the global mapping component. LSD-SLAM offers
a direct vSLAM tracking and mapping with global mapping and relocalization capabilities.
LSD-SLAM is explained in details in Section 3.2.

Direct vSLAM algorithms are less prevalent since they address the smaller subset of
scenes that tend to be textureless. Furthermore, direct vSLAM algorithms use photometric
alignment, which means a much larger subset of pixels are used for tracking and mapping
thus requiring more computational resources.

2.3. Other Types of vSLAM

Recently, deep learning (DL) has had a major impact on the image processing research
community. This did not translate into vSLAM directly for theoretical reasons, as shown
in [24], where the authors develop a theoretical model for absolute pose regression and
test it to show the under-performance of convolutional neural networks (CNNs) in this
task. To the best of our knowledge, there is no end-to-end vSLAM DL-based system.
Deep learning, however, is used in modules in vSLAM’s broader pipeline to accomplish

J. Imaging 2021, 7, 141 4 of 17

well defined, specialized tasks. The tasks can be: a single image pose regression [25],
detection of keypoints [26], segmentation [27], object detection [28], object classification [29],
relocalization [30] and visual–inertial fusion [31].

Other works have proposed, as we do here, a hybrid direct and indirect vSLAM,
notably loosely coupled semi-direct monocular SLAM (LCSD) [32]. In this work, the
authors implemented a system where the local mapping and tracking is achieved through
the use of a direct vSLAM algorithm (DSO [4]). The data resulting from the local mapping
and tracking are then exploited by the indirect vSLAM (ORBSLAM2 [5]) for back-end
optimization and loop closure. The system proposes to locally run direct tracking and
mapping, and refine the built map and trajectory by running a global indirect vSLAM
(notably for loop closing and pose refinement). This is different from the proposed work,
in that the indirect module is limited to back-end optimization and therefore cannot locally
track nor build a map. Given the similarity of the methods, LCSD has been tested and
compared to the proposed system, see Section 4.

The main difference between our proposal and the state-of-the-art is: the implemen-
tation of a fusion of the initialization and tracking modules, and a rigorous evaluation
on multiple datasets. The system and its sub-modules are presented in details in the
next section.

3. Materials and Methods

The basic idea is to fuse a direct and an indirect vSLAM algorithms in order to improve
the overall performance and to have a more robust method. The choice of which algorithm
to represent direct and indirect vSLAM was made based on both the characteristics and
performance of each algorithm. Throughout the field of monocular indirect vSLAM,
ORBSLAM2 is considered a reference algorithm because it is one of the first complete
vSLAM algorithms, given it has the capability of tracking, global mapping and loop
closing; it also offers state-of-the-art performance [3]. Considering direct algorithms, which
is a less developed field, LSD-SLAM remains a leading direct algorithm in performance [33],
as well as being a complete vSLAM algorithm.

3.1. ORBSLAM2

We chose ORBSLAM2 as the indirect algorithm in our fusion because: (i) it embeds
all complementary modules (loop closing, relocalization), and (ii) the algorithm has been
considered by the research community as a standard benchmark algorithm against which
most other algorithms are compared, see e.g., [3,21]. In this section, the ORBSLAM2 [5]
algorithm is explained in details based on the additional descriptions from [3,34].

The algorithm runs three threads in parallel: tracking, mapping and loop closing. A
diagram of the general architecture of the algorithm is presented in Figure 1.

A feature extraction module is used by ORBSLAM2 to detect, describe and match
feature points. As the name indicates ORBSLAM2 uses ORB [35] feature points for both
tracking and mapping.

The algorithm starts by the detection, description and matching of keypoints. The
matching (or comparison) is based on the distance and orientation differences between key-
points in different frames. The initialization starts after a set number of matches between
frames has been detected. The first frame is treated as a reference frame, which the other
frames are compared to for matching. Once the initialization starts, the algorithm computes
a fundamental matrix and a homography at the same time. Both matrices relate corre-
sponding points in images observing the same scene; however, the homography assumes
a planar scene where the fundamental matrix does not. Using both matrices, projections
of keypoints are made and reprojection errors calculated. Based on the reprojection error,
either the homography or the fundamental matrix is chosen. Afterwards the matched
keypoints are triangulated. The triangulated points are used to populate a new map and
the matched frames are used as the first two keyframes.

J. Imaging 2021, 7, 141 5 of 17

ORBSLAM2

TrackingMapping

KFs Insertion
/ Culling

Loop Closing

Loop
Correction

Loop
Detection

Initialised

MPs Insertion
/ Culling

Initialise

Track Ref.
Frame

Motion Model

Relocalise

Yes

Return Pose

No

Motion
Model

Exists

!Exists

Lost
Yes

No

Lost
No

Yes

Figure 1. The architecture of ORBSLAM2 [5]. “KFs” means keyframes, “MPs” map points and “ref”
means reference.

3.1.1. Tracking

Tracking in ORBSLAM2 is performed in two ways, either with or without a motion
model. The motion model represents the previous transformation between frames, the
assumption is that it is still valid, given the short physical and temporal distances between
frames.

When a motion model exists, it is used to project the previous frame’s keypoints to
the current one. A search around the projections is carried out. If the search fails (too few
matches), the window of the search is enlarged and a second search is performed. If the
second search also fails, tracking without the motion model is launched.

In the absence of a motion model, the current frame is condensed into a visual bag of
words and compared with the current keyframe. If the search fails to reach a number of
matches (threshold fixed by the user), the relocalization module is launched.

In both cases, the algorithm performs two optimizations of the estimated pose, the
first with all matched points. During the first optimization some matches are discarded
as outliers. The second optimization is performed without the remaining matches. At
the end of the cycle, the tracking module has to decide whether the frame should become
a keyframe. The decision is made based on three criteria: number of frames from the
last relocalization, number of frames from the last keyframe, number of keypoints in the
current frame and difference with respect to the previous keyframe.

3.1.2. Mapping

The mapping thread is responsible for optimizing, inserting and removing keyframes
as well as map points. The module integrates the keyframes into the local map and, while
doing so, deletes map points that are judged invalid. Afterwards, the map points are
triangulated between the current keyframe and a set of keyframes that share the most
keypoints with it. After these tasks are finished, and if there is no keyframe to insert, the
thread goes on to perform a global bundle adjustment (BA).

In the mapping thread, three graphs are built continuously: the covisibility graph,
which connects all keyframes; the essential graph, which is a reduced version of the
covisibility graph, in that it connects only the keyframes that share the most keypoints; the

J. Imaging 2021, 7, 141 6 of 17

last graph is called a spanning tree in which every keyframe is connected to the keyframe
with which it shares the most features.

3.1.3. Loop Closing

The last thread performs the loop closing: it checks whether the current scene has
been mapped already in three steps: loop detection, loop confirmation and loop refinement.
To detect loops, this module turns the current keyframe into a bag of visual words and
compares to its neighbors in the covisibility graph. These comparisons result in scores. The
minimal score among the neighboring keyframes is used as threshold to determine the
candidates for loop closing among all keyframes. For each keyframe, a group of the closest
connected keyframes is used to test the consistence of detection through time. If a group
of keyframes is sufficiently consistent, it moves on to loop confirmation. Once a group
of candidates keyframes has been chosen for confirmation, a matching between keypoint
descriptors is carried out to close the loop. Given that loop closing aims at fixing scale
drift, a similarity transformation (i.e., pose with scale information taken into account) is
estimated as follows:

M =

(
sR t
0 1

)
(1)

with M ∈ Sim(3) a similarity, s ∈ < the scale, R ∈ SO(3) a rotation matrix, t ∈ <3 a
translation vector.

If the number of matches obtained by applying the estimated similarity is higher than
a fixed threshold, then the transformation is accepted.

Once the transformation is accepted, the loop-closing module stops the mapping
thread from making any changes to the covisibility graph until the loop is closed. The
module starts by correcting the detected keyframe and the corresponding map points.
Afterwards the correction is propagated through the essential graph by a global BA.

3.2. LSD-SLAM

LSD-SLAM is a direct vSLAM algorithm, which means that it does not use keypoints
but rather pixel intensities for both localization and mapping. LSD-SLAM is built on three
components: tracking, depth estimation and pose graph optimization; however, in the
implementation of the algorithm, tracking is launched in the master thread, and three other
threads are launched. The three threads are depth mapping, optimization and constraint
search, as can be seen in Figure 2.

Lost

Good

LSD-SLAM

Optimization

G2O optimization

Update Keyframes Map optimizing

Candidtae selection

Re-localizaion

Tracking

Normalize scale

Propagate deph

Distance

Epipolar geometry

Update depth map

Depth mapping

Tracking

Constraint search

Figure 2. The architecture of LSD-SLAM [6]. G2O [36] is an optimization library.

3.2.1. Tracking

In order to estimate the pose of a frame, the tracking module aligns it with the current
keyframe. This is achieved by minimizing the photometric error E(ξ). This technique

J. Imaging 2021, 7, 141 7 of 17

is called image alignment, it estimates a pose ξ ∈ SE(3) by minimizing the following
quantity:

E(ξ) = ∑
i
(Ire f (pi)− I(ω(pi, Dre f (pi), ξ)))2 (2)

where ξ is the pose, Ire f is the current keyframe, pi are the coordinates of the selected pixel,
ω is the protective wrap function that takes three parameters: pi, Dre f the inverse depth
(inverse depth is used as a workaround of infinite value problems, see [37] for details) of
the pixel and ξ the pose.

In order to solve Equation (2), the variance is introduced into the optimization process
as follows:

Ep(ξ ji) = ∑
p∈ΩDi

∥∥∥∥ r2
p(p, ξ ji)

σ2
rp(p, ξ ji)

∥∥∥∥
δ

(3)

With

rp(p, ξ ji) := (Ii(p)− Ij(ω(p, Di(p), ξ ji))) (4)

σ2
rp(p, ξ ji) := 2σ2

I +

(
∂rp(p, ξ ji)

∂Di(p)

)2

Vi(p) (5)

where p are the coordinates of the selected pixel, ξ ji is he pose between Ii and Ij, Ii is the
reference frame and Ij the current frame, ω is the set of normalized pixel coordinates (they
include intrinsic camera calibration), D is the inverse depth map, V is the variance map
and | · |δ is the Huber norm.

The quantity described in Equation (3) is variance normalized, which means the
quality of the depth estimation is taken into account.

Once the pose is estimated, the frame is processed in one of two ways depending on
the distance between the current keyframe and the current frame. The distance is defined
by two criteria, the estimated translation between the two frames and the number of
shared points (similarly to ORBSLAM2). Based on these criteria, the module can determine
whether the frame is close to the current keyframe or not. If the frame is judged to be close,
as most frames are, the frame is used to update the depth map as explained in the next
section; however, if the frame is judged to be too far to the current keyframe, the frame is
turned into a keyframe.

3.2.2. Depth Map Estimation

Frames close enough to a keyframe are used by this module to update the depth
map stored in each keyframe. LSD-SLAM defines the depth of a pixel by modeling it as a
Gaussian distribution N (id, σ2) with mean inverse depth id and variance σ2. In order to
update the depth map, epipolar geometry is used, as follows.

Once the baseline and epipoles are calculated, for each pixel in the current keyframe,
a visually (pixel intensity and gradients with respect to neighboring pixels) similar pixel
is searched for in the current frame. Epipolar geometry constrains the search area to
the epipolar line. Once the corresponding pixel is found and the depth calculated, the
inverse depth distribution can be updated. The estimation is subject to two types of errors:
geometric and photometric. The geometric error describes the error caused by the noise in
the estimated pose. The photometric error describes the image intensity errors, this means
if the image gradient is small, the pixel choice would be more prone to error.

Once all pixels are processed, a regularization iteration is performed to smooth the
keyframe depth map. This is achieved by assigning to each depth value the average of the
surrounding inverse depths, weighed by the inverse variance.

3.2.3. Pose Graph Optimization

This step is responsible for optimizing the keyframes poses. This is a two-stage
process: (i) detecting and correcting loop closures and (ii) drift correction. LSD-SLAM is a

J. Imaging 2021, 7, 141 8 of 17

monocular vSLAM system, thus it cannot retrieve the scale of a scene, but it can keep track
of it in a relative manner. LSD-SLAM does this by scaling the depth map of each keyframe
to have a mean inverse depth of one and the edges between keyframes are defined as a
similarities ∈ sim(3) (SE(3) plus a scale factor).

3.2.4. Constraint Search

In order to close loops and find keyframes to align, a selection process is started. The
module uses distance along with an appearance based process [38] in the pose graph to
determine n candidates. For each candidate, a reciprocal tracking check is performed
(tracking from candidate to current and current to candidate) and if the results are similar,
the candidate is added to the global map. The convergence of sim(3) tracking is a limitation
for direct image alignment. The algorithm overcomes this by using three methods. First,
an initialization is built by choosing a set of 3D map points with correspondents in both
keyframes. Second, using efficient second order minimization (ESM) [39] and lastly using
a coarse-to-fine approach to find the constraints.

3.3. The Proposed Fusion System

Figure 3 presents the general architecture of our system. Our proposal runs simultane-
ously an instance of ORBSLAM2 and one of LSD-SLAM. Each algorithm launches its own
threads, namely tracking and mapping for both algorithms as well as loop closing only
for ORBSLAM2.

ORBSLAM2

TrackingMapping

KFs Insertion
/ Culling

Loop
Closing

Initialised

MPs
Insertion /

Culling

Initialise

Track Ref.
Frame

Motion
Model

Yes

Return
Pose

No

Motion
Model

Exists

!Exists

Lost
Yes

No

Lost
No

Yes

FUSION

Tracking

OptimizationDepth Mapping

LSD-SLAM

Initialised

Yes

No

Direct
Initialise

Relocalise

Kill
LSD-SLAM

Launch
LSD-SLAM

Type

MPs
Insertion /

Culling

Direct

Indirect

Type

Indirect
Initialise

Direct
Initialise

Direct
Initialise

Direct Indirect

Figure 3. The architecture of the proposed system.“KFs” means keyframes, “MPs” map points and
“ref” means reference. Blue modules are direct and red modules are indirect.

The core idea of the proposal is to use a direct vSLAM technique to initialize and
relocalize an indirect vSLAM method. With this proposal, scenes that require direct
methods or indirect methods solely can both be processed. Given that indirect vSLAM
performs usually better [3,5,40], we chose the indirect system (i.e., ORBSLAM2) as the
base system.

J. Imaging 2021, 7, 141 9 of 17

The direct vSLAM method (LSD-SLAM) is used to initialize the indirect method.
This is achieved through the extraction of the depth of the points matched between the
current and the previous keyframes of the indirect method. Under the assumption that
the reference frames are common between the direct and indirect methods and the median
(inverse-) depth is normalized, the depth can be shared with the indirect vSLAM method.
We detail how the reference frames are aligned in the following. This allows ORBSLAM2 to
build the first map with two keyframes. Once this is achieved, ORBSLAM2 uses keypoint
search by projecting them into the map for further tracking.

When ORBSLAM2 correctly initializes, LSD-SLAM shuts down. When ORBSLAM2
loses tracking, LSD-SLAM is re-launched with a common reference frame to carry out the
tracking until ORBSLAM2 has relocalized. This strategy allows us to speedup ORBSLAM2’s
initialization by using that of LSD-SLAM, which usually initializes within the first two
frames. Furthermore, launching LSD-SLAM only when needed reduces the required
computational resources.

Both systems are monocular so the scale is not known even though LSD-SLAM tries to
estimate it. Another problem is the world frame since both systems initialize with a random
reference frame. In order to fuse the two algorithms, their poses must be expressed in the
same reference frame. This is achieved by identifying the transformation from one frame
of reference to the other. Given the assumption that the two subsystems are estimating
the same physical movement of the camera in the physical world, the estimation of this
transformation is achieved by pairing the poses estimated over the same frame. As soon as
both systems are successfully initialized (i.e., a first pose is computed, and an initial map is
built), a transformation between both reference frames is estimated. The initial keyframes
and corresponding map points are used to build the initial map.

As Figure 3 shows, ORBSLAM2 is the base system, and LSD-SLAM is used only
when ORBSLAM2 fails. During the initialization phase, if ORBSLAM2 fails to compute a
homography or a fundamental matrix, the direct initialization is carried out by assigning
depth from LSD-SLAM to the initial keyframes of ORBSLAM2. Second, when ORBSLAM2
has failed to track using both the motion model and the reference frame, LSD-SLAM is
initialized using the last available pose to perform tracking and mapping while ORBSLAM2
tries to relocalize.

In the next section, some practical implementation issues are presented along with the
evaluation of our system.

4. Results

The proposed system is the integration of two large source codes, with different sub-
modules and dependencies. This implementation was achieved on an Ubuntu 16.04.7 LTS
system, using 16GB RAM and an Intel i7 processor. In order to visually inspect the behavior
of the proposed system, the graphical viewer as well as the AR viewer of ORBSLAM2 were
used.

Another notable point to raise when comparing vSLAM system is the evaluation of
the trajectories, which is usually neglected in published work. In this work, we used the
EVO [41] library to compare the trajectories and align them statistically.

Another point to note is the fact that, on the following sequences, the error is calculated
from the first frame of the sequence. In this way the system performance is degraded
proportionally to the initialization delay.

In this section, the results of the evaluation of the proposed system are presented.
The evaluation is performed in two parts. The first part is the evaluation of the proposed
system’s camera trajectory against those obtained from the three benchmark systems
(LCSD [32], ORBSLAM2 [5] and LSD-SLAM [6]). LCSD is used as a benchmark given
its similarity to the proposed method. In the compiled version of LCSD, we added in-
put/output wrappers to process the data from the used databases, given that the developers
of LCSD have made the choice in the code to only process two datasets [32].

J. Imaging 2021, 7, 141 10 of 17

Camera trajectories are computed on sequences belonging to three databases: TUM [42],
KITTI [43] and EuRoC [44]. The TUM database represents an interior, desk space. The
KITTI database represents an exterior, car view of a road. The EuRoC database represents
a highly textured industrial scene.

As a metric to compare the performance of these systems, we chose to rely on the root
mean squared error (RMSE). RMSE provides an idea on the typical error on a single point.
For AR applications, the quality of the augmentations is more related to individual errors
than to the mean or median errors. For that reason, we believe RMSE represents a better
metric for our evaluation.

Since our final objective is to be able to use our system for AR purposes, the second
part of the evaluation compares visual augmentations obtained by our proposed system
with augmentations obtained via ORBSLAM2 and LSD-SLAM.

4.1. Trajectory Comparison

In this section, we compare camera trajectories obtained with our proposed system,
LCSD, ORBSLAM2 and LSD-SLAM on three databases. The trajectories present the mean
of five passes of each algorithm. In order to further clarify the evaluation process, a single
scene is presented in detail.

Table 1 presents the RMSE error of the tested systems on nine sequences of the
TUM database.

Table 1. RMSE of the four systems on sequences of the TUM database (best results in bold). N/A
means the system has failed to initialize or was lost for more than 50% of the scene. The values
represent the mean over five passes of each algorithm.

Sequence System ORBSLAM2 LSD-SLAM Fusion LCSD

f r1/xyz 0.12390 0.05949 0.01452 0.07423

f r2/xyz 0.09311 0.03560 0.063873 0.0111458

2_360_kidnap 1.6157 1.66422 1.4376 1.58857

1_360 0.2089 0.20669 0.2028 N/A

1_desk 0.047611 0.629381 0.04365 0.304522

1_desk2 0.7025 0.9130 0.89436 0.8298

f r3_str_tex_ f ar 0.46528 0.46511 0.580506 0.488473

f r3_str_tex_near 0.01555 0.72177 0.16201 0.19618

f loor 0.5121 0.7008 0.4334 1.0191

As can be seen from Table 1, our system has better performance on five out of nine
sequences on this metric. LCSD outperforms the proposed system on f r2/xyz, this scene is
a static view of a desk, this is coherent with the hypothesis of this work given that indirect
methods perform better with linear movement (especially for initialization).

Table 2 presents the results of comparison between the systems on the KITTI dataset.
Results show that, on this database, the proposed system performs equally to the best
performing algorithm or better on four out of seven sequences. On this dataset, it can be
noted that the results can be classified into three categories. The first category is where
the proposed system outperforms the other three algorithms (seq_00, seq_04). The second
category is where the proposed system has a equal performance to the best of the three
other algorithms (seq_03, seq_06). The third and last category is the one where one (and
only one) of the systems outperforms the proposed system (seq_01, seq_02 and seq_05).

J. Imaging 2021, 7, 141 11 of 17

Table 2. RMSE of the four systems on sequences of the KITTI database (best results in bold). The
values represent the mean over five passes of each algorithm.

Sequence System ORBSLAM2 LSD-SLAM Fusion LCSD

seq_00 37.8645 76.587 31.007 54.479

seq_01 408.565 379.22 279.259 99.4138

seq_02 305.26 305.425 303.352 284.359

seq_03 152.68 169.73 152.68 N/A

seq_04 112.781 112.973 109.136 N/A

seq_05 27.6416 160.466 29.1424 N/A

seq_06 35.42 137.64 35.42 N/A

Table 3 presents the results of comparison between the four systems on the EuRoC
dataset. On this dataset, ORBSLAM2 outperforms the other three algorithms. This can be
explained by the fact that the EuRoC dataset offers sequences which are highly textured
and varying levels of lighting, which violates the photometric consistency hypothesis
made by direct algorithms such as LSD-SLAM. It must be noted, even though our system
comes in the second place, both our proposal and ORBSLAM2 are (one or two) orders of
magnitude better than the two other algorithms.

Table 3. RMSE of the four systems on sequences of the EuRoC database (best results in bold). The
values represent the mean over five passes of each algorithm.

Sequence System ORBSLAM2 LSD-SLAM Fusion LCSD

mav1 0.053 4.162 0.071 4.157

mav2 0.0325 4.232 0.4522 4.010

mav3 0.0757 3.565 0.0469 3.496

mav4 0.0661 6.781 0.1999 6.714

mav5 0.0452 6.707 0.280 6.678

mav6 0.08 1.699 0.08 1.76

The next part focuses on a single sequence. This represents one pass of the algorithms
to show the consistency of the results over the sequences. This sequence is detailed in order
to present other metrics than the RMSE.

We chose to focus on the f r1/xyz sequence of the TUM dataset. It represents a scene
with both texture and untextured parts. To compare the performance of the four systems,
the x, y and z components of the trajectory can be visualized separately, see Figure 4.

Table 4 presents the statistical characteristics of the absolute pose error (APE) given by
the four systems. It shows that the proposed system has better performance than the two
other algorithms, running on their own, and LCSD on every metric.

J. Imaging 2021, 7, 141 12 of 17

Figure 4. Trajectory comparisons between the proposed fusion system, LCSD, ORBSLAM2 and
LSD-SLAM on the TUM sequence “ f r1/xyz”.

Table 4. Statistical data of the comparison between our proposed system, LCSD, ORBSLAM2 and
LSD-SLAM on the sequence “ f r1/xyz” in the TUM RGB-D database.

Max Mean Median Min RMSE SSE std

FUSION 0.0451 0.0101 0.0083 0.00048 0.0122 0.1194 0.0068

LCSD 0.2988 0.1222 0.1130 0.00243 0.1416 15.943 0.0715

LSD-SLAM 0.13568 0.0495 0.0462 0.00413 0.0562 2.5085 0.0266

ORBSLAM2 0.40340 0.0552 0.0349 0.00685 0.0873 6.0390 0.0675

Table 4 compares the four systems in terms of seven different metrics: (i) the maximum
error “max”, which describes the largest error seen throughout the trajectory with respect
to the ground truth; (ii) the “mean” error, which provides an idea on accuracy of the system;
(iii) “median” (the value for which half the error values is higher and the other half is
lower); (iv) the minimum error (“min”), which describes the smallest error seen throughout
the trajectory with respect to the ground truth; (v) “RMSE” (root mean square error); (vi)
“SSE” sums of squares error; (vii) standard deviation (“std”), which describes the spread of
the error, the larger this value is the less the system is precise.

As summarized in Table 4, we can see that our system is better on all metrics on
this scene.

Another way to look at the results is by assuming a Gaussian error over the four
trajectories, and calculating the three sigma upper limit error as can be seen in Table 5.

Table 5. Parameters of the Gaussian distributions of the four systems.

System Mean std 99% Upper Limit

Fusion 0.0101 0.0068 0.0305

LCSD 0.1222 0.0715 0.3367

LSD-SLAM 0.0495 0.0266 0.1293

ORBSLAM2 0.0552 0.0675 0.2577

This means that on this sequence, using this metric, the proposed system is better by
90% than LCSD, 77% better than LSD-SLAM and 89% better than ORBSLAM2.

4.2. Execution Time

Our proposal is a fusion of two existing algorithms. In Section 4.1, the results show the
system is generally better or comparable to the best algorithm in each type of scenes (direct
or indirect). To study the added computational cost of the fusion, we chose a sequence out

J. Imaging 2021, 7, 141 13 of 17

of every database and calculate the mean and median time per frame on our system and
ORBSLAM2 as can be seen in Table 6.

Table 6. Processing times of frames in seconds is presented by subscript t. The inverse is presented
as frequency with a subscript f . “Fus.” represents the results of the fusion system. All the results
are a mean for five passes. For each scene, the “media” and “mean” columns represent the median
and mean of ORBSLAM2 system. “Adj.” represents the adjusted times/frequencies as explained in
Section 4.2.

Scene Fus. Median Fus. Mean Median Mean Adj. Median Adj. Mean

f r1/xyzt 0.0282 0.0290 0.0204 0.0227 0.0197 0.0299

f r1/xyz f 35.39 34.41 49.01 43.86 50.69 33.37

seq_06t 0.0277 0.0330 0.0274 0.0320 0.0274 0.0321

seq_06 f 36.08 30.28 36.39 31.15 36.39 31.13

mav1t 0.0306 0.0336 0.0288 0.0309 0.02874 0.0311

mav1 f 32.62 29.74 34.71 32.34 34.78 32.14

Table 6 represents the processing times (and inversely frequencies) of the proposed
system compared to ORBSLAM2. Two points must be noted. First, the median time is
the time spent on the processing of the frame corresponding to the image in the middle
of the sequence, the same method is used by ORBSLAM2. Second, in ORBSLAM2, the
mean and median values are calculated based on the whole sequence (even if the system
has not initialized). In the adjusted mean and median, we calculate values only on frames
where the system is running tracking and mapping. The adjusted values are different from
the non-adjusted values. This supports the hypothesis that indirect vSLAM methods have
problems in initialization. We use the adjusted values for comparison with our system.

From Table 6, it can be seen that the differences between the mean of the fusion system
and the adjusted mean of ORBSLAM2 is never more than 7.5%. It should also be noted
that on the sequence f r1/xyz the pattern is reversed.

4.3. Augmentations

Since our end goal for the proposed system is to use it for AR applications, another set
of evaluations involving augmentations on a set of data is presented. The augmentations
are achieved by displaying a 3D cube into known coordinates of the scene (f r1/xyz). The
quality of the augmentations are judged based on the stability of the virtual object with
respect to the scene.

Figure 5 represents two frames from an augmented scene. During these two frames
the proposed system runs ORBSLAM2. At the beginning of the sequence, ORBSLAM2
could not initialize, where LSD-SLAM does initialize from the second frame. Therefore
the system uses LSD-SLAM to initialise ORBSLAM2, where the system adjusts the poses
and map of ORBSLAM2 by the poses and map provided by LSD-SLAM as explained in
Section 3.3.

As can be seen from Figure 5 the cube is relatively stable with respect to the scene. A
video of the sequence can be seen here.

https://youtu.be/X6Rcrxz8_Wo

J. Imaging 2021, 7, 141 14 of 17

Figure 5. Illustration of an augmentation from our Fusion system on the TUM f r1/xyz sequence.
The left and right images are taken at different moments of the augmented scene.

4.4. Discussion

The proposed system offers similar or better performances on the majority of se-
quences. The TUM dataset offers photometrically consistent scenes with textured and
untextured parts—this favors direct methods. Both KITTI and EuRoC datasets are more
textured and less photometrically consistent, which favors indirect methods. The proposed
system has adapted to each type and performed similar or better on the three datasets. In
cases where the scene has textured and untextured parts, ORBSLAM2 has difficulties ini-
tializing while LSD-SLAM and LCSD can do so more easily; However, once all the systems
are initialized, then ORBSLAM2 is generally more precise. These types of scenes are more
representative of the real world, which is usually a mix of textured and untextured parts.

The cases where our proposed system has a weaker performance, generally happen
on scenes where one of the sub-systems (ORBSLAM2 or LSD-SLAM) fails to initialize
or loses tracking. This generally happens on homogeneous (i.e., fully textured or fully
untextured) sequences.

LCSD is a method quite similar to our proposal. The main difference is that LCSD uses
a direct vSLAM (DSO) as a base algorithm. This reduces the performance on scenes that are
more favorable to indirect vSLAM methods (i.e., textured and photometrically inconsistent
scenes). This explains the performance of LCSD (and LSD-SLAM) on the EuRoC dataset.
Furthermore, the published results of LCSD (cf. [32]) with respect to the EuRoC dataset
confirms this.

The proposed system has shown that it can adapt to different types of scenes, in
Section 4.2, we show that the added cost in terms of processing time is under 7.5%.

Section 4.3 presents augmentations based on the proposed system. In the augmented
sequence, given that the system initialized immediately (thanks to LSD-SLAM) and the
robustness of the tracking (thanks to ORBSLAM2), the virtual cube is stable from the start
and does not present any jitter. This result highlights the importance of fusion of the two
techniques (direct and indirect) since it allows for a seamless switch from one method to
the other.

5. Conclusions

In this paper, we proposed a fusion system of a direct (LSD-SLAM) and an indirect
(ORBSLAM2) vSLAM algorithms. Fusing different vSLAM systems does not receive a
lot of attention in the community, where most attention is directed to deep learning and
sensor fusion methods; however, we do believe that while these two research directions are
very interesting and promising in particular for AR applications, they still present some
drawbacks that fusion methods could alleviate. In particular, current DL methods cannot
(yet) accomplish end-to-end vSLAM and sensor fusion methods require some specific
hardware. Even if recent mobile devices are starting to embed more complex and powerful
sensors (e.g., Lidars, etc.) such devices are still limited to a small market share.

We do believe monocular vSLAM still offers a large potential, especially with the
fusion of direct and indirect methods. In this work, we show that fusing a state-of-the-art

J. Imaging 2021, 7, 141 15 of 17

direct (LSD-SLAM) and indirect (ORBSLAM2) vSLAM methods can lead to better or at least
equivalent performance that the best of these two methods taken individually while being
usable in more realistic scenarios (i.e., combining textured and textureless environments).
We also compared the proposed system against LCSD [32], which uses a direct method
(DSO) for local tracking and mapping, and an indirect method for global optimization and
pose refinement. We found that LCSD has a reduced performance relative to our proposal
in scenes which favor indirect methods (i.e., scenes with texture and changing lighting).

As future work, we aim at developing more sophisticated fusion techniques that
could increase performance and robustness and also at investigating the integration of
semantic vSLAM [45] in the fusion algorithm in order to offer a wider range of AR applica-
tions (i.e., by being able to detect objects in the scene and augment them based on their
semantic information).

Author Contributions: Conceptualization, M.O., G.M. and J.-M.N.; methodology, M.O., G.M. and
J.-M.N.; software, M.O.; validation, G.M. and J.-M.N.; writing—original draft preparation, M.O.;
writing—review and editing, M.O., G.M. and J.-M.N.; visualization, M.O.; supervision, G.M. and
J.-M.N.; project administration, G.M. and J.-M.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This Work was funded by the IRT Jules Verne Perform program and followed up by Adolfo
Suarez-Roos.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this work consist of three databases, which are available
at http://www.cvlibs.net/datasets/kitti/eval_odometry.php, https://vision.in.tum.de/data/datasets/
rgbd-dataset and https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets. The
databases were accessed on the 17 May 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2320–2327.
2. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal.

Mach. Intell. 2007, 29, 1052–1067. [CrossRef]
3. Jinyu, L.; Bangbang, Y.; Danpeng, C.; Nan, W.; Guofeng, Z.; Hujun, B. Survey and evaluation of monocular visual-inertial SLAM

algorithms for augmented reality. Virtual Real. Intell. Hardw. 2019, 1, 386–410. [CrossRef]
4. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. arXiv 2016, arXiv:1607.02565.
5. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. arXiv 2016,

arXiv:1610.06475.
6. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Proceedings of the European Conference

on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014.
7. Ramezani, M.; Tinchev, G.; Iuganov, E.; Fallon, M. Online LiDAR-SLAM for Legged Robots with Robust Registration and

Deep-Learned Loop Closure. arXiv 2020, arXiv:cs.RO/2001.10249.
8. Aghili, F. 3D SLAM using IMU and its observability analysis. In Proceedings of the 2010 IEEE International Conference on

Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp. 377–383. [CrossRef]
9. Pire, T.; Fischer, T.; Castro, G.; De Cristóforis, P.; Civera, J.; Jacobo Berlles, J. S-PTAM: Stereo Parallel Tracking and Mapping.

Robot. Auton. Syst. 2017, 93, 27–42. [CrossRef]
10. Kerl, C.; Sturm, J.; Cremers, D. Dense Visual SLAM for RGB-D Cameras. In Proceedings of the International Conference on

Intelligent Robot Systems (IROS), Tokyo, Japan, 3–7 November 2013.
11. Liu, Y.; Chen, Z.; Zheng, W.; Wang, H.; Liu, J. Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable

Initialization. Sensors 2017, 17, 2613, [CrossRef]
12. Casarrubias-Vargas, H.; Petrilli-Barceló, A.; Bayro-Corrochano, E. EKF-SLAM and Machine Learning Techniques for Visual Robot

Navigation. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August
2010; pp. 396–399.

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://vision.in.tum.de/data/datasets/rgbd-dataset
https://vision.in.tum.de/data/datasets/rgbd-dataset
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://doi.org/10.1109/TPAMI.2007.1049
http://dx.doi.org/10.1016/j.vrih.2019.07.002
http://dx.doi.org/10.1109/ICMA.2010.5587914
http://dx.doi.org/10.1016/j.robot.2017.03.019
http://dx.doi.org/10.3390/s17112613

J. Imaging 2021, 7, 141 16 of 17

13. Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping
Problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, AB, Canada, 30 July–1 August
2002; pp. 593–598.

14. Van Goor, P.; Mahony, R.; Hamel, T.; Trumpf, J. An Observer Design for Visual Simultaneous Localisation and Mapping with
Output Equivariance. arXiv 2020, arXiv:cs.RO/2005.14347.

15. De Croce, M.; Pire, T.; Bergero, F. DS-PTAM: Distributed Stereo Parallel Tracking and Mapping SLAM System. J. Intell. Robot. Syst.
2018. [CrossRef]

16. Sumikura, S.; Shibuya, M.; Sakurada, K. OpenVSLAM: A Versatile Visual SLAM Framework. In Proceedings of the 27th ACM
International Conference on Multimedia, Nice, France, 21–25 October 2019.

17. Cummins, M.; Newman, P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. Int. J. Robot. Res.
2008, 27, 647–665. [CrossRef]

18. Zhang, Y.; Jin, R.; Zhou, Z.H. Understanding bag-of-words model: A statistical framework. Int. J. Mach. Learn. Cybern. 2010,
1, 43–52. [CrossRef]

19. Kaess, M.; Ranganathan, A.; Dellaert, F. iSAM: Incremental Smoothing and Mapping. IEEE Trans. Robot. 2008, 24, 1365–1378.
[CrossRef]

20. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

21. Liu, H.; Zhang, G.; Bao, H. Robust Keyframe-Based Monocular SLAM for Augmented Reality. In Proceedings of the 2016
IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), Merida, Mexico, 19–23 September 2016;
pp. 340–341.

22. Audi, A.; Pierrot-Deseilligny, M.; Meynard, C.; Thom, C. Implementation of an IMU Aided Image Stacking Algorithm in a Digital
Camera for Unmanned Aerial Vehicles. Sensors 2017, 17, 1646. [CrossRef] [PubMed]

23. Engel, J.; Sturm, J.; Cremers, D. Semi-Dense Visual Odometry for a Monocular Camera. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013.

24. Sattler, T.; Zhou, Q.; Pollefeys, M.; Leal-Taixé, L. Understanding the Limitations of CNN-based Absolute Camera Pose Regression.
arXiv 2019, arXiv:1903.07504.

25. Brachmann, E.; Michel, F.; Krull, A.; Yang, M.Y.; Gumhold, S.; Rother, C. Uncertainty-Driven 6D Pose Estimation of Objects and
Scenes from a Single RGB Image. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3364–3372.

26. Nain, N.; Laxmi, V.; Bhadviya, B.; Deepak, B.M.; Ahmed, M. Fast Feature Point Detector. In Proceedings of the 2008 IEEE
International Conference on Signal Image Technology and Internet Based Systems (SITIS ’08), Bali, Indonesia, 30 November–
3 December 2008; IEEE Computer Society: New York, NY, USA, 2008; pp. 301–306. [CrossRef]

27. Sultana, F.; Sufian, A.; Dutta, P. Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey. Knowl.
Based Syst. 2020, 201–202, 106062. [CrossRef]

28. Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection with Deep Learning: A Review. arXiv 2018, arXiv:1807.05511.
29. Shima, R.; Yunan, H.; Fukuda, O.; Okumura, H.; Arai, K.; Bu, N. Object classification with deep convolutional neural network

using spatial information. In Proceedings of the 2017 International Conference on Intelligent Informatics and Biomedical Sciences
(ICIIBMS), Okinawa, Japan, 24–26 November 2017; pp. 135–139.

30. Duong, N.; Kacete, A.; Soladie, C.; Richard, P.; Royan, J. Accurate Sparse Feature Regression Forest Learning for Real-Time
Camera Relocalization. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September
2018; pp. 643–652. [CrossRef]

31. Rambach, J.R.; Tewari, A.; Pagani, A.; Stricker, D. Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose
Estimation. In Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Merida,
Mexico, 19–23 September 2016; pp. 71–76. [CrossRef]

32. Lee, S.H.; Civera, J. Loosely-Coupled Semi-Direct Monocular SLAM. IEEE Robot. Autom. Lett. 2018, 4, 399–406. [CrossRef]
33. Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017, 9.

[CrossRef]
34. Kahlefendt, C. List of SLAM and Visual Odometry Algorithms. 2017. Available online: https://github.com/kafendt/List-of-

SLAM-VO-algorithms/ (accessed on 24 May 2021).
35. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.
36. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceed-

ings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613.
[CrossRef]

37. Civera, J.; Davison, A.J.; Montiel, J.M.M. Inverse Depth Parametrization for Monocular SLAM. IEEE Trans. Robot. 2008,
24, 932–945. [CrossRef]

38. Glover, A.; Maddern, W.; Warren, M.; Reid, S.; Milford, M.; Wyeth, G. OpenFABMAP: An open source toolbox for appearance-
based loop closure detection. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul,
MI, USA, 14–18 May 2012; pp. 4730–4735. [CrossRef]

http://dx.doi.org/10.1007/s10846-018-0913-6
http://dx.doi.org/10.1177/0278364908090961
http://dx.doi.org/10.1007/s13042-010-0001-0
http://dx.doi.org/10.1109/TRO.2008.2006706
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.3390/s17071646
http://www.ncbi.nlm.nih.gov/pubmed/28718788
http://dx.doi.org/10.1109/SITIS.2008.97
http://dx.doi.org/10.1016/j.knosys.2020.106062
http://dx.doi.org/10.1109/3DV.2018.00079
http://dx.doi.org/10.1109/ISMAR.2016.19
http://dx.doi.org/10.1109/LRA.2018.2889156
http://dx.doi.org/10.1186/s41074-017-0027-2
https://github.com/kafendt/List-of-SLAM-VO-algorithms/
https://github.com/kafendt/List-of-SLAM-VO-algorithms/
http://dx.doi.org/10.1109/ICRA.2011.5979949
http://dx.doi.org/10.1109/TRO.2008.2003276
http://dx.doi.org/10.1109/ICRA.2012.6224843

J. Imaging 2021, 7, 141 17 of 17

39. Benhimane, S.; Malis, E. Real-time image-based tracking of planes using efficient second-order minimization. In Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan,
28 September–2 October 2004; Volume 1, pp. 943–948. [CrossRef]

40. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial and Multi-Map SLAM. arXiv 2020, arXiv:2007.11898.

41. Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/
MichaelGrupp/evo (accessed on 24 May 2021).

42. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems. In
Proceedings of the International Conference on Intelligent Robot Systems (IROS), Vilamoura, Algarve, Portugal, 7–12 October 2012.

43. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012.

44. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle
datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. Available online: http://xxx.lanl.gov/abs/http://ijr.sagepub.com/content/
early/2016/01/21/0278364915620033.full.pdf+html (accessed on 24 May 2021).

45. Qian, Z.; Patath, K.; Fu, J.; Xiao, J. Semantic SLAM with Autonomous Object-Level Data Association. arXiv 2020, arXiv:2011.10625.

http://dx.doi.org/10.1109/IROS.2004.1389474
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
http://xxx.lanl.gov/abs/http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://xxx.lanl.gov/abs/http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html

	Introduction
	State-of-the-Art
	Indirect vSLAM
	Direct vSLAM
	Other Types of vSLAM

	Materials and Methods
	ORBSLAM2
	Tracking
	Mapping
	Loop Closing

	LSD-SLAM
	Tracking
	Depth Map Estimation
	Pose Graph Optimization
	Constraint Search

	The Proposed Fusion System

	Results
	Trajectory Comparison
	Execution Time
	Augmentations
	Discussion

	Conclusions
	References

